Potansiyel Kıkırdak Tedavisi için Poliakrilamid/Aljinat Hibrit Hidrojellerin Mekanik ve Tribolojik Analizi
Year 2022,
Volume: 22 Issue: 1, 252 - 261, 28.02.2022
Yusuf Kanca
,
Emir Avcıoğlu
,
Lynne Hopkins
Ercan Bilge
Abstract
Bu çalışmada sentezlenen poliakrilamid/aljinat (PAAm/Alg) bazlı hidrojellerin mekanik ve tribolojik özellikleri incelenmiştir. Üretilen dört farklı hidrojel farklı konsantrasyonlarda tek veya çift ağ yapılı polimerlerden oluşmaktadır: ağırlıkça %15 tek ağ yapılı (SN-15), %30 tek ağ yapılı (SN-30), %15 çift ağ yapılı (DN-15) ve %30 çift ağ yapılı (DN-30). Sentezlenmiş hidrojellerin tribolojik performansı, özel olarak tasarlanmış pin-on-disk tribometre ile, 37±1 °C sıcaklıkta fosfat tamponlu salin (PBS) içerisinde, ortalama kayma hızı 20 mms-1 olan CoCrMo femur kafasının altında 5 veya 10 N’luk yükler uygulanıp lineer git-gel hareketi ile incelenmiştir. Hidrojellerin sıkıştırma tanjant modülü, PBS’ye daldırılmış numunelerin hem ortam hem de vücut sıcaklarında 1 dak-1 gerinim hızında sıkıştırılmasıyla belirlenmiştir. Test sonuçları daha yüksek polimer konsantrasyonu veya çift ağ tipi bir yapıya sahip olmanın hidrojellerin gelişmiş sürtünme (düşük sürtünme katsayısı) ve aşınma (düşük aşınma izi alanı) özelliklerine sahip olmasına yol açtığını göstermiştir. Hidrojellerin daha düşük yük altında daha iyi performans gösterdiği gözlemlenmiştir. DN-30 olarak kodlanan numune en yüksek sıkıştırma modülü davranışını sergilemiştir. Bu sonuçlar, fizyolojik koşullar altında PAAm/Alg karışımı hidrojellerin mekanik ve tribolojik performansının anlaşılmasına katkıda bulunmuştur.
References
- Al-sabah, A., Burnell, S. E. A., Simoes, I. N., Jessop, Z., Blain, E., & Whitaker, I. S. (2019). Structural and mechanical characterization of crosslinked and sterilised nanocellulose-based hydrogels for cartilage tissue engineering. Carbohydrate Polymers, 212, 242–251.
- Aswathy, S. H., Narendrakumar, U., & Manjubala, I. (2020). Commercial hydrogels for biomedical applications. Heliyon, 6(4), e03719.
- Basu, P., Kumar, U. N., & Manjubala, I. (2017). Wound healing materials – a perspective for skin tissue engineering. Current Science, 112(12), 2392-2404.
- Beddoes, C. M., Whitehouse, M. R., Briscoe, W. H., & Su, B. (2016). Hydrogels as a replacement material for damaged articular hyaline cartilage. Materials, 9(6), 443.
- Bialik-Was, K., Królicka, E., & Malina, D. (2021). Impact of the type of crosslinking agents on the properties of modified sodium alginate/poly(vinyl alcohol) hydrogels. Molecules, 26(8), 2381.
- Carnt, N., Wu, Y., & Stapleton, F. (2010). Contact Lenses. Encyclopedia of the Eye, 377–382.
- Chaudhuri, O., Cooper-White, J., Janmey, P. A., Mooney, D. J., & Shenoy, V. B. (2020). Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature, 584(7822), 535-546.
- Craciun, A. M., Tartau, L. M., Pinteala, M., & Marin, L. (2018). Nitrosalicyl-imine-chitosan hydrogels based drug delivery systems for long term sustained release in local therapy. Journal of Colloid And Interface Science, 536, 196-207.
- Darnell, M. C., Sun, J. Y., Mehta, M., Johnson, C., Arany, P. R., Suo, Z., & Mooney, D. J. (2013). Performance and biocompatibility of extremely tough alginate/polyacrylamide hydrogels. Biomaterials, 34(33), 8042-8048.
- Dashtdar, H., Raman, M., Azlina, M., & Abbas, A. (2013). PVA-chitosan composite hydrogel versus alginate beads as a potential mesenchymal stem cell carrier for the treatment of focal cartilage defects. Knee Surgery, Sports Traumatology, Arthroscopy, 23(5), 1368-1377.
- Davis, S., Roldo, M., Blunn, G., Tozzi, G., & Roncada, T. (2021). Influence of the mechanical environment on the regeneration of osteochondral defects. Frontiers in Bioengineering and Biotechnology, 10.
- Dragan, E. S. (2014). Design and applications of interpenetrating polymer network hydrogels . A review. Chemical Engineering Journal, 243, 572–590.
Duarte Campos, D. F., Drescher, W., Rath, B., Tingart, M., & Fischer, H. (2012). Supporting biomaterials for articular cartilage repair. Cartilage, 3(3), 205–221.
- Goldring, M. B., & Goldring, S. R. (2007). Osteoarthritis. Journal of Cellular Physiology, 213, 626–634.
- Grad, S., Kupcsik, L., Gorna, K., Gogolewski, S., & Alini, M. (2003). The use of biodegradable polyurethane scaffolds for cartilage tissue engineering: Potential and limitations. Biomaterials, 24(28), 5163–5171.
- Guo, P., Yuan, Y., & Chi, F. (2014). Biomimetic alginate/polyacrylamide porous scaffold supports human mesenchymal stem cell proliferation and chondrogenesis. Materials Science and Engineering C, 42, 622–628.
- Hoffman, A. S. (2012). Hydrogels for biomedical applications. Advanced Drug Delivery Reviews, 64, 18–23.
- Jang, J., Lee, J., Seol, Y., Hun, Y., & Cho, D. (2013). Improving mechanical properties of alginate hydrogel by reinforcement with ethanol treated polycaprolactone nanofibers. Composites Part B, 45(1), 1216–1221.
- Kabiri, K., Mirzadeh, H., & Zohuriaan-Mehr, M. J. (2008). Undesirable effects of heating on hydrogels. In Journal of Applied Polymer Science, 110(6), 3420–3430).
- Kanca, Y., Milner, P., Dini, D., & Amis, A. A. (2018). Tribological evaluation of biomedical polycarbonate urethanes against articular cartilage. Journal of the Mechanical Behavior of Biomedical Materials, 82, 394–402.
- Li, J., Chen, G., Xu, X., Abdou, P., Jiang, Q., Shi, D., & Gu, Z. (2019). Advances of injectable hydrogel-based scaffolds for cartilage regeneration. Regenerative Biomaterials, 6(3),129–140.
- Li, Y., Rodrigues, J., & Tomás, H. (2012). Injectable and biodegradable hydrogels : gelation, biodegradation and biomedical applications. Chemical Society Reviews, 41(6), 2193–2221.
- Liao, I. C., Moutos, F. T., Estes, B. T., Zhao, X., & Guilak, F. (2013). Composite three-dimensional woven scaffolds with interpenetrating network hydrogels to create functional synthetic articular cartilage. Advanced Functional Materials, 23(47), 5833–5839.
- Liu, S. Q., Tian, Q., Hedrick, J. L., Po Hui, J. H., Rachel Ee, P. L., & Yang, Y. Y. (2010). Biomimetic hydrogels for chondrogenic differentiation of human mesenchymal stem cells to neocartilage. Biomaterials, 31(28), 7298–7307.
- Mehrali, M., Thakur, A., Pennisi, C. P., & Talebian, S. (2017). Nanoreinforced hydrogels for tissue engineering : biomaterials that are compatible with load-bearing and electroactive tissues. Advanced Materials, 29(8), 1603612.
- Mostakhdemin, M., Nand, A., & Ramezani, M. (2021). Articular and artificial cartilage, characteristics, properties and testing approaches—a review. In Polymers, 13(12), 2000.
- Mow, V. C., Ratcliffe, A., & Robin Poole, A. (1992). Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials, 13(2), 67–97.
- Nguyen, Q. T., Hwang, Y., Chen, A. C., Varghese, S., & Sah, R. L. (2012). Biomaterials Cartilage-like mechanical properties of poly(ethylene glycol)-diacrylate hydrogels. Biomaterials, 33(28), 6682–6690.
- Parente, M. E., Andrade, A. O., Ares, G., Russo, F., & Jimenez-Kairuz, A. (2015). Bioadhesive hydrogels for cosmetic applications. International Journal of Cosmetic Science, 37(5), 511–518.
- Park, A. H., Lee, H. J., An, H., & Lee, Y. (2017). Alginate hydrogels modified with low molecular weight hyaluronate for cartilage regeneration. Carbohydrate Polymers, 162, 100-107.
- Peppas, N. A., Bures, P., Leobandung, W., & Ichikawa, H. (2000). Hydrogels in pharmaceutical formulations. European Journal of Pharmaceutics and Biopharmaceuties, 50(1), 27-46.
- Pourjavadi, A., Tavakolizadeh, M., Hosseini, S. H., Rabiee, N., & Mojtaba, B. (2020). Highly strechable, self adhesive, and self-healable double network hydrogel based on alginate/polyacrylamide with tunable mechanical properties. Journal of Polymer Science, 58(15), 2062-2073.
- Sakai, N., Yarimitsu, S., Sawae, Y., Komori, M., & Murakami, T. (2018). Transitional behaviour between biphasic lubrication and soft elastohydrodynamic lubrication of poly(vinyl alcohol) hydrogel using microelectromechanical system pressure sensor. Biosurface and Biotribology, 4(1), 24–33.
- Scholten, P. M., Ng, K. W., Joh, K., Serino, L. P., Warren, R. F., Torzilli, P. A., & Maher, S. A. (2011). A semi-degradable composite scaffold for articular cartilage defects. Journal of Biomedical Materials Research - Part A, 97(1), 8–15.
- Scholz, B., Kinzelmann, C., Benz, K., Mollenhauer, J., Wurst, H., & Schlosshauer, B. (2010). Suppression of adverse angiogenesis in an albumin-based hydrogel for articular cartilage and intervertebral disc regeneration. European Cells and Materials, 20, 24–37.
- Sun, J., Zhao, X., Illeperuma, W. R. K., Chaudhuri, O., Oh, K. H., Mooney, D. J. ., Vlassak, J. J., & Suo, Z. (2012). Highly stretchable and tough hydrogels. Nature, 489(7414), 133–136.
- Strengthening alginate/polyacrylamide hydrogels using various multivalent cations. ACS Applied Materials and Interfaces, 5(21), 10418–10422.
- Tamer, T. M. (2013). Hyaluronan and synovial joint: function, distribution and healing. Interdisciplinary Toxicology, 6(3), 111–125.
- Xiao, Y., Friis, E. A., Gehrke, S. H., & Detamore, M. S. (2013). Mechanical testing of hydrogels in cartilage tissue engineering: beyond the compressive modulus. In Tissue Engineering - Part B: Reviews. 19(5), 403–412.
- Yang, C. H., Wang, M. X., Haider, H., Yang, J. H., Sun, J. Y., Chen, Y. M., Zhou, J., & Suo, Z. (2013). Doi: 10.1021/am403966x
- Yang, C., Wang, M., Haider, H., & Yang, J. (2013). Correction to strengthening alginate/polyacrylamide hydrogels using various multivalent cations. Applied Materials & Interfaces, 52(4), 13484.
- Yue, Y., Wang, X., Wu, Q., & Han, J. (2019). Assembly of Polyacrylamide-Sodium alginate-based organic-inorganic hydrogel with mechanical and adsorption properties. Polymers, 11(8), 1239.
- Zaragoza, J., Chang, A., & Asuri, P. (2017). Effect of crosslinker length on the elastic and compression modulus of poly (acrylamide) nanocomposite hydrogels . Journal of Physics: Conference Series, 790, 012037.
- Zhu, D., Wang, H., Trinh, P., Heilshorn, S. C., & Yang, F. (2017). Biomaterials Elastin-like protein-hyaluronic acid ( ELP-HA ) hydrogels with decoupled mechanical and biochemical cues for cartilage regeneration. Biomaterials, 127, 132–140.
Mechanical and Tribological Analysis of Polyacrylamide/Alginate Hybrid Hydrogels for Potential Cartilage Treatment
Year 2022,
Volume: 22 Issue: 1, 252 - 261, 28.02.2022
Yusuf Kanca
,
Emir Avcıoğlu
,
Lynne Hopkins
Ercan Bilge
Abstract
In this study, polyacrylamide/alginate (PAAm/Alg) based hydrogels have been synthesized and investigated. The four different hydrogels produced contained different concentrations of single- or double- network polymer: 15 wt.% single-network (SN-15), 30 wt.% single-network (SN-30), 15 wt.% double-network (DN-15), and 30 wt.% double-network (DN-30). The tribological performance of these synthesized hydrogels was investigated by using a custom pin-on-disc tribometer in phosphate buffered saline (PBS), where samples were reciprocated against a CoCrMo femoral head under an applied load of 5 or 10 N, at an average sliding speed of 20 mms-1, and body temperature (37±1 °C). The compressive tangent modulus was also determined by compressing samples at a strain rate of 1 min-1, while submerged in PBS, at both ambient and body temperatures. The results showed that a higher polymer concentration or a double-network type of structure led to improved friction (lower friction co-efficient) and wear (lower wear track area) properties. Samples also performed better when a lower applied load used. Sample DN-30 exhibited the highest compressive modulus. These outcomes have contributed to the understanding of the mechanical and tribological performance of PAAm/Alg blend hydrogels when performing under certain physiological conditions.
References
- Al-sabah, A., Burnell, S. E. A., Simoes, I. N., Jessop, Z., Blain, E., & Whitaker, I. S. (2019). Structural and mechanical characterization of crosslinked and sterilised nanocellulose-based hydrogels for cartilage tissue engineering. Carbohydrate Polymers, 212, 242–251.
- Aswathy, S. H., Narendrakumar, U., & Manjubala, I. (2020). Commercial hydrogels for biomedical applications. Heliyon, 6(4), e03719.
- Basu, P., Kumar, U. N., & Manjubala, I. (2017). Wound healing materials – a perspective for skin tissue engineering. Current Science, 112(12), 2392-2404.
- Beddoes, C. M., Whitehouse, M. R., Briscoe, W. H., & Su, B. (2016). Hydrogels as a replacement material for damaged articular hyaline cartilage. Materials, 9(6), 443.
- Bialik-Was, K., Królicka, E., & Malina, D. (2021). Impact of the type of crosslinking agents on the properties of modified sodium alginate/poly(vinyl alcohol) hydrogels. Molecules, 26(8), 2381.
- Carnt, N., Wu, Y., & Stapleton, F. (2010). Contact Lenses. Encyclopedia of the Eye, 377–382.
- Chaudhuri, O., Cooper-White, J., Janmey, P. A., Mooney, D. J., & Shenoy, V. B. (2020). Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature, 584(7822), 535-546.
- Craciun, A. M., Tartau, L. M., Pinteala, M., & Marin, L. (2018). Nitrosalicyl-imine-chitosan hydrogels based drug delivery systems for long term sustained release in local therapy. Journal of Colloid And Interface Science, 536, 196-207.
- Darnell, M. C., Sun, J. Y., Mehta, M., Johnson, C., Arany, P. R., Suo, Z., & Mooney, D. J. (2013). Performance and biocompatibility of extremely tough alginate/polyacrylamide hydrogels. Biomaterials, 34(33), 8042-8048.
- Dashtdar, H., Raman, M., Azlina, M., & Abbas, A. (2013). PVA-chitosan composite hydrogel versus alginate beads as a potential mesenchymal stem cell carrier for the treatment of focal cartilage defects. Knee Surgery, Sports Traumatology, Arthroscopy, 23(5), 1368-1377.
- Davis, S., Roldo, M., Blunn, G., Tozzi, G., & Roncada, T. (2021). Influence of the mechanical environment on the regeneration of osteochondral defects. Frontiers in Bioengineering and Biotechnology, 10.
- Dragan, E. S. (2014). Design and applications of interpenetrating polymer network hydrogels . A review. Chemical Engineering Journal, 243, 572–590.
Duarte Campos, D. F., Drescher, W., Rath, B., Tingart, M., & Fischer, H. (2012). Supporting biomaterials for articular cartilage repair. Cartilage, 3(3), 205–221.
- Goldring, M. B., & Goldring, S. R. (2007). Osteoarthritis. Journal of Cellular Physiology, 213, 626–634.
- Grad, S., Kupcsik, L., Gorna, K., Gogolewski, S., & Alini, M. (2003). The use of biodegradable polyurethane scaffolds for cartilage tissue engineering: Potential and limitations. Biomaterials, 24(28), 5163–5171.
- Guo, P., Yuan, Y., & Chi, F. (2014). Biomimetic alginate/polyacrylamide porous scaffold supports human mesenchymal stem cell proliferation and chondrogenesis. Materials Science and Engineering C, 42, 622–628.
- Hoffman, A. S. (2012). Hydrogels for biomedical applications. Advanced Drug Delivery Reviews, 64, 18–23.
- Jang, J., Lee, J., Seol, Y., Hun, Y., & Cho, D. (2013). Improving mechanical properties of alginate hydrogel by reinforcement with ethanol treated polycaprolactone nanofibers. Composites Part B, 45(1), 1216–1221.
- Kabiri, K., Mirzadeh, H., & Zohuriaan-Mehr, M. J. (2008). Undesirable effects of heating on hydrogels. In Journal of Applied Polymer Science, 110(6), 3420–3430).
- Kanca, Y., Milner, P., Dini, D., & Amis, A. A. (2018). Tribological evaluation of biomedical polycarbonate urethanes against articular cartilage. Journal of the Mechanical Behavior of Biomedical Materials, 82, 394–402.
- Li, J., Chen, G., Xu, X., Abdou, P., Jiang, Q., Shi, D., & Gu, Z. (2019). Advances of injectable hydrogel-based scaffolds for cartilage regeneration. Regenerative Biomaterials, 6(3),129–140.
- Li, Y., Rodrigues, J., & Tomás, H. (2012). Injectable and biodegradable hydrogels : gelation, biodegradation and biomedical applications. Chemical Society Reviews, 41(6), 2193–2221.
- Liao, I. C., Moutos, F. T., Estes, B. T., Zhao, X., & Guilak, F. (2013). Composite three-dimensional woven scaffolds with interpenetrating network hydrogels to create functional synthetic articular cartilage. Advanced Functional Materials, 23(47), 5833–5839.
- Liu, S. Q., Tian, Q., Hedrick, J. L., Po Hui, J. H., Rachel Ee, P. L., & Yang, Y. Y. (2010). Biomimetic hydrogels for chondrogenic differentiation of human mesenchymal stem cells to neocartilage. Biomaterials, 31(28), 7298–7307.
- Mehrali, M., Thakur, A., Pennisi, C. P., & Talebian, S. (2017). Nanoreinforced hydrogels for tissue engineering : biomaterials that are compatible with load-bearing and electroactive tissues. Advanced Materials, 29(8), 1603612.
- Mostakhdemin, M., Nand, A., & Ramezani, M. (2021). Articular and artificial cartilage, characteristics, properties and testing approaches—a review. In Polymers, 13(12), 2000.
- Mow, V. C., Ratcliffe, A., & Robin Poole, A. (1992). Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials, 13(2), 67–97.
- Nguyen, Q. T., Hwang, Y., Chen, A. C., Varghese, S., & Sah, R. L. (2012). Biomaterials Cartilage-like mechanical properties of poly(ethylene glycol)-diacrylate hydrogels. Biomaterials, 33(28), 6682–6690.
- Parente, M. E., Andrade, A. O., Ares, G., Russo, F., & Jimenez-Kairuz, A. (2015). Bioadhesive hydrogels for cosmetic applications. International Journal of Cosmetic Science, 37(5), 511–518.
- Park, A. H., Lee, H. J., An, H., & Lee, Y. (2017). Alginate hydrogels modified with low molecular weight hyaluronate for cartilage regeneration. Carbohydrate Polymers, 162, 100-107.
- Peppas, N. A., Bures, P., Leobandung, W., & Ichikawa, H. (2000). Hydrogels in pharmaceutical formulations. European Journal of Pharmaceutics and Biopharmaceuties, 50(1), 27-46.
- Pourjavadi, A., Tavakolizadeh, M., Hosseini, S. H., Rabiee, N., & Mojtaba, B. (2020). Highly strechable, self adhesive, and self-healable double network hydrogel based on alginate/polyacrylamide with tunable mechanical properties. Journal of Polymer Science, 58(15), 2062-2073.
- Sakai, N., Yarimitsu, S., Sawae, Y., Komori, M., & Murakami, T. (2018). Transitional behaviour between biphasic lubrication and soft elastohydrodynamic lubrication of poly(vinyl alcohol) hydrogel using microelectromechanical system pressure sensor. Biosurface and Biotribology, 4(1), 24–33.
- Scholten, P. M., Ng, K. W., Joh, K., Serino, L. P., Warren, R. F., Torzilli, P. A., & Maher, S. A. (2011). A semi-degradable composite scaffold for articular cartilage defects. Journal of Biomedical Materials Research - Part A, 97(1), 8–15.
- Scholz, B., Kinzelmann, C., Benz, K., Mollenhauer, J., Wurst, H., & Schlosshauer, B. (2010). Suppression of adverse angiogenesis in an albumin-based hydrogel for articular cartilage and intervertebral disc regeneration. European Cells and Materials, 20, 24–37.
- Sun, J., Zhao, X., Illeperuma, W. R. K., Chaudhuri, O., Oh, K. H., Mooney, D. J. ., Vlassak, J. J., & Suo, Z. (2012). Highly stretchable and tough hydrogels. Nature, 489(7414), 133–136.
- Strengthening alginate/polyacrylamide hydrogels using various multivalent cations. ACS Applied Materials and Interfaces, 5(21), 10418–10422.
- Tamer, T. M. (2013). Hyaluronan and synovial joint: function, distribution and healing. Interdisciplinary Toxicology, 6(3), 111–125.
- Xiao, Y., Friis, E. A., Gehrke, S. H., & Detamore, M. S. (2013). Mechanical testing of hydrogels in cartilage tissue engineering: beyond the compressive modulus. In Tissue Engineering - Part B: Reviews. 19(5), 403–412.
- Yang, C. H., Wang, M. X., Haider, H., Yang, J. H., Sun, J. Y., Chen, Y. M., Zhou, J., & Suo, Z. (2013). Doi: 10.1021/am403966x
- Yang, C., Wang, M., Haider, H., & Yang, J. (2013). Correction to strengthening alginate/polyacrylamide hydrogels using various multivalent cations. Applied Materials & Interfaces, 52(4), 13484.
- Yue, Y., Wang, X., Wu, Q., & Han, J. (2019). Assembly of Polyacrylamide-Sodium alginate-based organic-inorganic hydrogel with mechanical and adsorption properties. Polymers, 11(8), 1239.
- Zaragoza, J., Chang, A., & Asuri, P. (2017). Effect of crosslinker length on the elastic and compression modulus of poly (acrylamide) nanocomposite hydrogels . Journal of Physics: Conference Series, 790, 012037.
- Zhu, D., Wang, H., Trinh, P., Heilshorn, S. C., & Yang, F. (2017). Biomaterials Elastin-like protein-hyaluronic acid ( ELP-HA ) hydrogels with decoupled mechanical and biochemical cues for cartilage regeneration. Biomaterials, 127, 132–140.