Research Article
BibTex RIS Cite

Studies on the Equilibrium, Kinetic, and Thermodynamic Properties of Waste Orange Peel in the Removal of Copper (II) Ions from Aqueous Solutions

Year 2022, Volume: 22 Issue: 3, 498 - 507, 30.06.2022
https://doi.org/10.35414/akufemubid.1101318

Abstract

Waste orange peel (APK) was tested for its ability to remove Cu 2+ ions from aqueous solutions in this study. The orange peel was characterized using scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) for surface morphology and Fourier transform infrared spectroscopy (FT-IR) for surface functional groups. At various temperatures, the kinetic data was applied to the pseudo first order, pseudo second order, Weber-Morris diffusion model, and Elovich kinetic equations. The applicability of Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich (D-R) adsorption isotherms was investigated to better understand the adsorption process. Following the elimination of copper, pseudo second order kinetics and the Langmuir model of isotherms were used. At 298, 308, and 318 K, the adsorption capacities for Cu (II) were 7.74, 7.98, and 8.84 mg/g, respectively. The Gibbs free energy (ΔGo), heat of adsorption (ΔHo), and entropy (ΔSo) of Cu(II) ions were identified using thermodynamic data. It was discovered that the values were -16.76 kJ/mol, 29.43 kJ/mol, and 154.79 j/mol, respectively.

References

  • Akpomie, K. G., Dawodu, F. A., Adebowale, K. O. 2015. Mechanism on the sorption of heavy metals from binary-solution by a low cost montmorillonite and its desorption potential. Alexandria Engineering Journal, 54(3), 757–767. https://doi.org/10.1016/j.aej.2015. 03.025.
  • Altunkaynak, Y., Canpolat, M. & Yavuz, Ö. 2021. Adsorption of cobalt (II) ions from aqueous solution using orange peel waste: equilibrium, kinetic and thermodynamic studies. Journal of the Iranian Chemical Society, 19(6), 2437-2448. https://doi.org/10.1007/s13738-021-02458-8
  • Altunkaynak, Y., & Canpolat, M. 2022. Ham Portakal Kabuğu ile Sulu Çözeltilerden Mangan (II) İyonlarının Uzaklaştırılması: Denge, Kinetik ve Termodinamik Çalışmalar. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 22(1), 45-56.
  • Altunkaynak, Y. 2022. Effectively removing Cu (II) and Ni (II) ions from aqueous solutions using chemically non-processed Midyat stone: equivalent, kinetic and thermodynamic studies. Journal of the Iranian Chemical Society, 1-14
  • Azzam, A. M., El-wakeel, S. T., Mostafa, B. B., El-Shahat, M. F. 2016. Removal of Pb, Cd, Cu and Ni from aqueous solution using nano scale zero valent iron particles. Journal Environmental Chemical Engineering, 4, 2196–2206. https://doi.org/10.1016/j.jece.2016.03.048
  • Bhatti, H. N., Khalid, R., Hanif, M. A. 2009. Dynamic biosorption of Zn(II) and Cu(II)using pretreated Rosa gruss an teplitz (red rose) distillation sludge. Chemical Engineering Journal, 148(2-3), 434–443. https://doi.org/10.1016/j.cej.2008.09.028
  • Brinza, L., Nygård, C. A., Dring, M. J., Gavrilescu, M., Benning, L. G. 2009. Cadmium tolerance and adsorption by the marine brown alga Fucus vesiculosus from the Irish Sea and the Bothnian Sea. Bioresource Technology, 100, 1727–1733. https://doi.org/10.1016/j.biortech.2008.09.041.
  • Foo, K. Y., & Hameed, B. H. 2010. Insights into the modeling of adsorption isotherm systems. Chemical engineering journal, 156(1), 2-10. https://doi.org/10.1016/j.cej.2009.09.013
  • Gavrilescu, M. 2004. Removal of heavy metals from the environment by biosorption. Engineering in Life Sciences, 4, 219–232. https://doi.org/10.1002/elsc.200420026
  • Guiza, S. 2017. Biosorption of heavy metal from aqueous solution using cellulosicwaste orange peel. Journal of Ecological Engineering, 99, 134–140. https://doi.org/10.1016/j.ecoleng.2016.11.043
  • Guo, X., & Wang, J. 2019. A general kinetic model for adsorption: theoretical analysis and modeling. Journal of Molecular Liquids, 288, https://doi.org/10.1016/j.molliq.2019.111100
  • Gupta, V. K. 1998. Equilibrium uptake, sorption dynamics, process development, and column operations for the removal of copper and nickel from aqueous solution and wastewater using activated slag, a low-cost adsorbent. Industrial & Engineering Chemistry Research, 37(1), 192-202.
  • Güzel, F., Yakut, H., Topal, G. 2008. Determination of kinetic and equilibrium parameters of the batch adsorption of Mn(II), Co(II), Ni(II) and Cu(II) from aqueous solution by black carrot (Daucus carota L.) residues. Journal of Hazardous Materials, 153(3), 1275-1287. https://doi.org/10.1016/j.jhazmat.2007.09.087
  • Ho, Y. S., & McKay, G. 1998. A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process safety and environmental protection, 76(4), 332-340. https://doi.org/10.1016/j.biortech.2007.05.070
  • Huang, M., Zhang, Y., Xiang, W., Zhou, T., Wu, X., & Mao, J. 2019. Efficient adsorption of Mn (II) by layered double hydroxides intercalated with diethylenetriaminepentaacetic acid and the mechanistic study. Journal of Environmental Sciences, 85, 56-65.
  • Karthik, R., & Meenakshi, S. 2015. Removal of Pb (II) and Cd (II) ions from aqueous solution using polyaniline grafted chitosan. Chemical Engineering Journal, 263, 168-177.
  • Lasheen, M. R., Ammar, N. S., İbrahim, H. S. 2012. Adsorption/desorption of Cd(II), Cu(II) and Pb(II) using chemically modified orange peel: Equilibrium and kinetic studies. Journal Solid State Sciences, 14(2), 202 -210. https://doi.org/10.1016/j.solidstatesciences.2011.11.029
  • Ledin, M. 2000. Accumulation of metals by microorganisms—processes and importance for soil systems. Earth-Science Reviews, 51, 1–31. https://doi.org/10.1016/S0012-8252(00)00008-8
  • Li, X., Zhang, D., Sheng, F., & Qing, H. 2018. Adsorption characteristics of Copper (II), Zinc () and Mercury (Ⅱ) by four kinds of immobilized fungi residues. Ecotoxicology and environmental safety, 147, 357-366. https://doi.org/10.1016/j.ecoenv.2017.08.058
  • Ofudje, E. A., Awotula, A. O., Hambate, G. V., Akinwunmi, F., Alayande, S. O., Alukanni, O. D. 2017. Acid activation of groundnut husk for copper adsorption: kinetics and equilibrium studies. Desalination Water Treatment, 86, 240–251. https://doi.org/10.5004/dwt.2017.21339
  • Ofudje, E. A., Williams, O. D., Asogwa, K. K., & Awotula, A. O. 2013. Assessment of Langmuir, Freundlich and Rubunin-Radushhkevich Adsorption Isotherms in the study of the biosorption of Mn (II) ions from aqueous solution by untreated and acid-treated corn shaft. international journal of scientific and engineering research, 4(7), 1628-1634.
  • Owamah, H. I. 2014. Biosorptive removal of Pb (II) and Cu (II) from wastewater using activated carbon from cassava peels. Journal of Material Cycles and Waste Management,16(2), 347-358. https://doi.org/10.1007/s10163-013-0192-z.
  • Ozsoy, H. D., Kumbur, H. 2006. Adsorption of Cu (II) ions on cotton boll. Journal of Hazardous Materials, 136(3), 911–916. https://doi.org/10.1016/j.jhazmat.2006.01.035
  • Shukla, S., Yu, I. J., Dorris, K., Shukla, A. 2005. Removal of nickel from aqueous solutions by sawdust. Journal of Hazardous Materials, 121(1-3), 243–246. https://doi.org/10.1016/j.jhazmat.2004.11.025
  • Tamjidi, S., Esmaeili, H., Moghadas, B. K. 2019. Application of magnetic adsorbents for removal of heavy metals from wastewater: a review study. Materials Research Express, 52(4), 10-16. https://doi.org/10.1088/ 2053-1591/ab3ffb.
  • Üstün, G. E. 2009. Occurrence and removal of metals in urban wastewater treatment plants, Journal of Hazardous Materials, 172, 833–838. https://doi.org/10.1016/j.jhazmat. 2009.07.073
  • Wu, F. C., Tseng, R. L., & Juang, R. S. 2009. Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chemical engineering journal, 153(1-3), 1-8.
  • Yavuz, Ö., Altunkaynak, Y., & Güzel, F. 2003. Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite. Water research, 37(4), 948-952.

Bakır(II) İyonlarının Sulu Çözeltilerden Atık Portakal Kabuğu İle Uzaklaştırılması: Denge, Kinetik Ve Termodinamik Çalışmalar

Year 2022, Volume: 22 Issue: 3, 498 - 507, 30.06.2022
https://doi.org/10.35414/akufemubid.1101318

Abstract

Bu çalışmada, sulu çözeltilerden Cu2+ iyonlarını uzaklaştırmak amacıyla atık portakal kabuğu (APK) değerlendirildi. Portakal kabuğunun karakterizasyonu, yüzey morfolojisi için taramalı elektron mikroskobu-enerji dağılım spektroskopisi (SEM-EDS) ve yüzey fonksiyonel grupları için Fourier dönüşümü kızılötesi spektroskopisi (FT-IR) ile incelendi. Farklı sıcaklıklarda bulunan kinetik değerler yalancı birinci derece, yalancı ikinci derece, Elovich ve parçacık içi difüzyon modeli denklemlerine uygulanmıştır. Adsorpsiyon sürecini daha iyi anlamak için Langmuir, Freundlich, Temkin ve Dubinin-Radushkevich (D-R) adsorpsiyon izotermlerinin uygulanabilirliği değerlendirildi. Bakırın uzaklaştırılması yalancı ikinci dereceden kinetik model ile Langmuir izoterm modelini takip etti. Cu2+ için uzaklaştırma kapasitesi 298, 308 ve 318 K'de sırasıyla 7.74, 7.98 ve 8.84 mg/g olarak elde edilmiştir. Cu2+ iyonlarının Gibbs serbest enerjisi (ΔGo), adsorpsiyon ısısı (ΔHo) ve entropisi (ΔSo) için termodinamik veriler sırasıyla -16.76 kj/mol, 29.43 kj/mol ve 154.79 j/mol olarak bulundu.

References

  • Akpomie, K. G., Dawodu, F. A., Adebowale, K. O. 2015. Mechanism on the sorption of heavy metals from binary-solution by a low cost montmorillonite and its desorption potential. Alexandria Engineering Journal, 54(3), 757–767. https://doi.org/10.1016/j.aej.2015. 03.025.
  • Altunkaynak, Y., Canpolat, M. & Yavuz, Ö. 2021. Adsorption of cobalt (II) ions from aqueous solution using orange peel waste: equilibrium, kinetic and thermodynamic studies. Journal of the Iranian Chemical Society, 19(6), 2437-2448. https://doi.org/10.1007/s13738-021-02458-8
  • Altunkaynak, Y., & Canpolat, M. 2022. Ham Portakal Kabuğu ile Sulu Çözeltilerden Mangan (II) İyonlarının Uzaklaştırılması: Denge, Kinetik ve Termodinamik Çalışmalar. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 22(1), 45-56.
  • Altunkaynak, Y. 2022. Effectively removing Cu (II) and Ni (II) ions from aqueous solutions using chemically non-processed Midyat stone: equivalent, kinetic and thermodynamic studies. Journal of the Iranian Chemical Society, 1-14
  • Azzam, A. M., El-wakeel, S. T., Mostafa, B. B., El-Shahat, M. F. 2016. Removal of Pb, Cd, Cu and Ni from aqueous solution using nano scale zero valent iron particles. Journal Environmental Chemical Engineering, 4, 2196–2206. https://doi.org/10.1016/j.jece.2016.03.048
  • Bhatti, H. N., Khalid, R., Hanif, M. A. 2009. Dynamic biosorption of Zn(II) and Cu(II)using pretreated Rosa gruss an teplitz (red rose) distillation sludge. Chemical Engineering Journal, 148(2-3), 434–443. https://doi.org/10.1016/j.cej.2008.09.028
  • Brinza, L., Nygård, C. A., Dring, M. J., Gavrilescu, M., Benning, L. G. 2009. Cadmium tolerance and adsorption by the marine brown alga Fucus vesiculosus from the Irish Sea and the Bothnian Sea. Bioresource Technology, 100, 1727–1733. https://doi.org/10.1016/j.biortech.2008.09.041.
  • Foo, K. Y., & Hameed, B. H. 2010. Insights into the modeling of adsorption isotherm systems. Chemical engineering journal, 156(1), 2-10. https://doi.org/10.1016/j.cej.2009.09.013
  • Gavrilescu, M. 2004. Removal of heavy metals from the environment by biosorption. Engineering in Life Sciences, 4, 219–232. https://doi.org/10.1002/elsc.200420026
  • Guiza, S. 2017. Biosorption of heavy metal from aqueous solution using cellulosicwaste orange peel. Journal of Ecological Engineering, 99, 134–140. https://doi.org/10.1016/j.ecoleng.2016.11.043
  • Guo, X., & Wang, J. 2019. A general kinetic model for adsorption: theoretical analysis and modeling. Journal of Molecular Liquids, 288, https://doi.org/10.1016/j.molliq.2019.111100
  • Gupta, V. K. 1998. Equilibrium uptake, sorption dynamics, process development, and column operations for the removal of copper and nickel from aqueous solution and wastewater using activated slag, a low-cost adsorbent. Industrial & Engineering Chemistry Research, 37(1), 192-202.
  • Güzel, F., Yakut, H., Topal, G. 2008. Determination of kinetic and equilibrium parameters of the batch adsorption of Mn(II), Co(II), Ni(II) and Cu(II) from aqueous solution by black carrot (Daucus carota L.) residues. Journal of Hazardous Materials, 153(3), 1275-1287. https://doi.org/10.1016/j.jhazmat.2007.09.087
  • Ho, Y. S., & McKay, G. 1998. A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process safety and environmental protection, 76(4), 332-340. https://doi.org/10.1016/j.biortech.2007.05.070
  • Huang, M., Zhang, Y., Xiang, W., Zhou, T., Wu, X., & Mao, J. 2019. Efficient adsorption of Mn (II) by layered double hydroxides intercalated with diethylenetriaminepentaacetic acid and the mechanistic study. Journal of Environmental Sciences, 85, 56-65.
  • Karthik, R., & Meenakshi, S. 2015. Removal of Pb (II) and Cd (II) ions from aqueous solution using polyaniline grafted chitosan. Chemical Engineering Journal, 263, 168-177.
  • Lasheen, M. R., Ammar, N. S., İbrahim, H. S. 2012. Adsorption/desorption of Cd(II), Cu(II) and Pb(II) using chemically modified orange peel: Equilibrium and kinetic studies. Journal Solid State Sciences, 14(2), 202 -210. https://doi.org/10.1016/j.solidstatesciences.2011.11.029
  • Ledin, M. 2000. Accumulation of metals by microorganisms—processes and importance for soil systems. Earth-Science Reviews, 51, 1–31. https://doi.org/10.1016/S0012-8252(00)00008-8
  • Li, X., Zhang, D., Sheng, F., & Qing, H. 2018. Adsorption characteristics of Copper (II), Zinc () and Mercury (Ⅱ) by four kinds of immobilized fungi residues. Ecotoxicology and environmental safety, 147, 357-366. https://doi.org/10.1016/j.ecoenv.2017.08.058
  • Ofudje, E. A., Awotula, A. O., Hambate, G. V., Akinwunmi, F., Alayande, S. O., Alukanni, O. D. 2017. Acid activation of groundnut husk for copper adsorption: kinetics and equilibrium studies. Desalination Water Treatment, 86, 240–251. https://doi.org/10.5004/dwt.2017.21339
  • Ofudje, E. A., Williams, O. D., Asogwa, K. K., & Awotula, A. O. 2013. Assessment of Langmuir, Freundlich and Rubunin-Radushhkevich Adsorption Isotherms in the study of the biosorption of Mn (II) ions from aqueous solution by untreated and acid-treated corn shaft. international journal of scientific and engineering research, 4(7), 1628-1634.
  • Owamah, H. I. 2014. Biosorptive removal of Pb (II) and Cu (II) from wastewater using activated carbon from cassava peels. Journal of Material Cycles and Waste Management,16(2), 347-358. https://doi.org/10.1007/s10163-013-0192-z.
  • Ozsoy, H. D., Kumbur, H. 2006. Adsorption of Cu (II) ions on cotton boll. Journal of Hazardous Materials, 136(3), 911–916. https://doi.org/10.1016/j.jhazmat.2006.01.035
  • Shukla, S., Yu, I. J., Dorris, K., Shukla, A. 2005. Removal of nickel from aqueous solutions by sawdust. Journal of Hazardous Materials, 121(1-3), 243–246. https://doi.org/10.1016/j.jhazmat.2004.11.025
  • Tamjidi, S., Esmaeili, H., Moghadas, B. K. 2019. Application of magnetic adsorbents for removal of heavy metals from wastewater: a review study. Materials Research Express, 52(4), 10-16. https://doi.org/10.1088/ 2053-1591/ab3ffb.
  • Üstün, G. E. 2009. Occurrence and removal of metals in urban wastewater treatment plants, Journal of Hazardous Materials, 172, 833–838. https://doi.org/10.1016/j.jhazmat. 2009.07.073
  • Wu, F. C., Tseng, R. L., & Juang, R. S. 2009. Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chemical engineering journal, 153(1-3), 1-8.
  • Yavuz, Ö., Altunkaynak, Y., & Güzel, F. 2003. Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite. Water research, 37(4), 948-952.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Mutlu Canpolat 0000-0002-3771-6737

Yalçın Altunkaynak 0000-0003-2562-9297

Ömer Yavuz 0000-0002-7706-1878

Publication Date June 30, 2022
Submission Date April 10, 2022
Published in Issue Year 2022 Volume: 22 Issue: 3

Cite

APA Canpolat, M., Altunkaynak, Y., & Yavuz, Ö. (2022). Bakır(II) İyonlarının Sulu Çözeltilerden Atık Portakal Kabuğu İle Uzaklaştırılması: Denge, Kinetik Ve Termodinamik Çalışmalar. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 22(3), 498-507. https://doi.org/10.35414/akufemubid.1101318
AMA Canpolat M, Altunkaynak Y, Yavuz Ö. Bakır(II) İyonlarının Sulu Çözeltilerden Atık Portakal Kabuğu İle Uzaklaştırılması: Denge, Kinetik Ve Termodinamik Çalışmalar. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. June 2022;22(3):498-507. doi:10.35414/akufemubid.1101318
Chicago Canpolat, Mutlu, Yalçın Altunkaynak, and Ömer Yavuz. “Bakır(II) İyonlarının Sulu Çözeltilerden Atık Portakal Kabuğu İle Uzaklaştırılması: Denge, Kinetik Ve Termodinamik Çalışmalar”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22, no. 3 (June 2022): 498-507. https://doi.org/10.35414/akufemubid.1101318.
EndNote Canpolat M, Altunkaynak Y, Yavuz Ö (June 1, 2022) Bakır(II) İyonlarının Sulu Çözeltilerden Atık Portakal Kabuğu İle Uzaklaştırılması: Denge, Kinetik Ve Termodinamik Çalışmalar. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22 3 498–507.
IEEE M. Canpolat, Y. Altunkaynak, and Ö. Yavuz, “Bakır(II) İyonlarının Sulu Çözeltilerden Atık Portakal Kabuğu İle Uzaklaştırılması: Denge, Kinetik Ve Termodinamik Çalışmalar”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 22, no. 3, pp. 498–507, 2022, doi: 10.35414/akufemubid.1101318.
ISNAD Canpolat, Mutlu et al. “Bakır(II) İyonlarının Sulu Çözeltilerden Atık Portakal Kabuğu İle Uzaklaştırılması: Denge, Kinetik Ve Termodinamik Çalışmalar”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22/3 (June 2022), 498-507. https://doi.org/10.35414/akufemubid.1101318.
JAMA Canpolat M, Altunkaynak Y, Yavuz Ö. Bakır(II) İyonlarının Sulu Çözeltilerden Atık Portakal Kabuğu İle Uzaklaştırılması: Denge, Kinetik Ve Termodinamik Çalışmalar. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22:498–507.
MLA Canpolat, Mutlu et al. “Bakır(II) İyonlarının Sulu Çözeltilerden Atık Portakal Kabuğu İle Uzaklaştırılması: Denge, Kinetik Ve Termodinamik Çalışmalar”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 22, no. 3, 2022, pp. 498-07, doi:10.35414/akufemubid.1101318.
Vancouver Canpolat M, Altunkaynak Y, Yavuz Ö. Bakır(II) İyonlarının Sulu Çözeltilerden Atık Portakal Kabuğu İle Uzaklaştırılması: Denge, Kinetik Ve Termodinamik Çalışmalar. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22(3):498-507.