Research Article
BibTex RIS Cite

Fotogrametrik Cerrahi Navigasyon Uygulamalarında Kamera ve Sistem Kalibrasyonunun Ölçüm Doğruluklarına Etkisi

Year 2021, Volume: 21 Issue: 3, 640 - 649, 30.06.2021
https://doi.org/10.35414/akufemubid.851780

Abstract

Klasik cerrahi yöntemlerin taşıdığı riskleri ve cerrahi müdahale sürelerini en aza indirmek için günümüz teknolojik gelişmelerine paralel olarak fotogrametrik cerrahi uygulamalar gün geçtikçe daha da önem kazanmaktadır. Cerrahi müdahalenin yapılacağı bölgenin tamamen açılmasına ihtiyaç duyulmayan durumlarda belirlenen uygun bir noktadan giriş yapmak suretiyle kısa sürede ve daha güvenli cerrahi işlemler yapılabilmektedir. Cerrahi navigasyonda; standart bir ölçü biriminde tanımlı bir altlık üzerinde (MR, Tomografi, vb.), belirli periyotlarla takip edilen, 3 Boyutlu (3B) konumları belirlenen ve ulaşılmak istenen bir konuma yönlendirilen hareketli sondalar kullanılmaktadır. Söz konusu sondaların 3B hareketlerinin yüksek doğruluklarla ve gerçek zamanlı olarak konumlandırılabilmesi için kullanılan stereo kameraların fotogrametrik olarak kalibrasyona tabi tutulması büyük önem arz etmektedir. Bu çalışma kapsamında söz konusu kalibrasyonların sistemin konumlama doğruluğuna etkisi araştırılmıştır. Bu amaçla, kameralara ait iç yöneltme parametreleri ve sabit olan stereo kamera bazı ileri dengeleme teknikleri kullanılarak yeniden hesaplanmıştır. Çalışmada, sorumlu yazar tarafından 2014 yılından bu yana geliştirilmekte olan “Stereo Fotogrametrik Cerrahi Navigasyon Yazılımı” ve “Fotogrametrik Kamera Kalibrasyon Yazılımı” kullanılmıştır. Çalışma neticesinde; kalibrasyonu yapılmış sistem bileşenlerinin, gerçek zamanlı 3B konum doğruluğunu 2-3 mm seviyelerinden 0,2 mm seviyelerine çektiği görülmüş ve ayrıntılı olarak sunulmuştur.

Supporting Institution

Ondokuz Mayıs Üniversitesi

Thanks

Bu makalenin yazarları; 6 yıllık doktora ve yazılım çalışmaları süresince değerli katkılarından dolayı Doç.Dr.Hakan MARAŞ, Dr.Müh.Alb. Coşkun DEMİR, ve Prof.Dr.Bahadır AKTUĞ’a teşekkür ederler.

References

  • Alturki, A.S., 2017. Principal point determination for camera calibration, PhD Thesis, University of Dayton, Dayton (USA), 104.
  • Brown, D.C., 1966. Decentering distortion of lenses. Photogrammetric Engineering, 32(3), 444-462.
  • Brown, D.C., 1971. Close-range camera calibration. Photogrammetric Engineering, 37(8), 855–866.
  • Bukhari, F., Dailey, M.N., 2013. Automatic radial distortion estimation from a single image, Journal of Mathematical Imaging and Vision, 45(1), 31-45.
  • Clarke, T.A. & Fryer, J.F. 1998. The development of camera calibration methods and models. Photogrammetric Record, 16(91), 51-66.
  • Cronk, S., Fraser, C.S. and Hanley, H.B., 2006. Automatic Calibration of Colour Digital Cameras. Photogrammetric Record, 21(116), 355-372.
  • Fraser, C.S., 1997. Digital camera self-calibration. ISPRS Journal of Photogrammetry & Remote Sensing, 52, 149-159.
  • Fraser, C.S. and Al-Ajlouni, S., 2006. Zoom-dependent camera calibration in close-range photogrammetry. Photogrammetric Engineering & Remote Sensing, 72(9), 1017-1026.
  • Fraser, C.S., 2013. Automatic camera calibration in close range photogrammetry. Photogrammetric Engineering & Remote Sensing, 79(4), 381-388. Doi:0099-1112/13/7904-381.
  • Fryer, J.G. and Brown, D.C., 1986. Lens distortion in close range photogrammetry. Photogrammetric Engineering and Remote Sensing, 52(2), 51-58.
  • Fryer, J.G and Fraser, C.S., 1986. On the calibration of underwater cameras. Photogrammetric Record. 12(67), 73-85.
  • Fryer, J.G., 1989. Camera calibration in non-topographic photogrammetry. ASPRS, 59-69.
  • Fryer, J.G. and Goodin, D.J., 1989. In-flight aerial camera calibration from photography of linear features. Photogrammetric Engineering and Remote Sensing, 55(12), 1751-1754.
  • Fryer, J.G., 1992. Recent developments in camera calibration for close-range applications. International Archives of Photogrammetry and Remote Sensing, 29(5), 594-599.
  • Fryer, J.G., 1996. Camera calibration. Close Range Photogrammetry and Machine Vision, Whittles Publishing, Scotland, 156-179.
  • Hallert, B., 1963. The method of least squares applied to multicollimator camera calibration. Photogrammetric Engineering, 29(5), 836-840.
  • Hothmer, J., 1958. Possibilities and limitations for elimination of distortion in aerial photographs. Photogrammetric Record, 2(12), 426-445.
  • Kraus, K.,2008. Fotogrametri. Cilt-1. O.Altan, S.Külür, G.Toz, H.Demirel, Z.Duran, M.Çelikoyan (çeviri editorleri), Nobel Yayınları, 3-462.
  • Linder, W., 2009. Digital Photogrammetry - A Practical Course. Springer-Verlag, Heidelberg, 1-179.
  • Luhmann, T., Hastedt, H. and Tecklenburg, W., 2006. Modelling of chromatic aberration for high precision photogrammetry. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 36(5), 173-178.
  • Nakiboğlu, M., Demir, C., 2006. Dengeleme Hesabı (Dengeleme-1). Harita Genel Komutanlığı, 1-62.
  • Nakiboğlu, M., Demir, C., 2006. Dengelemede İleri Uygulamalar (Dengeleme-2). Harita Genel Komutanlığı, 1-64.
  • Sampath, A., Moe, D. and Christopherson, J., 2012. Two methods for self-calibration of digital camera. International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, 39(B1), 261-266
  • Stamatopoulos, C., 2011. Orientation and calibration of long focal length cameras in digital close-range photogrammetry. PhD Thesis, Dept. of Infrastructure Engineering, University of Melbourne, Melbourne, 170.
  • Wang, S., Tseng, Y.H., 2000. Automatic self-calibration of digital cameras for close-range photogrammetry. IAPRS, 33, 7.
  • 1- https://www.isprs.org/ 2- https://www.asprs.org/
  • 3- https://www.researchgate.net/ 4- https://social.msdn.microsoft.com/
  • 5- https://www.c-sharpcorner.com/ 6- https://stackoverflow.com/

Camera and System Calibration Effects on Measurement Accuracies in Photogrammetric Surgical Navigation Applications

Year 2021, Volume: 21 Issue: 3, 640 - 649, 30.06.2021
https://doi.org/10.35414/akufemubid.851780

Abstract

Photogrammetric Surgical Navigation Systems are getting more importance day by day to minimize the surgical operation times and the risk of classical methods with respect to the technological developments. More reliable surgical operations are now possible in shorter times without opening the whole related location of the body if it is not necessary. In surgical navigation; moving surgical probes which are periodically tracked and navigated to a desired location on a layer that is defined in a standart measuring unit are used. It is of vital importance to calibrate the cameras photogrammetrically for
real-time 3D movements of the probes to be located highly accurate. In this study; the effect of respective calibrations for measuring accuracy of the system is investigated. For this purpose; camera interior orientation parameters and stereo camera baseline lenght are re-calculated with the advanced adjustment techniques. In this study; “Stereo Photogrammetric Surgical Navigation Software” and “Photogrammetric Camera Calibration Software” which have been developed since 2014 by responsible author are used. As a result of study; it is observed and presented in detail that the calibrated system components have brought the real-time location measurement accuracy from
2-3 mm level to 0,2 mm level.

References

  • Alturki, A.S., 2017. Principal point determination for camera calibration, PhD Thesis, University of Dayton, Dayton (USA), 104.
  • Brown, D.C., 1966. Decentering distortion of lenses. Photogrammetric Engineering, 32(3), 444-462.
  • Brown, D.C., 1971. Close-range camera calibration. Photogrammetric Engineering, 37(8), 855–866.
  • Bukhari, F., Dailey, M.N., 2013. Automatic radial distortion estimation from a single image, Journal of Mathematical Imaging and Vision, 45(1), 31-45.
  • Clarke, T.A. & Fryer, J.F. 1998. The development of camera calibration methods and models. Photogrammetric Record, 16(91), 51-66.
  • Cronk, S., Fraser, C.S. and Hanley, H.B., 2006. Automatic Calibration of Colour Digital Cameras. Photogrammetric Record, 21(116), 355-372.
  • Fraser, C.S., 1997. Digital camera self-calibration. ISPRS Journal of Photogrammetry & Remote Sensing, 52, 149-159.
  • Fraser, C.S. and Al-Ajlouni, S., 2006. Zoom-dependent camera calibration in close-range photogrammetry. Photogrammetric Engineering & Remote Sensing, 72(9), 1017-1026.
  • Fraser, C.S., 2013. Automatic camera calibration in close range photogrammetry. Photogrammetric Engineering & Remote Sensing, 79(4), 381-388. Doi:0099-1112/13/7904-381.
  • Fryer, J.G. and Brown, D.C., 1986. Lens distortion in close range photogrammetry. Photogrammetric Engineering and Remote Sensing, 52(2), 51-58.
  • Fryer, J.G and Fraser, C.S., 1986. On the calibration of underwater cameras. Photogrammetric Record. 12(67), 73-85.
  • Fryer, J.G., 1989. Camera calibration in non-topographic photogrammetry. ASPRS, 59-69.
  • Fryer, J.G. and Goodin, D.J., 1989. In-flight aerial camera calibration from photography of linear features. Photogrammetric Engineering and Remote Sensing, 55(12), 1751-1754.
  • Fryer, J.G., 1992. Recent developments in camera calibration for close-range applications. International Archives of Photogrammetry and Remote Sensing, 29(5), 594-599.
  • Fryer, J.G., 1996. Camera calibration. Close Range Photogrammetry and Machine Vision, Whittles Publishing, Scotland, 156-179.
  • Hallert, B., 1963. The method of least squares applied to multicollimator camera calibration. Photogrammetric Engineering, 29(5), 836-840.
  • Hothmer, J., 1958. Possibilities and limitations for elimination of distortion in aerial photographs. Photogrammetric Record, 2(12), 426-445.
  • Kraus, K.,2008. Fotogrametri. Cilt-1. O.Altan, S.Külür, G.Toz, H.Demirel, Z.Duran, M.Çelikoyan (çeviri editorleri), Nobel Yayınları, 3-462.
  • Linder, W., 2009. Digital Photogrammetry - A Practical Course. Springer-Verlag, Heidelberg, 1-179.
  • Luhmann, T., Hastedt, H. and Tecklenburg, W., 2006. Modelling of chromatic aberration for high precision photogrammetry. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 36(5), 173-178.
  • Nakiboğlu, M., Demir, C., 2006. Dengeleme Hesabı (Dengeleme-1). Harita Genel Komutanlığı, 1-62.
  • Nakiboğlu, M., Demir, C., 2006. Dengelemede İleri Uygulamalar (Dengeleme-2). Harita Genel Komutanlığı, 1-64.
  • Sampath, A., Moe, D. and Christopherson, J., 2012. Two methods for self-calibration of digital camera. International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, 39(B1), 261-266
  • Stamatopoulos, C., 2011. Orientation and calibration of long focal length cameras in digital close-range photogrammetry. PhD Thesis, Dept. of Infrastructure Engineering, University of Melbourne, Melbourne, 170.
  • Wang, S., Tseng, Y.H., 2000. Automatic self-calibration of digital cameras for close-range photogrammetry. IAPRS, 33, 7.
  • 1- https://www.isprs.org/ 2- https://www.asprs.org/
  • 3- https://www.researchgate.net/ 4- https://social.msdn.microsoft.com/
  • 5- https://www.c-sharpcorner.com/ 6- https://stackoverflow.com/
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Temel Durgut 0000-0001-9881-339X

Erdem Emin Maraş 0000-0002-5205-1622

Publication Date June 30, 2021
Submission Date January 1, 2021
Published in Issue Year 2021 Volume: 21 Issue: 3

Cite

APA Durgut, T., & Maraş, E. E. (2021). Fotogrametrik Cerrahi Navigasyon Uygulamalarında Kamera ve Sistem Kalibrasyonunun Ölçüm Doğruluklarına Etkisi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 21(3), 640-649. https://doi.org/10.35414/akufemubid.851780
AMA Durgut T, Maraş EE. Fotogrametrik Cerrahi Navigasyon Uygulamalarında Kamera ve Sistem Kalibrasyonunun Ölçüm Doğruluklarına Etkisi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. June 2021;21(3):640-649. doi:10.35414/akufemubid.851780
Chicago Durgut, Temel, and Erdem Emin Maraş. “Fotogrametrik Cerrahi Navigasyon Uygulamalarında Kamera Ve Sistem Kalibrasyonunun Ölçüm Doğruluklarına Etkisi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21, no. 3 (June 2021): 640-49. https://doi.org/10.35414/akufemubid.851780.
EndNote Durgut T, Maraş EE (June 1, 2021) Fotogrametrik Cerrahi Navigasyon Uygulamalarında Kamera ve Sistem Kalibrasyonunun Ölçüm Doğruluklarına Etkisi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21 3 640–649.
IEEE T. Durgut and E. E. Maraş, “Fotogrametrik Cerrahi Navigasyon Uygulamalarında Kamera ve Sistem Kalibrasyonunun Ölçüm Doğruluklarına Etkisi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 21, no. 3, pp. 640–649, 2021, doi: 10.35414/akufemubid.851780.
ISNAD Durgut, Temel - Maraş, Erdem Emin. “Fotogrametrik Cerrahi Navigasyon Uygulamalarında Kamera Ve Sistem Kalibrasyonunun Ölçüm Doğruluklarına Etkisi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21/3 (June 2021), 640-649. https://doi.org/10.35414/akufemubid.851780.
JAMA Durgut T, Maraş EE. Fotogrametrik Cerrahi Navigasyon Uygulamalarında Kamera ve Sistem Kalibrasyonunun Ölçüm Doğruluklarına Etkisi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2021;21:640–649.
MLA Durgut, Temel and Erdem Emin Maraş. “Fotogrametrik Cerrahi Navigasyon Uygulamalarında Kamera Ve Sistem Kalibrasyonunun Ölçüm Doğruluklarına Etkisi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 21, no. 3, 2021, pp. 640-9, doi:10.35414/akufemubid.851780.
Vancouver Durgut T, Maraş EE. Fotogrametrik Cerrahi Navigasyon Uygulamalarında Kamera ve Sistem Kalibrasyonunun Ölçüm Doğruluklarına Etkisi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2021;21(3):640-9.