Research Article
BibTex RIS Cite

Investigation of Suitable Plasticizer / Setting Accelerator Additive Type in Foam Concrete Production

Year 2019, Volume: 19 Issue: 2, 390 - 400, 17.09.2019

Abstract

Foam concrete has an
increasing use today. It is a preferred type of lightweight concrete due to its
ease of application and low unit weight. In this study, the effects of
plasticizer and setting accelerator additives added to foam concrete mixtures
were investigated and optimization studies were carried out. According to this,
the effect of fluidity, water / binder, water / solid ratios on fresh and
hardened concrete properties were investigated. In this study, two different
plasticizer additives and one setting accelerator chemical additive were used.
The effects of chemical additives on mixtures were investigated. Use of the
same proportions of polycarboxylic ether-based superplasticizer (SAp)
additive   compared to the addition of
melamine sulfonate polymer based superplasticizer (SAm)  were reduce fluidity times (more fluidty) and
accordingly, higher strength values were obtained. Rheological properties of
the foam concrete can be determined in practice by Marsh cone method.

References

  • Anonim, ASTM C 494, Standard Specification for Chemical Admixtures for Concrete, ACI.
  • Anonim, ASTM, 1991. Standard Specification for Foaming Agents Used in Making Preformed Foam for Cellular Concrete, ASTM C869-91, Q. C138, Philadelphia.
  • Anonim, ASTM, 1997. Standard test method for foaming agents for use in producing cellular concrete using preformed foam, in: ASTM C796-97; Standard Test Method for Unit Weight. Yield, and Air Content (Gravimetric) of concrete, ASTM C138, Q. C138, Philadelphia.
  • Anonim, ASTM, 1997. Standard test method for foaming agents for use in producing cellular concrete using preformed foam, in: ASTM C796-97; Standard Test Method for Unit Weight. Yield, and Air Content (Gravimetric) of concrete, ASTM C138, Q. C138, Philadelphia.
  • Anonim, BS EN 12350-6, Testing Fresh Concrete: Density, British Standards Institution, London, UK, 2009.
  • Anonim, British Cement Association, 1994. Foamed Concrete; Composition and Properties, Report Ref. 46.042, BCA, Slough.
  • Anonim, TS EN 934-2 Kimyasal katkılar- Beton, harç ve şerbet için- Bölüm 2: Beton katkıları- Tarifler ve özellikler, uygunluk, işaretleme ve etiketleme, 2010, Ankara.
  • Amran, Y.H.M, Farzadnia, A.A. and Abang A. Properties and applications of foamed concrete; a review. Const and Buil Mat 2015; 101: 990–1005.
  • Agarwal, SK, Masood, I. and Malhotra, S.K., 2000, Compatibility of superplasticizers with different cements, Constr. Build. Mater. 14 (5) 253–259.
  • Aldridge, D., (2005). Introduction to foamed concrete What, Why and How? In: Dhir, R.K., Newlands, M.D. and McCarthy, A. (Eds). Use of foamed concrete in construction. (pp 1-14). London: Thomas Telford.
  • Dijik, V.W. and Jong, P., 1991, Determining the Rn exhalation rate of building material using liquidscintillation counting. Healt Phys. 64 (4) 501-509.
  • Bennett, D., 2002, Innovations in Concrete, p62, Thomas Telford, London,.
  • Du, L. and Folliard, K. J., 2005, Mechanisms of air entrainment in concret, Cem Concr Res: 35 (8)1463-1471.
  • Ergene, TM, 1975, Foamed Concrete Structures, Hamburg, NY (US), Patent AU 115 FX Ergene, Stanley Works, New Britain, Patent no. US3867159 AH. Huber, 1995. Practical experience with shotcrete containing alkali-free acceleration, presented at Shotcrete for underground support VII, Telf, Austria,.
  • Jezequel, P.H. and Mathonier B., 2014, Foamed Concrete, Lafarge, Washington, DC (US), Patent no. WO2011101386 A1,.
  • Jones, MR, McCarthy, A., 2005, (a) Preliminary views on the potential of foamed concrete as a structural material. Mag Concr Res;57:21–31.
  • Jones, M. R., McCarthy, M.J., 2003, Moving fly ash utilization in concrete forward: a UK perspective, in: Proceedings of the International Ash Utilisation Symposium, Centre for Applied Energy Research, University of Kentucky, pp. 20–22.
  • Khayat, K.H. and Assaad, J., 2002. Air-void stability in self-consolidating concrete. ACI Materials Journal, 99(4), pp. 408-416.
  • Kearsley, EP and Visagie, M. 1999, Micro-properties of Foamed Concrete. Specialist Techniques and Materials for Construction,; Thomas Telford, London, 173–184.
  • Karl, S. and Woerner, JD., 1994, Foamed Concrete-mixing and Workability, in: Rilem Proceedings.; Chapman and Hall, p. 217.
  • Kayali, O., Haque M.N., and Zhu, B., 2003. Some characteristics of high strength fiber reinforced lightweight aggregate concrete, Cem. Concr. Compos.2003; 25 (2) 207–213.
  • M.D. and McCarthy, A. (Eds). Use of foamed concrete in construction. (pp 1-14). London: Thomas Telford.
  • Mohammad, M., 2011, Development of foamed concrete: enabling and supporting design. a thesis presented in application for the degree of doctor of philosophy Division of Civil Engineering University of Dundee.
  • Nambiar, E.K.K., and Ramamurthy, K., 2006, Models relating mixture composition to the density and strength of foam concrete using response surface methodology, Cem. Concr. Compos. 28 (9) (a) 752–760.
  • Nambiar, EKK., and Ramamurthy, K., 2006, Influence of filler type on the properties of foam concrete, Cem. Concr. Compos.; 28 (5), 475–480.
  • Nambiar, EKK., and Ramamurthy, K., 2008, Fresh state characteristics of foam concrete, J. Mater. Civ. Eng.; 20 (2), 111–117.
  • Nambiar EKK. and Ramamurthy K., 2006, Influence of filler type on the properties of foam concrete, Cem. Concr. Compos.; 28 (5), 475–480.
  • Neville, A., (2003). Neville on Concrete, ACI International.
  • Mohammed, J.H., and Hamad A. J., 2014, A classification of lightweight concrete: materials, properties and application review, International Journal of Advanced Engineering Applications, Vol.7, Iss.1, pp.52-57
  • Nehdi, M., Djebbar Y., and Khan A., 2001, Neural network model for preformed foam cellular concrete. ACI Mater J;98:402–9.
  • Nambiar E.K., and Ramamurthy K., 2008, Fresh state characteristics of foam concrete, J. Mater. Civ. Eng.; 20 (2), 111–117.
  • Pan, Zhihua, Li Hengzhi, Liu Weiqing, 2014, preparation and characterization of super low density foamed concrete from Portland cement and admixtures. Construction and Building Materials 72, 256–261.
  • Ramamurthy, K., Nambiar, E., Ranjani, G.. 2009, A classification of studies on properties of foam concrete. Cem Concr Compos;31(6):388–96.
  • Rousesel, N., 2007. Rheology of fresh concrete: from measurements to predictions of casting processes, Materials and Structures, Vol. 40, pp.1001–1012.
  • Ramyar, K., 2007, Portland Çimentosu –Süperakışkanlaştırıcı Katkı Uyumunu Etkileyen Faktörler. Yapılarda Kimyasal Katkılar Sempozyumuna Sunulmuş Bildiri (pp: 197-208).
  • Siram, K.K.B., 2012, Cellular Light-Weight Concrete Blocks as a Replacement of Burnt Clay Bricks, International Journal of Engineering and Advanced Technology (IJEAT), Volume-2, Issue-2, 149-151.
  • Roussel, N., and Coussot, P., 2005, Fifty-cent rheometer for yield stress measurements : from slump to spreading flow. Journal of Rheology;49 (3) 705–718.
  • Sağlam, A.R., Parlak N. ve Özkul M.H. 2007. Polikarboksilat Esaslı Kimyasal Katkıların Beton Üretiminde Kullanımı. Yapılarda Kimyasal Katkılar Sempozyumuna Sunulmuş Bildiri (pp.107-120).
  • Saucier, F., Pigeon, M. and Plante, P., 1990, Air-void Stability, Part III: Field test of Superplasticized Concretes, ACI Materials Journal; 87 (1): 3-11.
  • Shi, C., 2002, Composition of materials for use in cellular lightweight concrete and methods thereof, Advanced Materials Technologies LLC, Hamburg, NY (US),; Patent no: US6488762 B1.
  • Tangit-Hamou, A., and Aitcin, P.C., 1993. Cement and Superplasticizer Compatibility, World Cement, 38-42.
  • Tikalsky PJ, Pospisil J.and MacDonald W. ,2004, A method for assessment of the freeze–thaw resistance of preformed foam cellular concrete, Cement and Concrete Research;, 34 (5) 889–893.
  • Türkel, S., Felekoğlu, B., 2004, Aşırı Dozda Akışkanlaştırıcı Kimyasal Katkı Kullanımının Taze Ve Sertleşmiş Betonun Bazı Özellikleri Üzerine Etkileri”, DEÜ Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 6(1), 77- 89.
  • Valore JRC., 1956,Insulating concretes, ACI J. Proc., 53 (11).
  • Valore JRC., 1954, Cellular concretes Part 1 composition and methods of preparation, ACI J. Proc.; 50 (5).
  • İnternet Kaynaklarıİnt.1; www.foamconcrete.co.uk (2016)İnt. 2; www.iksa.com.tr/pdf/beton1.pdf (2017)

Köpük Beton Üretiminde Uygun Akışkanlaştırıcı/Priz Hızlandırıcı Katkı Türünün Araştırılması

Year 2019, Volume: 19 Issue: 2, 390 - 400, 17.09.2019

Abstract

Köpük
betonlar günümüzde giderek artan bir kullanıma sahiptir. Uygulanmasının
kolaylığı ve birim ağırlığının düşük oluşu sebebiyle tercih edilen bir hafif
beton türüdür. Bu çalışmada köpük beton karışımlara ilave edilen
akışkanlaştırıcı ve priz hızlandırıcı katkıların etkileri incelenerek
optimizasyon çalışmaları yürütülmüştür. Buna göre akışkanlık, su/bağlayıcı,
su/katı oranlarının taze ve sertleşmiş beton özelliklerine etkisi
incelenmiştir. Çalışmada iki farklı süper akışkanlaştırıcı (SA) katkı ve bir priz
hızlandırıcı kimyasal katkı kullanılmıştır.
Polikarboksilik eter
esaslı süper akışkanlaştırıcı (SAp) katkının, aynı oranlarda Melamin sülfonat
polimeri esaslı süper akışkanlaştırıcı (SAm) katkıya göre akışkanlık
sürelerinde azalma (daha akışkan) ve buna bağlı olarak daha yüksek dayanım
değerleri sağlamıştır. Köpük betonun akışkanlık özelliklerinin Marsh konisi ile
ölçülmesinin özellikle şantiye ortamında kolay ve pratik bir yöntem olacağı
değerlendirilmiştir.

References

  • Anonim, ASTM C 494, Standard Specification for Chemical Admixtures for Concrete, ACI.
  • Anonim, ASTM, 1991. Standard Specification for Foaming Agents Used in Making Preformed Foam for Cellular Concrete, ASTM C869-91, Q. C138, Philadelphia.
  • Anonim, ASTM, 1997. Standard test method for foaming agents for use in producing cellular concrete using preformed foam, in: ASTM C796-97; Standard Test Method for Unit Weight. Yield, and Air Content (Gravimetric) of concrete, ASTM C138, Q. C138, Philadelphia.
  • Anonim, ASTM, 1997. Standard test method for foaming agents for use in producing cellular concrete using preformed foam, in: ASTM C796-97; Standard Test Method for Unit Weight. Yield, and Air Content (Gravimetric) of concrete, ASTM C138, Q. C138, Philadelphia.
  • Anonim, BS EN 12350-6, Testing Fresh Concrete: Density, British Standards Institution, London, UK, 2009.
  • Anonim, British Cement Association, 1994. Foamed Concrete; Composition and Properties, Report Ref. 46.042, BCA, Slough.
  • Anonim, TS EN 934-2 Kimyasal katkılar- Beton, harç ve şerbet için- Bölüm 2: Beton katkıları- Tarifler ve özellikler, uygunluk, işaretleme ve etiketleme, 2010, Ankara.
  • Amran, Y.H.M, Farzadnia, A.A. and Abang A. Properties and applications of foamed concrete; a review. Const and Buil Mat 2015; 101: 990–1005.
  • Agarwal, SK, Masood, I. and Malhotra, S.K., 2000, Compatibility of superplasticizers with different cements, Constr. Build. Mater. 14 (5) 253–259.
  • Aldridge, D., (2005). Introduction to foamed concrete What, Why and How? In: Dhir, R.K., Newlands, M.D. and McCarthy, A. (Eds). Use of foamed concrete in construction. (pp 1-14). London: Thomas Telford.
  • Dijik, V.W. and Jong, P., 1991, Determining the Rn exhalation rate of building material using liquidscintillation counting. Healt Phys. 64 (4) 501-509.
  • Bennett, D., 2002, Innovations in Concrete, p62, Thomas Telford, London,.
  • Du, L. and Folliard, K. J., 2005, Mechanisms of air entrainment in concret, Cem Concr Res: 35 (8)1463-1471.
  • Ergene, TM, 1975, Foamed Concrete Structures, Hamburg, NY (US), Patent AU 115 FX Ergene, Stanley Works, New Britain, Patent no. US3867159 AH. Huber, 1995. Practical experience with shotcrete containing alkali-free acceleration, presented at Shotcrete for underground support VII, Telf, Austria,.
  • Jezequel, P.H. and Mathonier B., 2014, Foamed Concrete, Lafarge, Washington, DC (US), Patent no. WO2011101386 A1,.
  • Jones, MR, McCarthy, A., 2005, (a) Preliminary views on the potential of foamed concrete as a structural material. Mag Concr Res;57:21–31.
  • Jones, M. R., McCarthy, M.J., 2003, Moving fly ash utilization in concrete forward: a UK perspective, in: Proceedings of the International Ash Utilisation Symposium, Centre for Applied Energy Research, University of Kentucky, pp. 20–22.
  • Khayat, K.H. and Assaad, J., 2002. Air-void stability in self-consolidating concrete. ACI Materials Journal, 99(4), pp. 408-416.
  • Kearsley, EP and Visagie, M. 1999, Micro-properties of Foamed Concrete. Specialist Techniques and Materials for Construction,; Thomas Telford, London, 173–184.
  • Karl, S. and Woerner, JD., 1994, Foamed Concrete-mixing and Workability, in: Rilem Proceedings.; Chapman and Hall, p. 217.
  • Kayali, O., Haque M.N., and Zhu, B., 2003. Some characteristics of high strength fiber reinforced lightweight aggregate concrete, Cem. Concr. Compos.2003; 25 (2) 207–213.
  • M.D. and McCarthy, A. (Eds). Use of foamed concrete in construction. (pp 1-14). London: Thomas Telford.
  • Mohammad, M., 2011, Development of foamed concrete: enabling and supporting design. a thesis presented in application for the degree of doctor of philosophy Division of Civil Engineering University of Dundee.
  • Nambiar, E.K.K., and Ramamurthy, K., 2006, Models relating mixture composition to the density and strength of foam concrete using response surface methodology, Cem. Concr. Compos. 28 (9) (a) 752–760.
  • Nambiar, EKK., and Ramamurthy, K., 2006, Influence of filler type on the properties of foam concrete, Cem. Concr. Compos.; 28 (5), 475–480.
  • Nambiar, EKK., and Ramamurthy, K., 2008, Fresh state characteristics of foam concrete, J. Mater. Civ. Eng.; 20 (2), 111–117.
  • Nambiar EKK. and Ramamurthy K., 2006, Influence of filler type on the properties of foam concrete, Cem. Concr. Compos.; 28 (5), 475–480.
  • Neville, A., (2003). Neville on Concrete, ACI International.
  • Mohammed, J.H., and Hamad A. J., 2014, A classification of lightweight concrete: materials, properties and application review, International Journal of Advanced Engineering Applications, Vol.7, Iss.1, pp.52-57
  • Nehdi, M., Djebbar Y., and Khan A., 2001, Neural network model for preformed foam cellular concrete. ACI Mater J;98:402–9.
  • Nambiar E.K., and Ramamurthy K., 2008, Fresh state characteristics of foam concrete, J. Mater. Civ. Eng.; 20 (2), 111–117.
  • Pan, Zhihua, Li Hengzhi, Liu Weiqing, 2014, preparation and characterization of super low density foamed concrete from Portland cement and admixtures. Construction and Building Materials 72, 256–261.
  • Ramamurthy, K., Nambiar, E., Ranjani, G.. 2009, A classification of studies on properties of foam concrete. Cem Concr Compos;31(6):388–96.
  • Rousesel, N., 2007. Rheology of fresh concrete: from measurements to predictions of casting processes, Materials and Structures, Vol. 40, pp.1001–1012.
  • Ramyar, K., 2007, Portland Çimentosu –Süperakışkanlaştırıcı Katkı Uyumunu Etkileyen Faktörler. Yapılarda Kimyasal Katkılar Sempozyumuna Sunulmuş Bildiri (pp: 197-208).
  • Siram, K.K.B., 2012, Cellular Light-Weight Concrete Blocks as a Replacement of Burnt Clay Bricks, International Journal of Engineering and Advanced Technology (IJEAT), Volume-2, Issue-2, 149-151.
  • Roussel, N., and Coussot, P., 2005, Fifty-cent rheometer for yield stress measurements : from slump to spreading flow. Journal of Rheology;49 (3) 705–718.
  • Sağlam, A.R., Parlak N. ve Özkul M.H. 2007. Polikarboksilat Esaslı Kimyasal Katkıların Beton Üretiminde Kullanımı. Yapılarda Kimyasal Katkılar Sempozyumuna Sunulmuş Bildiri (pp.107-120).
  • Saucier, F., Pigeon, M. and Plante, P., 1990, Air-void Stability, Part III: Field test of Superplasticized Concretes, ACI Materials Journal; 87 (1): 3-11.
  • Shi, C., 2002, Composition of materials for use in cellular lightweight concrete and methods thereof, Advanced Materials Technologies LLC, Hamburg, NY (US),; Patent no: US6488762 B1.
  • Tangit-Hamou, A., and Aitcin, P.C., 1993. Cement and Superplasticizer Compatibility, World Cement, 38-42.
  • Tikalsky PJ, Pospisil J.and MacDonald W. ,2004, A method for assessment of the freeze–thaw resistance of preformed foam cellular concrete, Cement and Concrete Research;, 34 (5) 889–893.
  • Türkel, S., Felekoğlu, B., 2004, Aşırı Dozda Akışkanlaştırıcı Kimyasal Katkı Kullanımının Taze Ve Sertleşmiş Betonun Bazı Özellikleri Üzerine Etkileri”, DEÜ Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 6(1), 77- 89.
  • Valore JRC., 1956,Insulating concretes, ACI J. Proc., 53 (11).
  • Valore JRC., 1954, Cellular concretes Part 1 composition and methods of preparation, ACI J. Proc.; 50 (5).
  • İnternet Kaynaklarıİnt.1; www.foamconcrete.co.uk (2016)İnt. 2; www.iksa.com.tr/pdf/beton1.pdf (2017)
There are 46 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

İsmail Demir 0000-0001-8493-0309

Mustafa Serhat Başpınar This is me

Erhan Kahraman

Publication Date September 17, 2019
Submission Date November 13, 2018
Published in Issue Year 2019 Volume: 19 Issue: 2

Cite

APA Demir, İ., Başpınar, M. S., & Kahraman, E. (2019). Köpük Beton Üretiminde Uygun Akışkanlaştırıcı/Priz Hızlandırıcı Katkı Türünün Araştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 19(2), 390-400.
AMA Demir İ, Başpınar MS, Kahraman E. Köpük Beton Üretiminde Uygun Akışkanlaştırıcı/Priz Hızlandırıcı Katkı Türünün Araştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. September 2019;19(2):390-400.
Chicago Demir, İsmail, Mustafa Serhat Başpınar, and Erhan Kahraman. “Köpük Beton Üretiminde Uygun Akışkanlaştırıcı/Priz Hızlandırıcı Katkı Türünün Araştırılması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 19, no. 2 (September 2019): 390-400.
EndNote Demir İ, Başpınar MS, Kahraman E (September 1, 2019) Köpük Beton Üretiminde Uygun Akışkanlaştırıcı/Priz Hızlandırıcı Katkı Türünün Araştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 19 2 390–400.
IEEE İ. Demir, M. S. Başpınar, and E. Kahraman, “Köpük Beton Üretiminde Uygun Akışkanlaştırıcı/Priz Hızlandırıcı Katkı Türünün Araştırılması”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 19, no. 2, pp. 390–400, 2019.
ISNAD Demir, İsmail et al. “Köpük Beton Üretiminde Uygun Akışkanlaştırıcı/Priz Hızlandırıcı Katkı Türünün Araştırılması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 19/2 (September 2019), 390-400.
JAMA Demir İ, Başpınar MS, Kahraman E. Köpük Beton Üretiminde Uygun Akışkanlaştırıcı/Priz Hızlandırıcı Katkı Türünün Araştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2019;19:390–400.
MLA Demir, İsmail et al. “Köpük Beton Üretiminde Uygun Akışkanlaştırıcı/Priz Hızlandırıcı Katkı Türünün Araştırılması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 19, no. 2, 2019, pp. 390-0.
Vancouver Demir İ, Başpınar MS, Kahraman E. Köpük Beton Üretiminde Uygun Akışkanlaştırıcı/Priz Hızlandırıcı Katkı Türünün Araştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2019;19(2):390-40.