Research Article
BibTex RIS Cite

Molecular Biological Investigation of The Effect of Aloe vera on The Growth of Saccharomyces cerevisae

Year 2022, Volume: 22 Issue: 4, 703 - 710, 31.08.2022
https://doi.org/10.35414/akufemubid.1070236

Abstract

Aloe vera (A.vera) is a tropical, drought-resistant succulent plant. A. vera plant is used as a nutritional supplement in various foods and as an ingredient in cosmetic products. It has biological activities such as anti-inflammatory, anti-cancer, anti-oxidant, anti-diabetic and wound healing. Therefore, in our study, the effect of A. vera gel on oxidative damage in cisplatin (Cis)-derived Saccharomyces cerevisiae (S.cerevisiae) culture was investigated. Our groups in our study; Group (1): Control group; Group (2): A. vera Group (10%); Group (3): Cis Group (15 mM); Group (4): A. vera (10%) + Cis (15 mM) Group. Cell growth measurements, lipid peroxidation, malondialdehyde (MDA) analysis, glutathione (GSH) levels and catalase (CAT) activities were defined by spectrophotometer. Total protein varies were determined by SDS-PAGE electrophoresis and computed by the Bradford method. According to the conclusions obtained, A. vera gel added to S.cerevisiae cultures increased cell development (1, 3, 5 and 24 hours), total protein synthesis (24 hours), GSH levels (24 hours) and CAT activities (24 hours) it has been found to reduce the MDA level (24 hours). These conclusions indicate that A. vera gel decrease oxidative damage in S. cerevisiae culture, promotes protein synthesis and has a protecting effect to increase cell development.

References

  • Alsuhaibani, A.M.A., 2018. Effect of Nigella Sativa against cisplatin induced nephrotoxicity in rats. Italian Journal of Food Safety, 7, 7242.
  • Aslan, A., Beyaz, S. ve Gök, Ö., 2019a. Domates ekstraktının Saccharomyces cerevisiae’de oluşturulan krom hasarına karşı koruyucu etkisi. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 12 (2), 1048-1055.
  • Aslan, A., Beyaz, S., Gok, O. and Erman, O., 2020b. The effect of ellagic acid on caspase-3/bcl-2/Nrf-2/NF-kB/TNF-α/COX-2 gene expression product apoptosis pathway: a new approach for muscle damage therapy. Molecular Biology Reports, 47 (4), 2573-2582.
  • Aslan, A., Beyaz, S., Gok, O., Can, M.I., Erman, F. and Erman, O. 2021a. The impact of ellagic acid on some apoptotic gene expressions: a new perspective for the regulation of pancreatic Nrf-2/NF-κB and Akt/VEGF signaling in CCl4-induced pancreas damage in rats. Immunopharmacology and Immunotoxicology, 43 (2), 145-152.
  • Aslan, A., Beyaz, S., Gok, O., Can, M.I., Parlak, G., Ozercan, I.H. and Gundogdu, R., 2021b. Royal jelly abrogates flouride-induced oxidative damage in rat heart tissue by activating of the Nrf-2/NF-κB and Bcl-2/Bax pathway. Toxicology Mechanisms and Methods, 31 (9), 644-654.
  • Aslan, A., Gok, O. and Erman, O., 2017. The protective effect of kiwi fruit extract against to chromium effect on protein expression in Saccharomyces cerevisiae. Progress in Nutrition, 19 (4), 472-478.
  • Aslan, A., Gok, O., Beyaz, S., Agca, C.A., Erman, O. and Zerek, A., 2020d. Ellagic acid prevents kidney injury and oxidative damage via regulation of Nrf-2/NF-κB signaling in carbon tetrachloride induced rats. Molecular Biology Reports, 47 (10), 7959-7970.
  • Aslan, A., Gok, O., Beyaz, S., Arslan, E., Erman, O. and Agca, C.A., 2020c. The preventive effect of ellagic acid on brain damage in rats via regulating of Nrf‐2, NF‐kB and apoptotic pathway. Journal of Food Biochemistry, 44 (6), e13217.
  • Aslan, A., Gok, O., Erman, O. and Kuloglu, T., 2018. Ellagic acid impedes carbontetrachloride-induced liver damage in rats through suppression of NF-kB, Bcl-2 and regulating Nrf-2 and caspase pathway. Biomedicine & Pharmacotherapy, 105, 662-669.
  • Aslan, A., Gök, Ö. and Beyaz, S., 2019b. Üzüm çekirdeği ekstraktının Saccharomyces cerevisiae’de oluşturulan hidrojen peroksit hasarına karşı koruyucu etkisi. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9 (4), 2216-2224.
  • Bagherian, T., Tackallou, S.H. and Mohammadgholi, A., 2021. Quantitative measurement of Bax and Bcl2 genes and protein expression in MCF7 cell-line when treated by Aloe vera extract. Gene Reports, 23, 101123.
  • Belda, I., Ruiz, J., Santos, A., Van Wyk, N. and Pretorius, I.S., 2019. Saccharomyces cerevisiae. Trends Genetics, 35, 956-7.
  • Beyaz, S., Aslan, A., Gok, O., Uslu, H., Agca, C.A. and Ozercan, I.H., 2022. In vivo, in vitro and in silico anticancer investigation of fullerene C60 on DMBA induced breast cancer in rats. Life Sciences, 120281.
  • Beyaz, S., Dalkılıç, L.K., Gök, Ö. ve Aslan A. 2020. Saccharomyces cerevisiae’de hidrojen peroksit ile oluşturulan oksidatif hasara karşı karadut (Morus nigra L.) ve kızılcık (Cornus mas L.)’ın bazı moleküler biyolojik ve biyokimyasal parametreler üzerine etkisi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 9 (3), 1134-1144.
  • Beyaz, S., Gok, O. and Aslan, A., 2021a. The determination of the effect of Curcumin on Saccharomyces cerevisiae totally protein expression changes and cell growth. Progress in Nutrition, 23 (1), 1-10.
  • Beyaz, S., Gok, O., Can, M.I. and Aslan, A., 2021b. The protective effects of epigallocatechin-3-gallate (EGCG) on hydrogen peroxide-induced oxidative damages in Saccharomyces cerevisiae. Progress in Nutrition, 23 (2), 1-11.
  • Erol, C., 2020. Akut romatizmal ateşli hastalarda serum malondialdehit asit, superoksit dismutaz, katalaz, redükte glutatyon ve glutatyon peroksidaz aktivitelerinin incelenmesi. Uzmanlık Tezi, Van Yüzüncü Yıl Üniversitesi, Van, 114.
  • Gao, Y., Kuok, K. I., Jin, Y. and Wang, R., 2019. Biomedical applications of Aloe vera. Critical Reviews in Food Science and Nutrition, 59 (1), 244-256.
  • Gok, O., Beyaz, S. and Aslan, A., 2021b. Biological and oxidative effect of ellagic acid on Saccharomyces cerevisiae: A new way for culture developing. Brazilian Archives of Biology and Technology, 64, 1-11.
  • Gok, O., Beyaz, S., Erman, F. and Aslan, A., 2021a. Does persimmon leaf have a protective effect against oxidative damage caused by chromium in Saccharomyces cerevisiae?. Progress in Nutrition, 23 (2), 1-8.
  • Gokce, Z., 2020. The protective effect of Pistacia vera L.(Pistachio) against to carbon tetrachloride (CCl4)-induced damage in Saccharomyces cerevisiae. Progress in Nutrition, 22 (4), e2020077.
  • Guo, X. and Mei, N., 2016. Aloe vera: A review of toxicity and adverse clinical effects. Journal of Environmental Science and Health, Part C, 34 (2), 77-96.
  • Hassanshahi, N., Masoumi, S. J., Mehrabani, D., Hashemi, S.S. and Zare, M., 2020. The healing effect of aloe vera gel on acetic acid-ınduced ulcerative colitis in rat. Middle East Journal of Digestive Diseases, 12 (3), 154.
  • Hes, M., Dziedzic, K., Górecka, D., Jędrusek-Golińska, A. and Gujska, E., 2019. Aloe vera (L.) webb.: Natural sources of antioxidants–a review. Plant Foods for Human Nutrition, 74 (3), 255-265.
  • Laemmli, U.K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680-685.
  • Mapuskara, K.A., Wenb, H., Holandac, D.G., Rastogic, P., Steinbachb, E., Hanb, R., Colemand, M.C., Attanasioe, M., Rileyf, D.P., Spitza, D.R., Allena, B.G. and Orozco, D.Z., 2019. Persistent increase in mitochondrial superoxide mediates cisplatin-induced chronic kidney disease, Redox Biology, 20, 98-106.
  • Oliveira, A.C.L., Tabrez, S., Shakil, S., Khan, M.I., Asghar, M.N., Matias, B.D., Silva Batista, J.M.A., Rosal, M.M., Fulgencio de Lima, M.M.D., Gomes, S.B.R.F., Carvalho, R.M., Moraes, G.P., Barros de Alencar, M.V.O., Islam, M.T. and Melo-Cavalcante, A.A.C., 2018. Mutagenic, antioxidant and wound healing properties of aloe vera. Journal of Ethnopharmacology, 227, 191-197.
  • Saad, F., Mohamed, A.L., Mosaad, M., Othman, H.A. and Hassabo, A.G., 2021. Enhancing the rheological properties of aloe vera polysaccharide gel for use as an eco-friendly thickening agent in textile printing paste. Carbohydrate Polymer Technologies and Applications, 2, 100132.
  • Shi, G., Jiang, H., Feng, J., Zheng, X., Zhang, D., Jiang, C. And Zhang, J., 2021. Aloe vera mitigates dextran sulfate sodium-induced rat ulcerative colitis by potentiating colon mucus barrier. Journal of Ethnopharmacology, 279, 114108.
  • Teplicki, E., Ma, Q., Castillo, D.E., Zarei, M., Hustad, A.P., Chen, J. and Li, J., 2018. The effects of aloe vera on wound healing in cell proliferation, migration, and viability. Wounds: A compendium of clinical Research and Practice, 30 (9), 263-268.
  • Todorova, T., Miteva, D. and Chankova, S., 2019. DNA susceptibility of Saccharomyces cerevisiae to Zeocin depends on the growth phase. International Microbiology, 22 (4), 419-428.

Aloe vera’nın Saccharomyces cerevisae Gelişimi Üzerine Etkisinin Moleküler Biyolojik Yönden Araştırılması

Year 2022, Volume: 22 Issue: 4, 703 - 710, 31.08.2022
https://doi.org/10.35414/akufemubid.1070236

Abstract

Aloe vera (A. vera) tropikal, kuraklığa dayanıklı bir sukulent bir bitkidir. A. vera bitkisi, çeşitli gıdalarda besin takviyesi olarak ve kozmetik ürünlerinde bir bileşen olarak kullanılmaktadır. Anti-inflamatuar, anti-kanser, anti-oksidan, anti-diyabetik ve yara iyileşmesi gibi biyolojik aktivitelere sahiptir. Bu yüzden çalışmamızda A. vera jelinin sisplatin (Cis) kaynaklı Saccharomyces cerevisiae (S.cerevisiae) kültüründe oksidatif hasar üzerindeki etkisi incelenmiştir. Çalışmamızdaki gruplarımız; Grup (1): Kontrol grubu; Grup (2): A. vera Grubu (%10); Grup (3): Cis Grubu (15 mM); Grup (4): A. vera (% 10) + Cis (15 mM) Grubu. Hücre gelişim ölçümleri, lipit peroksidasyonu malondialdehit (MDA) analizleri, glutatyon (GSH) seviyeleri ve katalaz (CAT) aktiviteleri spektrofotometre ile tespit edilmiştir. Total protein değişiklikleri SDS-PAGE elektroforezi ile belirlenmiş ve Bradford metodu ile hesaplanmıştır. Elde edilen sonuçlara göre; S.cerevisiae kültürlerine ilave edilen A. vera jel hücre gelişimini (1, 3, 5 ve 24 saat), total protein sentezini (24 saat), GSH seviyelerini (24 saat) ve CAT aktivitelerini (24 saat) arttırdığı, MDA düzeyini (24 saat) azalttığı tespit edilmiştir. Bu sonuçlar, A. vera jelinin S. cerevisiae kültüründe oksidatif hasarı azalttığını, protein sentezini teşvik ettiğini ve hücre büyümesini arttırmak için koruyucu bir etkiye sahip olduğunu göstermektedir.

References

  • Alsuhaibani, A.M.A., 2018. Effect of Nigella Sativa against cisplatin induced nephrotoxicity in rats. Italian Journal of Food Safety, 7, 7242.
  • Aslan, A., Beyaz, S. ve Gök, Ö., 2019a. Domates ekstraktının Saccharomyces cerevisiae’de oluşturulan krom hasarına karşı koruyucu etkisi. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 12 (2), 1048-1055.
  • Aslan, A., Beyaz, S., Gok, O. and Erman, O., 2020b. The effect of ellagic acid on caspase-3/bcl-2/Nrf-2/NF-kB/TNF-α/COX-2 gene expression product apoptosis pathway: a new approach for muscle damage therapy. Molecular Biology Reports, 47 (4), 2573-2582.
  • Aslan, A., Beyaz, S., Gok, O., Can, M.I., Erman, F. and Erman, O. 2021a. The impact of ellagic acid on some apoptotic gene expressions: a new perspective for the regulation of pancreatic Nrf-2/NF-κB and Akt/VEGF signaling in CCl4-induced pancreas damage in rats. Immunopharmacology and Immunotoxicology, 43 (2), 145-152.
  • Aslan, A., Beyaz, S., Gok, O., Can, M.I., Parlak, G., Ozercan, I.H. and Gundogdu, R., 2021b. Royal jelly abrogates flouride-induced oxidative damage in rat heart tissue by activating of the Nrf-2/NF-κB and Bcl-2/Bax pathway. Toxicology Mechanisms and Methods, 31 (9), 644-654.
  • Aslan, A., Gok, O. and Erman, O., 2017. The protective effect of kiwi fruit extract against to chromium effect on protein expression in Saccharomyces cerevisiae. Progress in Nutrition, 19 (4), 472-478.
  • Aslan, A., Gok, O., Beyaz, S., Agca, C.A., Erman, O. and Zerek, A., 2020d. Ellagic acid prevents kidney injury and oxidative damage via regulation of Nrf-2/NF-κB signaling in carbon tetrachloride induced rats. Molecular Biology Reports, 47 (10), 7959-7970.
  • Aslan, A., Gok, O., Beyaz, S., Arslan, E., Erman, O. and Agca, C.A., 2020c. The preventive effect of ellagic acid on brain damage in rats via regulating of Nrf‐2, NF‐kB and apoptotic pathway. Journal of Food Biochemistry, 44 (6), e13217.
  • Aslan, A., Gok, O., Erman, O. and Kuloglu, T., 2018. Ellagic acid impedes carbontetrachloride-induced liver damage in rats through suppression of NF-kB, Bcl-2 and regulating Nrf-2 and caspase pathway. Biomedicine & Pharmacotherapy, 105, 662-669.
  • Aslan, A., Gök, Ö. and Beyaz, S., 2019b. Üzüm çekirdeği ekstraktının Saccharomyces cerevisiae’de oluşturulan hidrojen peroksit hasarına karşı koruyucu etkisi. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9 (4), 2216-2224.
  • Bagherian, T., Tackallou, S.H. and Mohammadgholi, A., 2021. Quantitative measurement of Bax and Bcl2 genes and protein expression in MCF7 cell-line when treated by Aloe vera extract. Gene Reports, 23, 101123.
  • Belda, I., Ruiz, J., Santos, A., Van Wyk, N. and Pretorius, I.S., 2019. Saccharomyces cerevisiae. Trends Genetics, 35, 956-7.
  • Beyaz, S., Aslan, A., Gok, O., Uslu, H., Agca, C.A. and Ozercan, I.H., 2022. In vivo, in vitro and in silico anticancer investigation of fullerene C60 on DMBA induced breast cancer in rats. Life Sciences, 120281.
  • Beyaz, S., Dalkılıç, L.K., Gök, Ö. ve Aslan A. 2020. Saccharomyces cerevisiae’de hidrojen peroksit ile oluşturulan oksidatif hasara karşı karadut (Morus nigra L.) ve kızılcık (Cornus mas L.)’ın bazı moleküler biyolojik ve biyokimyasal parametreler üzerine etkisi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 9 (3), 1134-1144.
  • Beyaz, S., Gok, O. and Aslan, A., 2021a. The determination of the effect of Curcumin on Saccharomyces cerevisiae totally protein expression changes and cell growth. Progress in Nutrition, 23 (1), 1-10.
  • Beyaz, S., Gok, O., Can, M.I. and Aslan, A., 2021b. The protective effects of epigallocatechin-3-gallate (EGCG) on hydrogen peroxide-induced oxidative damages in Saccharomyces cerevisiae. Progress in Nutrition, 23 (2), 1-11.
  • Erol, C., 2020. Akut romatizmal ateşli hastalarda serum malondialdehit asit, superoksit dismutaz, katalaz, redükte glutatyon ve glutatyon peroksidaz aktivitelerinin incelenmesi. Uzmanlık Tezi, Van Yüzüncü Yıl Üniversitesi, Van, 114.
  • Gao, Y., Kuok, K. I., Jin, Y. and Wang, R., 2019. Biomedical applications of Aloe vera. Critical Reviews in Food Science and Nutrition, 59 (1), 244-256.
  • Gok, O., Beyaz, S. and Aslan, A., 2021b. Biological and oxidative effect of ellagic acid on Saccharomyces cerevisiae: A new way for culture developing. Brazilian Archives of Biology and Technology, 64, 1-11.
  • Gok, O., Beyaz, S., Erman, F. and Aslan, A., 2021a. Does persimmon leaf have a protective effect against oxidative damage caused by chromium in Saccharomyces cerevisiae?. Progress in Nutrition, 23 (2), 1-8.
  • Gokce, Z., 2020. The protective effect of Pistacia vera L.(Pistachio) against to carbon tetrachloride (CCl4)-induced damage in Saccharomyces cerevisiae. Progress in Nutrition, 22 (4), e2020077.
  • Guo, X. and Mei, N., 2016. Aloe vera: A review of toxicity and adverse clinical effects. Journal of Environmental Science and Health, Part C, 34 (2), 77-96.
  • Hassanshahi, N., Masoumi, S. J., Mehrabani, D., Hashemi, S.S. and Zare, M., 2020. The healing effect of aloe vera gel on acetic acid-ınduced ulcerative colitis in rat. Middle East Journal of Digestive Diseases, 12 (3), 154.
  • Hes, M., Dziedzic, K., Górecka, D., Jędrusek-Golińska, A. and Gujska, E., 2019. Aloe vera (L.) webb.: Natural sources of antioxidants–a review. Plant Foods for Human Nutrition, 74 (3), 255-265.
  • Laemmli, U.K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680-685.
  • Mapuskara, K.A., Wenb, H., Holandac, D.G., Rastogic, P., Steinbachb, E., Hanb, R., Colemand, M.C., Attanasioe, M., Rileyf, D.P., Spitza, D.R., Allena, B.G. and Orozco, D.Z., 2019. Persistent increase in mitochondrial superoxide mediates cisplatin-induced chronic kidney disease, Redox Biology, 20, 98-106.
  • Oliveira, A.C.L., Tabrez, S., Shakil, S., Khan, M.I., Asghar, M.N., Matias, B.D., Silva Batista, J.M.A., Rosal, M.M., Fulgencio de Lima, M.M.D., Gomes, S.B.R.F., Carvalho, R.M., Moraes, G.P., Barros de Alencar, M.V.O., Islam, M.T. and Melo-Cavalcante, A.A.C., 2018. Mutagenic, antioxidant and wound healing properties of aloe vera. Journal of Ethnopharmacology, 227, 191-197.
  • Saad, F., Mohamed, A.L., Mosaad, M., Othman, H.A. and Hassabo, A.G., 2021. Enhancing the rheological properties of aloe vera polysaccharide gel for use as an eco-friendly thickening agent in textile printing paste. Carbohydrate Polymer Technologies and Applications, 2, 100132.
  • Shi, G., Jiang, H., Feng, J., Zheng, X., Zhang, D., Jiang, C. And Zhang, J., 2021. Aloe vera mitigates dextran sulfate sodium-induced rat ulcerative colitis by potentiating colon mucus barrier. Journal of Ethnopharmacology, 279, 114108.
  • Teplicki, E., Ma, Q., Castillo, D.E., Zarei, M., Hustad, A.P., Chen, J. and Li, J., 2018. The effects of aloe vera on wound healing in cell proliferation, migration, and viability. Wounds: A compendium of clinical Research and Practice, 30 (9), 263-268.
  • Todorova, T., Miteva, D. and Chankova, S., 2019. DNA susceptibility of Saccharomyces cerevisiae to Zeocin depends on the growth phase. International Microbiology, 22 (4), 419-428.
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Structural Biology
Journal Section Articles
Authors

Özlem Gök 0000-0001-8521-6369

Seda Beyaz 0000-0003-0436-8112

Abdullah Aslan 0000-0002-6243-4221

Publication Date August 31, 2022
Submission Date February 8, 2022
Published in Issue Year 2022 Volume: 22 Issue: 4

Cite

APA Gök, Ö., Beyaz, S., & Aslan, A. (2022). Aloe vera’nın Saccharomyces cerevisae Gelişimi Üzerine Etkisinin Moleküler Biyolojik Yönden Araştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 22(4), 703-710. https://doi.org/10.35414/akufemubid.1070236
AMA Gök Ö, Beyaz S, Aslan A. Aloe vera’nın Saccharomyces cerevisae Gelişimi Üzerine Etkisinin Moleküler Biyolojik Yönden Araştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. August 2022;22(4):703-710. doi:10.35414/akufemubid.1070236
Chicago Gök, Özlem, Seda Beyaz, and Abdullah Aslan. “Aloe vera’nın Saccharomyces Cerevisae Gelişimi Üzerine Etkisinin Moleküler Biyolojik Yönden Araştırılması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22, no. 4 (August 2022): 703-10. https://doi.org/10.35414/akufemubid.1070236.
EndNote Gök Ö, Beyaz S, Aslan A (August 1, 2022) Aloe vera’nın Saccharomyces cerevisae Gelişimi Üzerine Etkisinin Moleküler Biyolojik Yönden Araştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22 4 703–710.
IEEE Ö. Gök, S. Beyaz, and A. Aslan, “Aloe vera’nın Saccharomyces cerevisae Gelişimi Üzerine Etkisinin Moleküler Biyolojik Yönden Araştırılması”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 22, no. 4, pp. 703–710, 2022, doi: 10.35414/akufemubid.1070236.
ISNAD Gök, Özlem et al. “Aloe vera’nın Saccharomyces Cerevisae Gelişimi Üzerine Etkisinin Moleküler Biyolojik Yönden Araştırılması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22/4 (August 2022), 703-710. https://doi.org/10.35414/akufemubid.1070236.
JAMA Gök Ö, Beyaz S, Aslan A. Aloe vera’nın Saccharomyces cerevisae Gelişimi Üzerine Etkisinin Moleküler Biyolojik Yönden Araştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22:703–710.
MLA Gök, Özlem et al. “Aloe vera’nın Saccharomyces Cerevisae Gelişimi Üzerine Etkisinin Moleküler Biyolojik Yönden Araştırılması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 22, no. 4, 2022, pp. 703-10, doi:10.35414/akufemubid.1070236.
Vancouver Gök Ö, Beyaz S, Aslan A. Aloe vera’nın Saccharomyces cerevisae Gelişimi Üzerine Etkisinin Moleküler Biyolojik Yönden Araştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22(4):703-10.