Research Article
BibTex RIS Cite

Wijsman Quasi-Hemen Hemen İstatistiksel Cauchy Dizi

Year 2019, Volume: 19 Issue: 1, 87 - 91, 28.05.2019
https://doi.org/10.35414/akufemubid.478536

Abstract

Bu
araştırma makalesinde, küme değerli diziler için Wijsman quasi-hemen hemen
istatistiksel Cauchy dizi kavramı tanıtıldı. Ayrıca, tanıtılan bu yeni kavram
ile daha önceden küme değerli diziler için verilen Wijsman quasi-hemen hemen
yakınsaklık ve Wijsman quasi-hemen hemen istatistiksel yakınsaklık kavramları
arasındaki ilişkiler incelendi.

References

  • Baronti, M. and Papini, P., 1986. Convergence of sequences of sets. In: Methods of Functional Analysis in Approximation Theory (pp. 133-155), ISNM 76, Birkhauser-Verlag, Basel.
  • Beer, G., 1985. On convergence of closed sets in a metric space and distance functions. Bulletin of the Australian Mathematical Society, 31(3), 421-432.
  • Beer, G., 1994. Wijsman convergence: A survey. Set-Valued Analysis, 2(1-2), 77-94.
  • Dündar, E., Ulusu, U. and Pancaroğlu, N., 2016. Strongly I_2-convergence and I_2-lacunary Cauchy double sequences of sets. The Aligarh Bulletin of Mathematics, 35(1-2), 1-15.
  • Dündar, E., Ulusu, U. and Aydın, B., 2017. I_2-lacunary statistical convergence of double sequences of sets. Konuralp Journal of Mathematics, 5(1), 1-10.
  • Gülle, E. and Ulusu, U., 2017. Quasi-almost convergence of sequences of sets. Journal of Inequalities and Special Functions, 8(5), 59-65.
  • Gülle, E. and Ulusu, U., 2018. Quasi-almost lacunary statistical convergence of sequences of sets. International Journal of Analysis and Applications, 16(2), 222-231.
  • Fast, H., 1951. Sur la convergence statistique. Colloquium Mathematicum, 2(3-4), 241-244.
  • Fridy, J. A., 1985. On statistical convergence. Analysis, 5(4), 301-314.
  • Hajdukovic, D., 2002. Quasi-almost convergence in a normed space. Univerzitet u Beogradu-Publikacije Elektrotehničkog fakulteta-Serija Matematika, 13, 36-41.
  • Lorentz, G. G., 1948. A contribution to the theory of divergent sequences. Acta Mathematica, 80(1), 167-190.
  • Maddox, I. J., 1978. A new type of convergence. Mathematical Proceedings of the Cambridge Philosophical Society, 83(1), 61-64.
  • Nuray, F. and Rhoades, B. E., 2012. Statistical convergence of sequences of sets. Fasciculi Mathematici, 49, 87-99.
  • Nuray, F., Ulusu, U. and Dündar, E., 2014a. Cesaro summability of double sequences of sets. General Mathematics Notes, 25(1), 8-18.
  • Nuray, F., Dündar, E. and Ulusu, U., 2014b. Wijsman I_2-convergence of double sequences of closed sets. Pure Appl. Math. Lett., 2, 35-39.
  • Nuray, F., Ulusu, U. and Dündar, E., 2016. Lacunary statistical convergence of double sequences of sets. Soft Computing, 20, 2883-2888.
  • Salat, T., 1980. On statistically convergent sequences of real numbers. Mathematica Slovaca, 30(2), 139-150.
  • Sever, Y., Ulusu, U. and Dündar, E., 2014. On strongly I and I*-lacunary convergence of sequences of sets. AIP Conference Proceedings, 1611(1), 357-362.
  • Ulusu, U. and Nuray, F., 2012. Lacunary statistical convergence of sequences of sets. Progress in Applied Mathematics, 4(2), 99-109.
  • Ulusu, U. and Nuray, F., 2013a. On strongly lacunary summability of sequences of sets. Journal of Applied Mathematics and Bioinformatics, 3(3), 75-88.
  • Ulusu, U. and Nuray, F., 2013b. Statistical lacunary summability of sequences of sets. Afyon Kocatepe University Journal of Science and Engineering, 13, 9-14.
  • Ulusu, U. and Dündar, E., 2014. I-lacunary statistical convergence of sequences of sets. Filomat, 28(8), 1567-1574.
  • Ulusu, U. and Nuray, F., 2015. Lacunary statistical summability of sequences of sets. Konuralp Journal of Mathematics, 3(2), 176-184.
  • Ulusu, U. and Kişi, Ö., 2017. I-Cesaro summability of sequences of sets. Electronic Journal of Mathematical Analysis and Applications, 5(1), 278-286.
  • Ulusu, U., Dündar, E. and Nuray, F., 2018. Lacunary I_2-invariant convergence and some properties. International Journal of Analysis and Applications, 16(3), 317-327.
  • Wijsman, R. A., 1964. Convergence of sequences of convex sets, cones and functions. Bulletin of the American Mathematical Society, 70(1), 186-188.
  • Wijsman, R. A., 1966. Convergence of sequences of convex sets, cones and functions II, Transactions of the American Mathematical Society, 123 (1), 32-45.
Year 2019, Volume: 19 Issue: 1, 87 - 91, 28.05.2019
https://doi.org/10.35414/akufemubid.478536

Abstract

References

  • Baronti, M. and Papini, P., 1986. Convergence of sequences of sets. In: Methods of Functional Analysis in Approximation Theory (pp. 133-155), ISNM 76, Birkhauser-Verlag, Basel.
  • Beer, G., 1985. On convergence of closed sets in a metric space and distance functions. Bulletin of the Australian Mathematical Society, 31(3), 421-432.
  • Beer, G., 1994. Wijsman convergence: A survey. Set-Valued Analysis, 2(1-2), 77-94.
  • Dündar, E., Ulusu, U. and Pancaroğlu, N., 2016. Strongly I_2-convergence and I_2-lacunary Cauchy double sequences of sets. The Aligarh Bulletin of Mathematics, 35(1-2), 1-15.
  • Dündar, E., Ulusu, U. and Aydın, B., 2017. I_2-lacunary statistical convergence of double sequences of sets. Konuralp Journal of Mathematics, 5(1), 1-10.
  • Gülle, E. and Ulusu, U., 2017. Quasi-almost convergence of sequences of sets. Journal of Inequalities and Special Functions, 8(5), 59-65.
  • Gülle, E. and Ulusu, U., 2018. Quasi-almost lacunary statistical convergence of sequences of sets. International Journal of Analysis and Applications, 16(2), 222-231.
  • Fast, H., 1951. Sur la convergence statistique. Colloquium Mathematicum, 2(3-4), 241-244.
  • Fridy, J. A., 1985. On statistical convergence. Analysis, 5(4), 301-314.
  • Hajdukovic, D., 2002. Quasi-almost convergence in a normed space. Univerzitet u Beogradu-Publikacije Elektrotehničkog fakulteta-Serija Matematika, 13, 36-41.
  • Lorentz, G. G., 1948. A contribution to the theory of divergent sequences. Acta Mathematica, 80(1), 167-190.
  • Maddox, I. J., 1978. A new type of convergence. Mathematical Proceedings of the Cambridge Philosophical Society, 83(1), 61-64.
  • Nuray, F. and Rhoades, B. E., 2012. Statistical convergence of sequences of sets. Fasciculi Mathematici, 49, 87-99.
  • Nuray, F., Ulusu, U. and Dündar, E., 2014a. Cesaro summability of double sequences of sets. General Mathematics Notes, 25(1), 8-18.
  • Nuray, F., Dündar, E. and Ulusu, U., 2014b. Wijsman I_2-convergence of double sequences of closed sets. Pure Appl. Math. Lett., 2, 35-39.
  • Nuray, F., Ulusu, U. and Dündar, E., 2016. Lacunary statistical convergence of double sequences of sets. Soft Computing, 20, 2883-2888.
  • Salat, T., 1980. On statistically convergent sequences of real numbers. Mathematica Slovaca, 30(2), 139-150.
  • Sever, Y., Ulusu, U. and Dündar, E., 2014. On strongly I and I*-lacunary convergence of sequences of sets. AIP Conference Proceedings, 1611(1), 357-362.
  • Ulusu, U. and Nuray, F., 2012. Lacunary statistical convergence of sequences of sets. Progress in Applied Mathematics, 4(2), 99-109.
  • Ulusu, U. and Nuray, F., 2013a. On strongly lacunary summability of sequences of sets. Journal of Applied Mathematics and Bioinformatics, 3(3), 75-88.
  • Ulusu, U. and Nuray, F., 2013b. Statistical lacunary summability of sequences of sets. Afyon Kocatepe University Journal of Science and Engineering, 13, 9-14.
  • Ulusu, U. and Dündar, E., 2014. I-lacunary statistical convergence of sequences of sets. Filomat, 28(8), 1567-1574.
  • Ulusu, U. and Nuray, F., 2015. Lacunary statistical summability of sequences of sets. Konuralp Journal of Mathematics, 3(2), 176-184.
  • Ulusu, U. and Kişi, Ö., 2017. I-Cesaro summability of sequences of sets. Electronic Journal of Mathematical Analysis and Applications, 5(1), 278-286.
  • Ulusu, U., Dündar, E. and Nuray, F., 2018. Lacunary I_2-invariant convergence and some properties. International Journal of Analysis and Applications, 16(3), 317-327.
  • Wijsman, R. A., 1964. Convergence of sequences of convex sets, cones and functions. Bulletin of the American Mathematical Society, 70(1), 186-188.
  • Wijsman, R. A., 1966. Convergence of sequences of convex sets, cones and functions II, Transactions of the American Mathematical Society, 123 (1), 32-45.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Esra Gülle

Publication Date May 28, 2019
Submission Date November 5, 2018
Published in Issue Year 2019 Volume: 19 Issue: 1

Cite

APA Gülle, E. (2019). Wijsman Quasi-Hemen Hemen İstatistiksel Cauchy Dizi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 19(1), 87-91. https://doi.org/10.35414/akufemubid.478536
AMA Gülle E. Wijsman Quasi-Hemen Hemen İstatistiksel Cauchy Dizi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. May 2019;19(1):87-91. doi:10.35414/akufemubid.478536
Chicago Gülle, Esra. “Wijsman Quasi-Hemen Hemen İstatistiksel Cauchy Dizi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 19, no. 1 (May 2019): 87-91. https://doi.org/10.35414/akufemubid.478536.
EndNote Gülle E (May 1, 2019) Wijsman Quasi-Hemen Hemen İstatistiksel Cauchy Dizi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 19 1 87–91.
IEEE E. Gülle, “Wijsman Quasi-Hemen Hemen İstatistiksel Cauchy Dizi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 19, no. 1, pp. 87–91, 2019, doi: 10.35414/akufemubid.478536.
ISNAD Gülle, Esra. “Wijsman Quasi-Hemen Hemen İstatistiksel Cauchy Dizi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 19/1 (May 2019), 87-91. https://doi.org/10.35414/akufemubid.478536.
JAMA Gülle E. Wijsman Quasi-Hemen Hemen İstatistiksel Cauchy Dizi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2019;19:87–91.
MLA Gülle, Esra. “Wijsman Quasi-Hemen Hemen İstatistiksel Cauchy Dizi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 19, no. 1, 2019, pp. 87-91, doi:10.35414/akufemubid.478536.
Vancouver Gülle E. Wijsman Quasi-Hemen Hemen İstatistiksel Cauchy Dizi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2019;19(1):87-91.