Research Article
BibTex RIS Cite

Determination of Boiling Temperatures from Elastic Constants

Year 2020, Volume: 20 Issue: 3, 389 - 397, 30.06.2020
https://doi.org/10.35414/akufemubid.594004

Abstract

33 cubic and 11 hexagonal materials were selected to determine the
boiling temperature of the materials by regression analysis. The boiling temperatures
of these selected materials were estimated by regression analysis using the
elastic constant and boiling temperature information in the literature.  Variance and regression analyze were
performed with MINITAB 17 software in 95% confidence interval. Regression
coefficients were calculated with 98.9% determination coefficient. As a result
of regression analysis, an empirical relationship between the elastic constants
and the boiling temperature was obtained which predicts boiling temperatures for
some cubic and hexagonal materials. The boiling temperatures calculated with
the help of these relationships were compared with the literature data

References

  • Alers, G.A. and J.R. Neighbours, The elastic constants of zinc between 4.2o and 670 oK, J. Phys. Chem. Solids, 7, 58-64, 1958.
  • Armstrong, P.E., O.N. Carlson, And J.F. Smith, Elastic constants of thorium single crystals in the range 77-400 oK, J. Apply. Phys., 30, 36-41, 1959.
  • Bogardus, E.H., Third-order elastic constants of Ge, MgO, and fused SiO2, J. Apply. Phys. 36, 2504-2513, 1965.
  • Bolef, D.I., Elastic constants of single crystals of the bcc transition elements V, Nb, and Ta, J. Apply. Phys., 32, 100-105, 1961.
  • Çabuk, S. “Ab initio volume-dependent elastic and lattice dynamics properties of KTaO3”, Phys. Status Solidi B, 247, 1, 93–97, 2010.
  • Chandrasekhar, B.S., and J.A. Rayne, Elastic constants of indium from 1.4 o to 300 oK, Phys. Rev., 124, 1011-1014, 1961.
  • Chang, Y.A. and L. Himmel, Elastic constants of cadmium from 300o to 575 oK, J. Apply. Pyhs., 37, 3787-3790, 1966.
  • Drabble, J.R., and R.E.B. Strathen, The third-order elastic constants of potassium chloride, sodium chloride, and lithium fluoride, Proc. Phys. Soc., 92, 1090-1995, 1967.
  • Epstein, S.G., and O.N. Carlson, The elastic constants of nickel-copper alloy single crystals, Acta Metal., 13, 487-491, 1965.
  • Erdoğan, D., “Malzeme bilgisi”, Ankara Üniversitesi Ziraat Fakültesi yayını, Ankara, 2007(Turkish).
  • Erol, H. “SPSS Paket program ile istatiksel very analizi”, Nobel kitabevi, Adana, 2010 (Turkish).
  • Ferris, R.W., M.L. Shepard, and J.F. Smith, Elastic constants of thallium single crystals in the temperature range 4.2 oK-300 oK, J. Appl. Phys., 34, 768-770, 1963.
  • Fine, M.E., Brown, L.D., Marcus, H.L. “Elastic constant versus melting temperature in metals”, Scripta Metalurgica, 18, 951-956, 1984.
  • Fisher, E.S. and D. Ever, Temperature dependence of elastic moduli of ruthenium, rhenium, cobalt, dysprosium, and erbium; a study of the elastic anisotropy-phase transformation relationship, Trans. Metal. Soc. AIME, 239, 48-57, 1967.
  • Fisher, E.S., and C.J. Renken, Single-crystal elastic moduli and the hcp-bcc transformation in Ti, Zr and Hf, Phys. Rev., 135, A482-A494, 1964.
  • Gerlich, D., Elastic constants of strontium fluoride between 4.2 and 300 oK, Phys. Rev., 136, A1366-A1368, 1964.
  • Gürsakal, N. “Çıkarımsal istatistik”, 6th edition, DORA, 2014 (Turkish).
  • Liu, C., Chen, X., Ji, G. “First-principles investigations on structural, elastic and electronic properties of SnO2 under pressure”, Computational Materials Science, 50, 1571-1577, 2011.
  • Macedo, P.M. , W. Capps and J.B. Wachtman, Jr., Elastic constants of single crystal ThO2 at 25 oC, J. Amer. Ceramic Soc., 47, 651, 1964.
  • Madelung, O. “Semiconductors: Data Handbook” 3rd edition, Springer, Germany, 2004.
  • McSkimin, H.J., and P.Andreatch, Jr., Elastic moduli of silicon vs hydrostatic pressure at 25.0 oC and -195.8 oC , J. Apply. Phys., 35, 2161-2165, 1964.
  • MINITAB 17. Available: http://www.minitab.com/en-us/products/minitab/
  • Özer, T. “Determination of melting temperature”, 4 th International Congress on Multidisciplinary Studies 18th -19 th October 2018, Kyrenia-TRNC, 2018.
  • Ozer, T. “Investigation of Structural, Dynamic and Thermodynamic Properties of SbXI (X = S, Se, Te) Compounds with Ab Initio Method”, PhD thesis, Çukurova University Institute of Natural and Applied Sciences Department of Physics, 148 Pages, Adana, 2016 (Turkish).
  • Ozer, T., Cabuk, S. “First-principles study of the structural, elastic and electronic properties of SbXI (X=S, Se, Te) crystals”, Journal of Molecular Modeling 24: 66, 2018.
  • Özer, T., Çabuk, S., Karataşlı, M. “Investigation of Mechanical Properties of SnO2 Crystals in CaCl2 Type Structure”, AKU J. Sci.Eng.17, 021101 (399-405), 2017.
  • Rumble, J.R. (Editor in chief). “CRC handbook chemistry and physics” 98 th edition, Boca Raton, USA, 2017-2018.
  • Simsons, G. and Wang H. “Single crystal elastic constant and calculated aggregate properties: A handbook” Second Edition, The MIT Press, 1971.
  • Smith, J.F., and C.L. Arbogast, Elastic constants of single crystal beryllium, J. Apply. Phys., 31, 99-102, 1960.
  • Soga, N., Comparison of measured and predicted bulk moduli of tantalum and tungsten at high temperatures, J. Apply. Phys., 37, 3416-3420, 1966.
  • Sumer, A. and J.F. Smith, A comparison of the elastic constants of chromium as determined from diffuse x-ray and ultrasonic techniques, J. Appl. Phys., 34, 2691-2694, 1963.
  • Thomas, J.F., Jr., Third-order elastic constants of aluminum, Phys. Rev., 175, 955-962, 1968.
  • Wazzan, A.R., and L.B. Robinson, Elastic constants of magnesium-lithium alloys, Phys. Rev., 155, 586-594, 1967.
  • Wong, C., and D.E. Schuele, The pressure derivatives of the elastic constants of CaF2, J. Phys. Chem. Solids, 28, 1225-1231, 1967.

Elastik Sabitlerden Kaynama Sıcaklığının Belirlenmesi

Year 2020, Volume: 20 Issue: 3, 389 - 397, 30.06.2020
https://doi.org/10.35414/akufemubid.594004

Abstract

Regresyon analizi ile malzemelerin kaynama sıcaklığını belirlemek için 33 kübik ve 11 hekzagonal malzeme seçilmiştir. Bu seçilen malzemelerin kaynama sıcaklıkları, literatürdeki elastik sabit ve kaynama sıcaklığı bilgileri kullanılarak regresyon analizi ile tahmin edilmiştir. MINITAB 17 yazılımı ile %95 güven aralığında varyans ve regresyon analizi yapılmıştır. Regresyon katsayıları %98,9 tespit katsayısı ile hesaplanmıştır. Regresyon analizi sonucunda, elastik sabitler ile kaynama sıcaklığı arasında ampirik ilişki elde edilmiş ve bazı kübik ve hekzagonal malzemeler için kaynama sıcaklıkları öngörülmüştür. Bu ilişkilerin yardımıyla hesaplanan kaynama sıcaklıkları literatür verileri ile karşılaştırıldı.

References

  • Alers, G.A. and J.R. Neighbours, The elastic constants of zinc between 4.2o and 670 oK, J. Phys. Chem. Solids, 7, 58-64, 1958.
  • Armstrong, P.E., O.N. Carlson, And J.F. Smith, Elastic constants of thorium single crystals in the range 77-400 oK, J. Apply. Phys., 30, 36-41, 1959.
  • Bogardus, E.H., Third-order elastic constants of Ge, MgO, and fused SiO2, J. Apply. Phys. 36, 2504-2513, 1965.
  • Bolef, D.I., Elastic constants of single crystals of the bcc transition elements V, Nb, and Ta, J. Apply. Phys., 32, 100-105, 1961.
  • Çabuk, S. “Ab initio volume-dependent elastic and lattice dynamics properties of KTaO3”, Phys. Status Solidi B, 247, 1, 93–97, 2010.
  • Chandrasekhar, B.S., and J.A. Rayne, Elastic constants of indium from 1.4 o to 300 oK, Phys. Rev., 124, 1011-1014, 1961.
  • Chang, Y.A. and L. Himmel, Elastic constants of cadmium from 300o to 575 oK, J. Apply. Pyhs., 37, 3787-3790, 1966.
  • Drabble, J.R., and R.E.B. Strathen, The third-order elastic constants of potassium chloride, sodium chloride, and lithium fluoride, Proc. Phys. Soc., 92, 1090-1995, 1967.
  • Epstein, S.G., and O.N. Carlson, The elastic constants of nickel-copper alloy single crystals, Acta Metal., 13, 487-491, 1965.
  • Erdoğan, D., “Malzeme bilgisi”, Ankara Üniversitesi Ziraat Fakültesi yayını, Ankara, 2007(Turkish).
  • Erol, H. “SPSS Paket program ile istatiksel very analizi”, Nobel kitabevi, Adana, 2010 (Turkish).
  • Ferris, R.W., M.L. Shepard, and J.F. Smith, Elastic constants of thallium single crystals in the temperature range 4.2 oK-300 oK, J. Appl. Phys., 34, 768-770, 1963.
  • Fine, M.E., Brown, L.D., Marcus, H.L. “Elastic constant versus melting temperature in metals”, Scripta Metalurgica, 18, 951-956, 1984.
  • Fisher, E.S. and D. Ever, Temperature dependence of elastic moduli of ruthenium, rhenium, cobalt, dysprosium, and erbium; a study of the elastic anisotropy-phase transformation relationship, Trans. Metal. Soc. AIME, 239, 48-57, 1967.
  • Fisher, E.S., and C.J. Renken, Single-crystal elastic moduli and the hcp-bcc transformation in Ti, Zr and Hf, Phys. Rev., 135, A482-A494, 1964.
  • Gerlich, D., Elastic constants of strontium fluoride between 4.2 and 300 oK, Phys. Rev., 136, A1366-A1368, 1964.
  • Gürsakal, N. “Çıkarımsal istatistik”, 6th edition, DORA, 2014 (Turkish).
  • Liu, C., Chen, X., Ji, G. “First-principles investigations on structural, elastic and electronic properties of SnO2 under pressure”, Computational Materials Science, 50, 1571-1577, 2011.
  • Macedo, P.M. , W. Capps and J.B. Wachtman, Jr., Elastic constants of single crystal ThO2 at 25 oC, J. Amer. Ceramic Soc., 47, 651, 1964.
  • Madelung, O. “Semiconductors: Data Handbook” 3rd edition, Springer, Germany, 2004.
  • McSkimin, H.J., and P.Andreatch, Jr., Elastic moduli of silicon vs hydrostatic pressure at 25.0 oC and -195.8 oC , J. Apply. Phys., 35, 2161-2165, 1964.
  • MINITAB 17. Available: http://www.minitab.com/en-us/products/minitab/
  • Özer, T. “Determination of melting temperature”, 4 th International Congress on Multidisciplinary Studies 18th -19 th October 2018, Kyrenia-TRNC, 2018.
  • Ozer, T. “Investigation of Structural, Dynamic and Thermodynamic Properties of SbXI (X = S, Se, Te) Compounds with Ab Initio Method”, PhD thesis, Çukurova University Institute of Natural and Applied Sciences Department of Physics, 148 Pages, Adana, 2016 (Turkish).
  • Ozer, T., Cabuk, S. “First-principles study of the structural, elastic and electronic properties of SbXI (X=S, Se, Te) crystals”, Journal of Molecular Modeling 24: 66, 2018.
  • Özer, T., Çabuk, S., Karataşlı, M. “Investigation of Mechanical Properties of SnO2 Crystals in CaCl2 Type Structure”, AKU J. Sci.Eng.17, 021101 (399-405), 2017.
  • Rumble, J.R. (Editor in chief). “CRC handbook chemistry and physics” 98 th edition, Boca Raton, USA, 2017-2018.
  • Simsons, G. and Wang H. “Single crystal elastic constant and calculated aggregate properties: A handbook” Second Edition, The MIT Press, 1971.
  • Smith, J.F., and C.L. Arbogast, Elastic constants of single crystal beryllium, J. Apply. Phys., 31, 99-102, 1960.
  • Soga, N., Comparison of measured and predicted bulk moduli of tantalum and tungsten at high temperatures, J. Apply. Phys., 37, 3416-3420, 1966.
  • Sumer, A. and J.F. Smith, A comparison of the elastic constants of chromium as determined from diffuse x-ray and ultrasonic techniques, J. Appl. Phys., 34, 2691-2694, 1963.
  • Thomas, J.F., Jr., Third-order elastic constants of aluminum, Phys. Rev., 175, 955-962, 1968.
  • Wazzan, A.R., and L.B. Robinson, Elastic constants of magnesium-lithium alloys, Phys. Rev., 155, 586-594, 1967.
  • Wong, C., and D.E. Schuele, The pressure derivatives of the elastic constants of CaF2, J. Phys. Chem. Solids, 28, 1225-1231, 1967.
There are 34 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Tahsin Özer 0000-0003-0344-7118

Publication Date June 30, 2020
Submission Date July 19, 2019
Published in Issue Year 2020 Volume: 20 Issue: 3

Cite

APA Özer, T. (2020). Determination of Boiling Temperatures from Elastic Constants. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 20(3), 389-397. https://doi.org/10.35414/akufemubid.594004
AMA Özer T. Determination of Boiling Temperatures from Elastic Constants. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. June 2020;20(3):389-397. doi:10.35414/akufemubid.594004
Chicago Özer, Tahsin. “Determination of Boiling Temperatures from Elastic Constants”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20, no. 3 (June 2020): 389-97. https://doi.org/10.35414/akufemubid.594004.
EndNote Özer T (June 1, 2020) Determination of Boiling Temperatures from Elastic Constants. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20 3 389–397.
IEEE T. Özer, “Determination of Boiling Temperatures from Elastic Constants”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 20, no. 3, pp. 389–397, 2020, doi: 10.35414/akufemubid.594004.
ISNAD Özer, Tahsin. “Determination of Boiling Temperatures from Elastic Constants”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20/3 (June 2020), 389-397. https://doi.org/10.35414/akufemubid.594004.
JAMA Özer T. Determination of Boiling Temperatures from Elastic Constants. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2020;20:389–397.
MLA Özer, Tahsin. “Determination of Boiling Temperatures from Elastic Constants”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 20, no. 3, 2020, pp. 389-97, doi:10.35414/akufemubid.594004.
Vancouver Özer T. Determination of Boiling Temperatures from Elastic Constants. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2020;20(3):389-97.