Research Article
BibTex RIS Cite

Evaluation of Daily and Monthly Streamflow Rates in a Snowy Mountainous Watershed with SWAT Model: A Case of Bitlis Creek Basin

Year 2020, Volume: 20 Issue: 4, 651 - 671, 25.09.2020
https://doi.org/10.35414/akufemubid.710126

Abstract

In this study, the performance of a SWAT model constructed with daily weather observations of regional meteorological stations and coarse-scale topography, land cover, and soil data in simulating and forecasting daily and monthly streamflow rates in a snowy mountainous watershed is assessed with the example of Bitlis Creek. The SWAT model developed to simulate the flow rates of Bitlis Creek, located in the Euphrates-Tigris Basin, at the location of the Baykan stream-gauging station is calibrated and validated separately for daily and monthly flow simulations by using the records of the Baykan station. Simulation statistics that can be judged as good for daily flow rates and very good for monthly flow rates are obtained in both of the calibration and validation periods. When it is examined how accurately the developed model can predict the daily and monthly flows using only meteorological data without flow measurements, it is observed that the model can provide satisfactory forecast performances in the context of both statistical evaluation indices and flow-duration relations. Although a strong correlation between the daily flow estimates and observed data in terms of annual maximum time series cannot be obtained, it is observed that this situation does not result in significant differences in terms of the calculated recurrence flood peaks. The results indicate that the developed model can enable the investigations of possible changes in the flow regime of Bitlis Creek in the coming decades on daily and monthly time bases.

References

  • Abbas, T., Hussain, F., Nabi, G., Boota, M.W. and Wu, R.-S., 2019. Uncertainty evaluation of SWAT model for snowmelt runoff in a Himalayan watershed. Terrestrial, Atmospheric and Oceanic Sciences, 30(2), 265-279.
  • Abbaspour, K.C., 2015. SWAT-CUP: SWAT Calibration and Uncertainty Programs - A User Manual. Eawag - Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, 100.
  • Abbaspour, K.C., Johnson, C.A. and van Genuchten, M.Th., 2004. Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadouse Zone Journal, 3(4), 1340-1352.
  • Abbaspour, K.C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H. and Kløve, B., 2015. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology, 524, 733-752.
  • Abbaspour, K.C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J. and Srinivasan, R., 2007. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology, 333(2-4), 413-430.
  • Adam, J.C., Hamlet, A.F. and Lettenmaier, D.P., 2009. Implications of global climate change for snowmelt hydrology in the twenty‐first century. Hydrological Processes, 23(7), 962-972.
  • AE Su (AE Su Mühendislik Limited Şirketi), 2009. Başören Regülatörü ve HES Fizibilite Raporu. AE Su Mühendislik Limited Şirketi, Ankara, 161.
  • Ahl, R.S., Woods, S.W. and Zuuring, H.R., 2008. Hydrologic calibration and validation of SWAT in a snow‐dominated Rocky Mountain watershed, Montana, USA. Journal of the American Water Resources Association, 44(6), 1411-1430.
  • Al-Khafaji, M.S. and Saeed, F.H., 2018. Effect of DEM and land cover resolutions on simulated runoff of Adhaim Watershed by SWAT model. Engineering and Technology Journal (Part A: Engineering), 36(4), 439-448.
  • Arnold, J.G., Kiniry, J.R., Srinivasan, R., Williams, J.R., Haney, E.B. and Neitsch, S.L., 2013. Soil & Water Assessment Tool Input/output Documentation (Version 2012). Texas Water Resources Institute, Texas, 650.
  • Arnold, J.G., Moriasi, D.N., Gassman, P.W., Abbaspour, K.C., White, M.J., Srinivasan, R., Santhi, C., Harmel, R.D., van Griensven, A., Liew, M.W.V., Kannan, N. and Jha, M.K., 2012. SWAT: Model use, calibration, and validation. Transactions of the ASABE, 55(4), 1491-1508.
  • Arnold, J.G., Srinivasan, R., Muttiah, R.S. and Williams, J.R., 1998. Large area hydrologic modeling and assessment - Part I: Model development. Journal of the American Water Resources Association, 34(1), 73-89.
  • Aydin, M.C. and Işhik, E., 2015. Evaluation of ground snow loads in the micro-climate regions. Russian Meteorology and Hydrology, 40(11), 741-748.
  • Aydın, M.C. ve Yaylak M.M., 2016. Bitlis Çayı taşkın hidrolojisi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 5(1), 49-58.
  • Bozkurt, D. and Sen, O.L., 2013. Climate change impacts in the Euphrates-Tigris Basin based on different model and scenario simulations. Journal of Hydrology, 480, 149-161.
  • Daggupati, P., Srinivasan, R., Ahmadi, M. and Verma, D., 2017. Spatial and temporal patterns of precipitation and stream flow variations in Tigris-Euphrates river basin. Environmental Monitoring and Assessment, 189(2), 50.
  • Douglas-Mankin, K.R., Srinivasan, R. and Arnold, J.G., 2010. Soil and Water Assessment Tool (SWAT) model: Current developments and applications. Transactions of the ASABE, 53(5), 1423-1431.
  • DSİ (Devlet Su İşleri Genel Müdürlüğü), 2012. Taşkınlar Hidrolojisi Tasarım Rehberi. Devlet Su İşleri Genel Müdürlüğü, Ankara, 56.
  • EİE (Elektrik İşleri Etüt İdaresi Genel Müdürlüğü), 1990. Bitlis Çayı İstikşaf Raporu. Elektrik İşleri Etüt İdaresi Genel Müdürlüğü, Ankara, 110.
  • Fontaine, T.A., Cruickshank, T.S., Arnold, J.G. and Hotchkiss, R.H., 2002. Development of a snowfall–snowmelt routine for mountainous terrain for the Soil Water Assessment Tool (SWAT). Journal of Hydrology, 262(1-4), 209-223.
  • Gassman, P.W., Reyes, M.R., Green, C.H. and Arnold, J.G., 2007. The Soil and Water Assessment Tool: Historical development, applications, and future research directions. Transactions of the ASABE, 50(4), 1211-1250.
  • Gassman, P.W., Sadeghi, A.M. and Srinivasan, R., 2014. Applications of the SWAT model special section: Overview and insights. Journal of Environmental Quality, 43(1), 1-8.
  • Geza, M. and McCray, J.E., 2008. Effects of soil data resolution on SWAT model stream flow and water quality predictions. Journal of Environmental Management, 88(3), 393-406.
  • Glavan, M. and Pintar, M., 2012. Strengths, Weaknesses, Opportunities and Threats of Catchment Modelling with Soil and Water Assessment Tool (SWAT) Model. ss 39-64. Nayak, P., ed. Water Resources Management and Modeling. InTech, Rijeka, 310.
  • Grusson, Y., Sun, X., Gascoin, S., Sauvage, S., Raghavan, S., Anctil, F. and Sáchez-Pérez, J.-M., 2015. Assessing the capability of the SWAT model to simulate snow, snow melt and streamflow dynamics over an alpine watershed. Journal of Hydrology, 531(3), 574-588.
  • Himanshu, S.K., Garg, N., Rautela, S., Anuja, K.M. and Tiwari, M., 2013. Remote sensing and GIS applications in determination of geomorphological parameters and design flood for a Himalayan river basin, India. International Research Journal of Earth Sciences, 1(3), 11-15.
  • IPCC (Intergovernmental Panel on Climate Change), 2013. Climate Change 2013: The Physical Science Basis - Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., ed. Cambridge University Press, New York, 1535.
  • IPCC (Intergovernmental Panel on Climate Change), 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability Part A: Global and Sectoral Aspects - Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., Girma, B., Kissel, E.S., … White, L.L., ed. Cambridge University Press, New York, 1132.
  • Katz, R.W. and Brown, B.G., 1992. Extreme events in a changing climate: Variability is more important than averages. Climatic Change, 21(3), 289-302.
  • Lemann, T., Roth, V. and Zeleke, G., 2017. Impact of precipitation and temperature changes on hydrological responses of small-scale catchments in the Ethiopian Highlands. Hydrological Sciences Journal, 62(2), 270-282.
  • Liu, Y., Cui, G. and Li, H., 2020. Optimization and application of snow melting modules in SWAT model for the alpine regions of northern China. Water, 12(3), 636.
  • Luo, Y., Arnold, J., Allen, P. and Chen, X., 2012. Baseflow simulation using SWAT model in an inland river basin in Tianshan Mountains, Northwest China. Hydrology and Earth System Sciences, 16(4), 1259-1267.
  • MGM (Meteoroloji Genel Müdürlüğü), 2018a. 17207-Bitlis Meteoroloji İstasyonu Uzun Yıllar Tüm Parametreler Bülteni (1959-2009). Meteoroloji Genel Müdürlüğü, Ankara.
  • MGM (Meteoroloji Genel Müdürlüğü), 2018b. 17210-Siirt Meteoroloji İstasyonu Uzun Yıllar Tüm Parametreler Bülteni (1939-2017). Meteoroloji Genel Müdürlüğü, Ankara.
  • MGM (Meteoroloji Genel Müdürlüğü), 2018c. 17207-Bitlis Meteoroloji İstasyonu Günlük Toplam Yağış, Maksimum ve Minimum Sıcaklık, Ortalama Nispi Nem, Ortalama Rüzgar Hızı ve Toplam Güneşlenme Şiddeti Ölçümleri (1959-2009). Meteoroloji Genel Müdürlüğü, Ankara.
  • MGM (Meteoroloji Genel Müdürlüğü), 2018d. 17210-Siirt Meteoroloji İstasyonu Günlük Toplam Yağış, Maksimum ve Minimum Sıcaklık, Ortalama Nispi Nem, Ortalama Rüzgar Hızı ve Toplam Güneşlenme Şiddeti Ölçümleri (1939-2017). Meteoroloji Genel Müdürlüğü, Ankara.
  • MGM (Meteoroloji Genel Müdürlüğü), 2018e. 17207-Bitlis Meteoroloji İstasyonu Yıllık Standart Zamanlarda Gözlenen En Büyük Yağış Değerleri (1966-2009). Meteoroloji Genel Müdürlüğü, Ankara.
  • MGM (Meteoroloji Genel Müdürlüğü), 2018f. 17210-Siirt Meteoroloji İstasyonu Yıllık Standart Zamanlarda Gözlenen En Büyük Yağış Değerleri. Meteoroloji Genel Müdürlüğü (1959-2015), Ankara.
  • Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D. and Veith, T.L., 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885-900.
  • Omani, N., Srinivasan, R., Karthikeyan, R. and Smith, P.K., 2017. Hydrological modeling of highly glacierized basins (Andes, Alps, and Central Asia). Water, 9(2), 111.
  • Özdemir, H., 1978. Uygulamalı Taşkın Hidrolojisi. Devlet Su İşleri Genel Müdürlüğü, Ankara, 221.
  • Pandey, A., Himanshu, S.K., Mishra, S.K. and Singh, V.P., 2016. Physically based soil erosion and sediment yield models revisited. CATENA, 147, 595-620.
  • Pradhanang, S.M., Anandhi, A., Mukundan, R., Zion, M.S., Pierson, D.C., Schneiderman, E.M., Matonse, A. and Frei, A., 2011. Application of SWAT model to assess snowpack development and streamflow in the Cannonsville watershed, New York, USA. Hydrological Processes, 25(21), 3268-3277.
  • Rahaman, M.M., Lamichhane, G.R., Shrestha, A., Thakur, B., Kalra, A. and Ahmad, S., 2019. Using SWAT to simulate streamflow in Trinity River Basin, Texas, USA. World Environmental and Water Resources Congress 2019: Watershed Management, Irrigation and Drainage, and Water Resources Planning and Management, 19-23 Mayıs, Pittsburgh, 421-435.
  • Rahman, K., Maringanti, C., Beniston, M., Widmer, F., Abbaspour, K. and Lehmann, A., 2013. Streamflow modeling in a highly managed mountainous glacier watershed using SWAT: The Upper Rhone River watershed case in Switzerland. Water Resources Management, 27(2), 323-339.
  • Santhi, C., Arnold, J.G., Williams, J.R., Dugas, W.A., Srinivasan, R. and Hauck, L.M., 2001. Validation of the SWAT model on a large river basin with point and nonpoint sources. Journal of the American Water Resources Association, 37(5), 1169-1188.
  • Sharifi, A. and Kalin, L., 2010. Effect of land use uncertainty on watershed modeling. World Environmental and Water Resources Congress 2010: Challenges of Change, 16-20 Mayıs, Providence, 4730-4739.
  • Shrestha, S., Shrestha, M. and Shrestha, P.K., 2018. Evaluation of the SWAT model performance for simulating river discharge in the Himalayan and tropical basins of Asia. Hydrology Research, 49(3), 846-860.
  • Singh, V.P., 1995. Computer Models of Watershed Hydrology. Water Resources Publications, Highlands Ranch, 1144.
  • Stratton, B.T., Sridhar, V., Gribb, M.M., McNamara, J.P. and Narasimhan, B., 2009. Modeling the spatially varying water balance processes in a semiarid mountainous watershed of Idaho. Journal of the American Water Resources Association, 45(6), 1390-1408.
  • Tan, M.L., Ramli, H.P. and Tam, T.H., 2018. Effect of DEM resolution, source, resampling technique and area threshold on SWAT outputs. Water Resources Management, 32(14), 4591-4606.
  • Troin, M. and Caya, D., 2014. Evaluating the SWAT's snow hydrology over a Northern Quebec watershed. Hydrological Processes, 28(4), 1858-1873.
  • Van Liew, M.W., Veith, T.L., Bosch, D.D. and Arnold, J.G., 2007. Suitability of SWAT for the conservation effects assessment project: Comparison on USDA agricultural research service watersheds. Journal of Hydrologic Engineering, 12(2), 173-189.
  • Yalcin, E. and Tigrek, S., 2016. Hydropower production without sacrificing environment: A case study of Ilisu Dam and Hasankeyf. International Journal of Water Resources Development, 32(2), 247-266.
  • Yalcin, E., 2019. Estimation of irrigation return flow on monthly time resolution using SWAT model under limited data availability. Hydrological Sciences Journal, 64(13), 1588-1604.
  • Yang, X., Liu, Q., He, Y., Luo, X. and Zhang, X., 2016. Comparison of daily and sub-daily SWAT models for daily streamflow simulation in the Upper Huai River Basin of China. Stochastic Environmental Research and Risk Assessment, 30(3), 959-972.
  • Yolsu (Yolsu Mühendislik Hizmetleri Limited Şirketi), 2009. Başören HES Fizibilite Raporu. Yolsu Mühendislik Hizmetleri Limited Şirketi, Ankara, 162.

Karlı Dağlık Bir Havzada Günlük ve Aylık Akım Değerlerinin SWAT Modeliyle Değerlendirilmesi: Bitlis Çayı Havzası Örneği

Year 2020, Volume: 20 Issue: 4, 651 - 671, 25.09.2020
https://doi.org/10.35414/akufemubid.710126

Abstract

Bu çalışmada, yerel meteoroloji istasyonlarının günlük meteorolojik ölçümleri ile kaba ölçekli topoğrafya, arazi örtüsü ve toprak verileri kullanılarak oluşturulan bir SWAT modelinin, karlı dağlık bir havzada günlük ve aylık akım değerlerini simülasyon ve tahmin performansı Bitlis Çayı örneğinde değerlendirilmiştir. Fırat-Dicle havzasında yer alan Bitlis Çayı’nın Baykan akım gözlem istasyonu yerindeki akım değerlerini simüle edebilmek için geliştirilen SWAT modeli, Baykan istasyonunun ölçüm verileri kullanılarak günlük ve aylık akım simülasyonları için ayrı ayrı kalibre edilip doğrulanmıştır. Hem kalibrasyon hem de doğrulama periyodunda günlük akım değerleri için iyi, aylık akım değerleri için ise çok iyi olarak nitelendirilebilecek simülasyon istatistikleri elde edilmiştir. Geliştirilen modelin, akım ölçümleri olmadan sadece meteorolojik veriler kullanılarak günlük ve aylık akımları ne derece doğru tahmin edilebileceği incelendiğinde ise modelin hem istatistiksel değerlendirme indeksleri hem de akım-süreklilik ilişkileri bağlamında tatmin edici tahmin performansları sunabildiği görülmüştür. Günlük akım tahminleri ile ölçüm verileri arasında yıllık maksimum zaman serileri bağlamında güçlü bir korelasyon elde edilememiş olsa da bu durumun hesaplanan tekerrürlü taşkın debileri bağlamında belirgin farklar yaratmadığı tespit edilmiştir. Elde edilen sonuçlar, geliştirilen SWAT modelinin, gelecek on yıllarda Bitlis Çayı’nın akım rejiminde meydana gelebilecek olası değişimlerin günlük ve aylık bazda incelenebilmesine olanak sağlayabileceğini göstermektedir.

References

  • Abbas, T., Hussain, F., Nabi, G., Boota, M.W. and Wu, R.-S., 2019. Uncertainty evaluation of SWAT model for snowmelt runoff in a Himalayan watershed. Terrestrial, Atmospheric and Oceanic Sciences, 30(2), 265-279.
  • Abbaspour, K.C., 2015. SWAT-CUP: SWAT Calibration and Uncertainty Programs - A User Manual. Eawag - Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, 100.
  • Abbaspour, K.C., Johnson, C.A. and van Genuchten, M.Th., 2004. Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadouse Zone Journal, 3(4), 1340-1352.
  • Abbaspour, K.C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H. and Kløve, B., 2015. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology, 524, 733-752.
  • Abbaspour, K.C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J. and Srinivasan, R., 2007. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology, 333(2-4), 413-430.
  • Adam, J.C., Hamlet, A.F. and Lettenmaier, D.P., 2009. Implications of global climate change for snowmelt hydrology in the twenty‐first century. Hydrological Processes, 23(7), 962-972.
  • AE Su (AE Su Mühendislik Limited Şirketi), 2009. Başören Regülatörü ve HES Fizibilite Raporu. AE Su Mühendislik Limited Şirketi, Ankara, 161.
  • Ahl, R.S., Woods, S.W. and Zuuring, H.R., 2008. Hydrologic calibration and validation of SWAT in a snow‐dominated Rocky Mountain watershed, Montana, USA. Journal of the American Water Resources Association, 44(6), 1411-1430.
  • Al-Khafaji, M.S. and Saeed, F.H., 2018. Effect of DEM and land cover resolutions on simulated runoff of Adhaim Watershed by SWAT model. Engineering and Technology Journal (Part A: Engineering), 36(4), 439-448.
  • Arnold, J.G., Kiniry, J.R., Srinivasan, R., Williams, J.R., Haney, E.B. and Neitsch, S.L., 2013. Soil & Water Assessment Tool Input/output Documentation (Version 2012). Texas Water Resources Institute, Texas, 650.
  • Arnold, J.G., Moriasi, D.N., Gassman, P.W., Abbaspour, K.C., White, M.J., Srinivasan, R., Santhi, C., Harmel, R.D., van Griensven, A., Liew, M.W.V., Kannan, N. and Jha, M.K., 2012. SWAT: Model use, calibration, and validation. Transactions of the ASABE, 55(4), 1491-1508.
  • Arnold, J.G., Srinivasan, R., Muttiah, R.S. and Williams, J.R., 1998. Large area hydrologic modeling and assessment - Part I: Model development. Journal of the American Water Resources Association, 34(1), 73-89.
  • Aydin, M.C. and Işhik, E., 2015. Evaluation of ground snow loads in the micro-climate regions. Russian Meteorology and Hydrology, 40(11), 741-748.
  • Aydın, M.C. ve Yaylak M.M., 2016. Bitlis Çayı taşkın hidrolojisi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 5(1), 49-58.
  • Bozkurt, D. and Sen, O.L., 2013. Climate change impacts in the Euphrates-Tigris Basin based on different model and scenario simulations. Journal of Hydrology, 480, 149-161.
  • Daggupati, P., Srinivasan, R., Ahmadi, M. and Verma, D., 2017. Spatial and temporal patterns of precipitation and stream flow variations in Tigris-Euphrates river basin. Environmental Monitoring and Assessment, 189(2), 50.
  • Douglas-Mankin, K.R., Srinivasan, R. and Arnold, J.G., 2010. Soil and Water Assessment Tool (SWAT) model: Current developments and applications. Transactions of the ASABE, 53(5), 1423-1431.
  • DSİ (Devlet Su İşleri Genel Müdürlüğü), 2012. Taşkınlar Hidrolojisi Tasarım Rehberi. Devlet Su İşleri Genel Müdürlüğü, Ankara, 56.
  • EİE (Elektrik İşleri Etüt İdaresi Genel Müdürlüğü), 1990. Bitlis Çayı İstikşaf Raporu. Elektrik İşleri Etüt İdaresi Genel Müdürlüğü, Ankara, 110.
  • Fontaine, T.A., Cruickshank, T.S., Arnold, J.G. and Hotchkiss, R.H., 2002. Development of a snowfall–snowmelt routine for mountainous terrain for the Soil Water Assessment Tool (SWAT). Journal of Hydrology, 262(1-4), 209-223.
  • Gassman, P.W., Reyes, M.R., Green, C.H. and Arnold, J.G., 2007. The Soil and Water Assessment Tool: Historical development, applications, and future research directions. Transactions of the ASABE, 50(4), 1211-1250.
  • Gassman, P.W., Sadeghi, A.M. and Srinivasan, R., 2014. Applications of the SWAT model special section: Overview and insights. Journal of Environmental Quality, 43(1), 1-8.
  • Geza, M. and McCray, J.E., 2008. Effects of soil data resolution on SWAT model stream flow and water quality predictions. Journal of Environmental Management, 88(3), 393-406.
  • Glavan, M. and Pintar, M., 2012. Strengths, Weaknesses, Opportunities and Threats of Catchment Modelling with Soil and Water Assessment Tool (SWAT) Model. ss 39-64. Nayak, P., ed. Water Resources Management and Modeling. InTech, Rijeka, 310.
  • Grusson, Y., Sun, X., Gascoin, S., Sauvage, S., Raghavan, S., Anctil, F. and Sáchez-Pérez, J.-M., 2015. Assessing the capability of the SWAT model to simulate snow, snow melt and streamflow dynamics over an alpine watershed. Journal of Hydrology, 531(3), 574-588.
  • Himanshu, S.K., Garg, N., Rautela, S., Anuja, K.M. and Tiwari, M., 2013. Remote sensing and GIS applications in determination of geomorphological parameters and design flood for a Himalayan river basin, India. International Research Journal of Earth Sciences, 1(3), 11-15.
  • IPCC (Intergovernmental Panel on Climate Change), 2013. Climate Change 2013: The Physical Science Basis - Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., ed. Cambridge University Press, New York, 1535.
  • IPCC (Intergovernmental Panel on Climate Change), 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability Part A: Global and Sectoral Aspects - Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., Girma, B., Kissel, E.S., … White, L.L., ed. Cambridge University Press, New York, 1132.
  • Katz, R.W. and Brown, B.G., 1992. Extreme events in a changing climate: Variability is more important than averages. Climatic Change, 21(3), 289-302.
  • Lemann, T., Roth, V. and Zeleke, G., 2017. Impact of precipitation and temperature changes on hydrological responses of small-scale catchments in the Ethiopian Highlands. Hydrological Sciences Journal, 62(2), 270-282.
  • Liu, Y., Cui, G. and Li, H., 2020. Optimization and application of snow melting modules in SWAT model for the alpine regions of northern China. Water, 12(3), 636.
  • Luo, Y., Arnold, J., Allen, P. and Chen, X., 2012. Baseflow simulation using SWAT model in an inland river basin in Tianshan Mountains, Northwest China. Hydrology and Earth System Sciences, 16(4), 1259-1267.
  • MGM (Meteoroloji Genel Müdürlüğü), 2018a. 17207-Bitlis Meteoroloji İstasyonu Uzun Yıllar Tüm Parametreler Bülteni (1959-2009). Meteoroloji Genel Müdürlüğü, Ankara.
  • MGM (Meteoroloji Genel Müdürlüğü), 2018b. 17210-Siirt Meteoroloji İstasyonu Uzun Yıllar Tüm Parametreler Bülteni (1939-2017). Meteoroloji Genel Müdürlüğü, Ankara.
  • MGM (Meteoroloji Genel Müdürlüğü), 2018c. 17207-Bitlis Meteoroloji İstasyonu Günlük Toplam Yağış, Maksimum ve Minimum Sıcaklık, Ortalama Nispi Nem, Ortalama Rüzgar Hızı ve Toplam Güneşlenme Şiddeti Ölçümleri (1959-2009). Meteoroloji Genel Müdürlüğü, Ankara.
  • MGM (Meteoroloji Genel Müdürlüğü), 2018d. 17210-Siirt Meteoroloji İstasyonu Günlük Toplam Yağış, Maksimum ve Minimum Sıcaklık, Ortalama Nispi Nem, Ortalama Rüzgar Hızı ve Toplam Güneşlenme Şiddeti Ölçümleri (1939-2017). Meteoroloji Genel Müdürlüğü, Ankara.
  • MGM (Meteoroloji Genel Müdürlüğü), 2018e. 17207-Bitlis Meteoroloji İstasyonu Yıllık Standart Zamanlarda Gözlenen En Büyük Yağış Değerleri (1966-2009). Meteoroloji Genel Müdürlüğü, Ankara.
  • MGM (Meteoroloji Genel Müdürlüğü), 2018f. 17210-Siirt Meteoroloji İstasyonu Yıllık Standart Zamanlarda Gözlenen En Büyük Yağış Değerleri. Meteoroloji Genel Müdürlüğü (1959-2015), Ankara.
  • Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D. and Veith, T.L., 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885-900.
  • Omani, N., Srinivasan, R., Karthikeyan, R. and Smith, P.K., 2017. Hydrological modeling of highly glacierized basins (Andes, Alps, and Central Asia). Water, 9(2), 111.
  • Özdemir, H., 1978. Uygulamalı Taşkın Hidrolojisi. Devlet Su İşleri Genel Müdürlüğü, Ankara, 221.
  • Pandey, A., Himanshu, S.K., Mishra, S.K. and Singh, V.P., 2016. Physically based soil erosion and sediment yield models revisited. CATENA, 147, 595-620.
  • Pradhanang, S.M., Anandhi, A., Mukundan, R., Zion, M.S., Pierson, D.C., Schneiderman, E.M., Matonse, A. and Frei, A., 2011. Application of SWAT model to assess snowpack development and streamflow in the Cannonsville watershed, New York, USA. Hydrological Processes, 25(21), 3268-3277.
  • Rahaman, M.M., Lamichhane, G.R., Shrestha, A., Thakur, B., Kalra, A. and Ahmad, S., 2019. Using SWAT to simulate streamflow in Trinity River Basin, Texas, USA. World Environmental and Water Resources Congress 2019: Watershed Management, Irrigation and Drainage, and Water Resources Planning and Management, 19-23 Mayıs, Pittsburgh, 421-435.
  • Rahman, K., Maringanti, C., Beniston, M., Widmer, F., Abbaspour, K. and Lehmann, A., 2013. Streamflow modeling in a highly managed mountainous glacier watershed using SWAT: The Upper Rhone River watershed case in Switzerland. Water Resources Management, 27(2), 323-339.
  • Santhi, C., Arnold, J.G., Williams, J.R., Dugas, W.A., Srinivasan, R. and Hauck, L.M., 2001. Validation of the SWAT model on a large river basin with point and nonpoint sources. Journal of the American Water Resources Association, 37(5), 1169-1188.
  • Sharifi, A. and Kalin, L., 2010. Effect of land use uncertainty on watershed modeling. World Environmental and Water Resources Congress 2010: Challenges of Change, 16-20 Mayıs, Providence, 4730-4739.
  • Shrestha, S., Shrestha, M. and Shrestha, P.K., 2018. Evaluation of the SWAT model performance for simulating river discharge in the Himalayan and tropical basins of Asia. Hydrology Research, 49(3), 846-860.
  • Singh, V.P., 1995. Computer Models of Watershed Hydrology. Water Resources Publications, Highlands Ranch, 1144.
  • Stratton, B.T., Sridhar, V., Gribb, M.M., McNamara, J.P. and Narasimhan, B., 2009. Modeling the spatially varying water balance processes in a semiarid mountainous watershed of Idaho. Journal of the American Water Resources Association, 45(6), 1390-1408.
  • Tan, M.L., Ramli, H.P. and Tam, T.H., 2018. Effect of DEM resolution, source, resampling technique and area threshold on SWAT outputs. Water Resources Management, 32(14), 4591-4606.
  • Troin, M. and Caya, D., 2014. Evaluating the SWAT's snow hydrology over a Northern Quebec watershed. Hydrological Processes, 28(4), 1858-1873.
  • Van Liew, M.W., Veith, T.L., Bosch, D.D. and Arnold, J.G., 2007. Suitability of SWAT for the conservation effects assessment project: Comparison on USDA agricultural research service watersheds. Journal of Hydrologic Engineering, 12(2), 173-189.
  • Yalcin, E. and Tigrek, S., 2016. Hydropower production without sacrificing environment: A case study of Ilisu Dam and Hasankeyf. International Journal of Water Resources Development, 32(2), 247-266.
  • Yalcin, E., 2019. Estimation of irrigation return flow on monthly time resolution using SWAT model under limited data availability. Hydrological Sciences Journal, 64(13), 1588-1604.
  • Yang, X., Liu, Q., He, Y., Luo, X. and Zhang, X., 2016. Comparison of daily and sub-daily SWAT models for daily streamflow simulation in the Upper Huai River Basin of China. Stochastic Environmental Research and Risk Assessment, 30(3), 959-972.
  • Yolsu (Yolsu Mühendislik Hizmetleri Limited Şirketi), 2009. Başören HES Fizibilite Raporu. Yolsu Mühendislik Hizmetleri Limited Şirketi, Ankara, 162.
There are 57 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Emrah Yalçın 0000-0002-3742-8866

Publication Date September 25, 2020
Submission Date March 27, 2020
Published in Issue Year 2020 Volume: 20 Issue: 4

Cite

APA Yalçın, E. (2020). Karlı Dağlık Bir Havzada Günlük ve Aylık Akım Değerlerinin SWAT Modeliyle Değerlendirilmesi: Bitlis Çayı Havzası Örneği. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 20(4), 651-671. https://doi.org/10.35414/akufemubid.710126
AMA Yalçın E. Karlı Dağlık Bir Havzada Günlük ve Aylık Akım Değerlerinin SWAT Modeliyle Değerlendirilmesi: Bitlis Çayı Havzası Örneği. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. September 2020;20(4):651-671. doi:10.35414/akufemubid.710126
Chicago Yalçın, Emrah. “Karlı Dağlık Bir Havzada Günlük Ve Aylık Akım Değerlerinin SWAT Modeliyle Değerlendirilmesi: Bitlis Çayı Havzası Örneği”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20, no. 4 (September 2020): 651-71. https://doi.org/10.35414/akufemubid.710126.
EndNote Yalçın E (September 1, 2020) Karlı Dağlık Bir Havzada Günlük ve Aylık Akım Değerlerinin SWAT Modeliyle Değerlendirilmesi: Bitlis Çayı Havzası Örneği. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20 4 651–671.
IEEE E. Yalçın, “Karlı Dağlık Bir Havzada Günlük ve Aylık Akım Değerlerinin SWAT Modeliyle Değerlendirilmesi: Bitlis Çayı Havzası Örneği”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 20, no. 4, pp. 651–671, 2020, doi: 10.35414/akufemubid.710126.
ISNAD Yalçın, Emrah. “Karlı Dağlık Bir Havzada Günlük Ve Aylık Akım Değerlerinin SWAT Modeliyle Değerlendirilmesi: Bitlis Çayı Havzası Örneği”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20/4 (September 2020), 651-671. https://doi.org/10.35414/akufemubid.710126.
JAMA Yalçın E. Karlı Dağlık Bir Havzada Günlük ve Aylık Akım Değerlerinin SWAT Modeliyle Değerlendirilmesi: Bitlis Çayı Havzası Örneği. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2020;20:651–671.
MLA Yalçın, Emrah. “Karlı Dağlık Bir Havzada Günlük Ve Aylık Akım Değerlerinin SWAT Modeliyle Değerlendirilmesi: Bitlis Çayı Havzası Örneği”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 20, no. 4, 2020, pp. 651-7, doi:10.35414/akufemubid.710126.
Vancouver Yalçın E. Karlı Dağlık Bir Havzada Günlük ve Aylık Akım Değerlerinin SWAT Modeliyle Değerlendirilmesi: Bitlis Çayı Havzası Örneği. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2020;20(4):651-7.