Research Article
BibTex RIS Cite

Investigation of the Effects of Fly Ash, Fine Sand and Expanded Perlite on the Properties on Foam Concrete

Year 2022, Volume: 22 Issue: 6, 1425 - 1433, 28.12.2022
https://doi.org/10.35414/akufemubid.1183957

Abstract

The relevance of concrete is growing in the modern world due to population growth and technological advancement. The necessity for specialty concrete arises from the various usage regions in the constructions. Foam concrete is one of the most useful varieties of special concrete because it offers insulation from heat and sound. The mechanical and physical properties of foam concrete are influenced by a variety of elements. The characteristics of foam concrete are substantially impacted by the mineral admixtures. The physical and mechanical impacts of fly ash (FA), fine sand, and expanded perlite (EP) admixtures on foam concrete were examined in this experimental investigation. On samples made from fly ash, sand, and expanded perlite, 15 various ratios of foam concrete mixtures were tested physically and mechanically (compressive strength, Marsh cone, ultrasonic pulse velocity, and thermal conductivity), as well as microstructurally (SEM). The foam concrete samples' compressive strength values were above 1.5 MPa, which is in compliance with TS 13655. According to the Marsh cone test, the flow duration of all the samples decreased as the weight of the fresh mortar increased. In all samples, the density increased along with the ultrasonic pulse velocity.

Supporting Institution

Afyon Kocatepe Üniversitesi BAP Birimi

Project Number

[Project no: 19.FEN BİL.25].

Thanks

Acknowledgement This study was supported by Afyon Kocatepe University, Scientific Research Projects Coordinatorship (BAP) [Project no: 19.FEN BİL.25].

References

  • Aldridge, D. and Ansell, T., 2001. Foamed concrete: production and equipment design, properties, applications and potential. Properties, Applications and Latest Technological Developments, Loughborough University: London, UK, 1-7.
  • Amran, Y.M., Farzadnia, N. and Ali, A.A., 2015. Properties and applications of foamed concrete; a review. Construction and Building Materials, 101: 990-1005. Arulmoly, B., Konthesingha, C. and Nanayakkara, A., 2021. Performance evaluation of cement mortar produced with manufactured sand and offshore sand as alternatives for river sand. Construction and Building Materials, 297, 123784.
  • ASTM C 618, 1991. Specification for Fly Ash and Raw or Calcined Natural Pozzolan for use as a mineral admixture in Portland Cement Concrete. ASTM.
  • Awana, M. and Kumar, C., 2017. Cellular Lightweight Concrete. International Conference on Emerging Trends on Engineering, Technology, Science and Management, Noida, India, 241-246.
  • Bentz, D. P., Peltz, M. A., Duran-Herrera, A., Valdez, P. and Juarez, C. A., 2011. Thermal properties of high-volume fly ash mortars and concretes. Journal of Building Physics, 34(3), 263-275.
  • Bogas, J. A., Gomes, M. G. and Gomes, A., 2013. Compressive strength evaluation of structural lightweight concrete by non-destructive ultrasonic pulse velocity method. Ultrasonics, 53(5), 962-972.
  • Bulut, Ü., 2010. Use of perlite as a pozzolanic addition in lime mortars. Gazi University Journal of Science, 23(3), 305-313.
  • Chen, Y. G., Guan, L. L., Zhu, S. Y. and Chen, W. J., 2021. Foamed concrete containing fly ash: Properties and application to backfilling. Construction and Building Materials, 273, 121685.
  • De Rose, L. and Morris, J., 1999. The influence of mix design on the properties of microcellular concrete. Thomas Telford: London, UK, 185-197.
  • Demir, İ., Başpınar, M.S. and Kahraman, E., 2019. Köpük Beton Üretiminde Uygun Akışkanlaştırıcı/Priz Hızlandırıcı Katkı Türünün Araştırılması. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 19(2), 390-400.
  • Demirboğa, R. and Gül, R., 2003. The effects of expanded perlite aggregate, silica fume and fly ash on the thermal conductivity of lightweight concrete. Cement and concrete research, 33(5), 723-727.
  • Demirboğa, R., Örüng, İ. and Gül, R., 2001. Effects of expanded perlite aggregate and mineral admixtures on the compressive strength of low-density concretes. Cement and Concrete Research, 31(11), 1627-1632.
  • Doğan, C. and Demir, İ. 2021. The Effect of Marble Powder and Fly Ash on Mechanical Properties of Cement Mortars. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 21(5), 1137-1145.
  • Ekinci, D., 2014. Türkiye’de Köpük Beton. Yapı Teknolojisi ve Malzeme, Mimarlık Dergisi, 376.
  • Falliano, D., Restuccia, L., Ferro, G. A. and Gugliandolo, E., 2020. Strategies to increase the compressive strength of ultra-lightweight foamed concrete. Procedia Structural Integrity, 28, 1673-1678.
  • Feng, P., Garboczi, E. J., Miao, C. and Bullard, J. W. 2015. Microstructural origins of cement paste degradation by external sulfate attack. Construction and building materials, 96, 391-403.
  • Ghosh, A., Ghosh, A. and Neogi, S., 2018. Reuse of fly ash and bottom ash in mortars with improved thermal conductivity performance for buildings. Heliyon, 4(11), e00934.
  • Gopalakrishnan, R., Sounthararajan, V. M., Mohan, A. and Tholkapiyan, M., 2020. The strength and durability of fly ash and quarry dust light weight foam concrete. Materials Today: Proceedings, 22, 1117-1124.
  • Güçlüer, K., Ünal, O., Demir, İ. and Baspinar, M., 2015. An investigation of steam curing pressure effect on pozzolan additive autoclaved aerated concrete. TEM Journal, 4(1), 78-82.
  • Huang, Z., Zhang, T. and Wen, Z., 2015. Proportioning and characterization of portland cementbased ultra-lightweight foam concretes. Construction & Building Materials, 79, 390-396.
  • Ibrahim, M., Ahmad, A., Barry, M. S., Alhems, L. M. and Mohamed Suhoothi, A.C., 2020. Durability of structural lightweight concrete containing expanded perlite aggregate. International Journal of Concrete Structures and Materials, 14(1), 1-15.
  • Jiang, J., Lu, Z., Niu, Y., Li, J. and Zhang, Y., 2016. Study on the preparation and properties of high-porosity foamed concretes based on ordinary Portland cement. Materials & Design, 92, 949-959.
  • Jones, M.R. and McCarthy, A., 2005. Preliminary views on the potential of foamed concrete as a structural material. Magazine of Concrete Research, 57, 21-31.
  • Jones, M.R., McCarthy, A. and Dhir, R.K., 2005. Recycled and secondary aggregate in foamed concrete. WRAP Research Report, The Waste and Resources Action Programme. Banbury, Oxon: London, UK, OX16 0AH.
  • Jones, M.R., McCarthy, M.J. and McCarthy, A., 2003. Moving fly ash utilization in concrete forward: a UK perspective. 2003 International Ash Utilization Symposium, Centre for Applied Energy Research. University of Kentucky, UK, 20-22.
  • Kearsley, E.P. and Wainwright, P.J., 2001. The effect of high fly ash content on the compressive strength of foamed concrete. Cement and Concrete Research, 31, 105-12.
  • Kearsley, E.P., 1996. The use of foamed concrete for affordable development in third world countries. Appropriate Concrete Technology. London: E&FN Spon, 233-243.
  • Kunther, W., Lothenbach, B. and Scrivener, K. L. 2013. On the relevance of volume increase for the length changes of mortar bars in sulfate solutions. Cement and Concrete Research, 46, 23-29.
  • Kurugol, S., 2012. Correlation of Ultrasound Pulse Velocity with Pozzolanic Activity and Mechanical Properties in Lime-Calcined Clay Mortars. Gazi University Journal of Science, 25(1), 219-233.
  • Kuzielová, E., Pach, L. and Palou, M., 2016. Effect of activated foaming agent on the foam concrete properties. Construction and Building Materials, 12, 998-1004.
  • Lafhaj, Z., Goueygou, M., Djerbi, A. and Kaczmarek, M., 2006. Correlation between porosity, permeability and ultrasonic parameters of mortar with variable water/cement ratio and water content. Cement and Concrete Research, 36(4), 625-633.
  • Lanzón, M. and García-Ruiz, P. A., 2008. Lightweight cement mortars: Advantages and inconveniences of expanded perlite and its influence on fresh and hardened state and durability. Construction and Building Materials, 22(8), 1798-1806.
  • Lee, Y.L. and Hung, Y.T., 2005. Exploitation of solid wastes with foamed concrete. Use of Foamed Concrete in Construction, London: Thomas Telford, 15-22.
  • Lian, C., Zhuge, Y. and Beecham, S., 2011. The relationship between porosity and strength for porous concrete. Construction and Building Materials, 25(11), 4294-4298.
  • Liu, T., Shi, G., Li, G. and Wang, Z., 2019. Lightweight foamed concrete with foam agent addition. Materials Science and Engineering, 490(3), 032033.
  • Lubej, S., Anžel, I., Jelušič, P., Kosec, L. and Ivanič, A., 2016. The effect of delayed ettringite formation on fine grained aerated concrete mechanical properties. Science and Engineering of Composite Materials, 23(3), 325-334.
  • Mendes, J. C., Barreto, R. R., Costa, L. C. B., Brigolini, G. J. and Peixoto, R. A. F., 2020. Correlation between ultrasonic pulse velocity and thermal conductivity of cement-based composites. Journal of Nondestructive Evaluation, 39(2), 1-10.
  • Nambiar, E. K. and Ramamurthy, K., 2006. Influence of filler type on the properties of foam concrete. Cement and concrete composites, 28(5), 475-480.
  • Nambiar, E.K. and Ramamurthy, K., 2007. Air‐void characterisation of foam concrete. Cement and Concrete Research, 37(2), 221-230.
  • Narayanan, J.S. and Ramamurthy, K., 2012. Identification of set-accelerator for enhancing the productivity of foam concrete block manufacture. Construction and Building Materials, 37, 144-152.
  • Ozvan, A., Tapan, M., Erik, O., Efe, T. and Depci, T., 2012. Compressive strength of scoria added Portland cement concretes. Gazi University Journal of Science, 25(3), 769-775.
  • Papayianni, I. and Milud, I.A., 2005. Production Of Foamed Concrete with High Calcium Fly Ash. International Conference on the Use of Foamed Concrete in Construction, University of Dundee, Scotland, 23-28.
  • Pickford, C. and Crompton, S., 1996. Foam concrete in bridge construction. Concrete, 1996, 14-15.
  • Regan, P.E. and Arasteh, A.R., 1990. Lightweight aggregate foamed concrete. Designated Structural Engineer, 68(9), 167-173.
  • Sengul, O., Azizi, S., Karaosmanoglu, F. and Tasdemir, M. A., 2011. Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete. Energy and Buildings, 43(2-3), 671-676.
  • Sharook, S., Sathyan, D. and Madhavan, M. K., 2020. Thermo-mechanical and durability properties of expanded perlite aggregate foamed concrete. Proceedings of the Institution of Civil Engineers-Construction Materials, 1-9.
  • Sychova, A., Svatovskaya, L. and Sychov, M., 2019. The Improvement of the Quality of Construction Foam and Non-Autoclave Foam Concrete on Its Basis through the Introduction of Nanosize Additives. In Foams-Emerging Technologies. IntechOpen.
  • TS 13655, 2014. Specification for masonry units - Foamed concrete masonry units. Ankara, Turkey: Turkish Standard Institute.
  • TS 825, 2008. Thermal insulation requirements for buildings. Ankara, Turkey: Turkish Standard Institute.
  • TS EN 197-1, 2002. Cement-part 1: Compositions and conformity criteria for common cements. Ankara, Turkey: Turkish Standard Institute.
  • TS EN 934-2, 2002. Admixtures for concrete, mortar and grout. Ankara, Turkey: Turkish Standard Institute.
  • Turner, M., 2001. Fast set foamed concrete for same day reinstatement of openings in highways. Properties, Applications and Latest Technological Developments, Loughborough University: Leicestershire, UK, 12-18.
  • Wee, T.H., Babu, D.S., Tamilselvan, T. and Lin, H.S., 2006. Air-void systems of foamed concrete and its effect on mechanical properties. ACI Materials Journal, 103(1), 45-52.
  • Wei, S., Yıqıang, C., Yunshang, Z. and Jones, M.R., 2013. Characterization and simulation of microstructure and thermal properties of foam concrete. Construction and Building Materials, 47, 1278-1291.
  • Wongkeo, W., Thongsanitgarn, P., Pimraksa, K. and Chaipanich, A., 2012. Compressive strength, flexural strength and thermal conductivity of autoclaved concrete block made using bottom ash as cement replacement materials. Materials & Design, 35, 434-439.
  • Xiong, H., Yuan, K., Xu, J. and Wen, M., 2021. Pore structure, adsorption, and water absorption of expanded perlite mortar in external thermal insulation composite system during aging. Cement and Concrete Composites, 116, 103900.

Uçucu Kül, İnce Kum ve Genleştirilmiş Perlitin Köpük Beton Özelliklerine Etkisinin Araştırılması

Year 2022, Volume: 22 Issue: 6, 1425 - 1433, 28.12.2022
https://doi.org/10.35414/akufemubid.1183957

Abstract

Günümüzde nüfus artışı ve teknolojinin gelişmesi betonun önemini artırmaktadır. Yapılarda farklı kullanım alanları özel beton ihtiyacını da beraberinde getirmektedir. Hafiflik, ısı ve ses yalıtımı sağlayan köpük beton, özel betonlar arasında en işlevsel beton türlerinden biridir. Köpük betonun fiziksel ve mekanik özelliklerini birçok faktör etkiler. Mineral katkılar köpük betonun özelliklerini önemli ölçüde etkiler. Bu deneysel çalışmada, uçucu kül (FA), ince kum ve genleştirilmiş perlit (EP) katkılarının köpük beton üzerindeki fiziksel ve mekanik etkileri araştırılmıştır. Uçucu kül, kum ve genleştirilmiş perlit kullanılarak elde edilen 15 farklı oranlı köpük beton karışımları üzerinde fiziksel ve mekanik testler (basınç dayanımı, Marsh konisi, ultrasonik darbe hızı ve termal iletkenlik) ve mikroyapı (SEM) incelemeleri yapılmıştır. Köpük beton numunelerinin basınç dayanım değerleri TS 13655 standardını karşılayan 1.5 MPa'nın üzerindedir. Marsh koni testi, tüm numunelerde taze harç ağırlığının artmasıyla numunelerin akış süresinin azalmasına neden olmuştur. Ultrasonik darbe hızı, tüm numunelerde artan yoğunlukla artmıştır. Uçucu kül ile üretilen köpük beton numunelerinin ince kum ile üretilen numunelere göre daha düşük iletkenliğe sahip olduğu sonucuna varılmıştır. Ayrıca uçucu kül puzolanik özellikler göstererek dayanım geliştirmede etkili olmuştur. Köpük betondaki uçucu kül, ince kum ve genleşmiş perlit katkıları, köpük betonun fiziksel ve mekanik özelliklerini iyileştirmiştir.

Project Number

[Project no: 19.FEN BİL.25].

References

  • Aldridge, D. and Ansell, T., 2001. Foamed concrete: production and equipment design, properties, applications and potential. Properties, Applications and Latest Technological Developments, Loughborough University: London, UK, 1-7.
  • Amran, Y.M., Farzadnia, N. and Ali, A.A., 2015. Properties and applications of foamed concrete; a review. Construction and Building Materials, 101: 990-1005. Arulmoly, B., Konthesingha, C. and Nanayakkara, A., 2021. Performance evaluation of cement mortar produced with manufactured sand and offshore sand as alternatives for river sand. Construction and Building Materials, 297, 123784.
  • ASTM C 618, 1991. Specification for Fly Ash and Raw or Calcined Natural Pozzolan for use as a mineral admixture in Portland Cement Concrete. ASTM.
  • Awana, M. and Kumar, C., 2017. Cellular Lightweight Concrete. International Conference on Emerging Trends on Engineering, Technology, Science and Management, Noida, India, 241-246.
  • Bentz, D. P., Peltz, M. A., Duran-Herrera, A., Valdez, P. and Juarez, C. A., 2011. Thermal properties of high-volume fly ash mortars and concretes. Journal of Building Physics, 34(3), 263-275.
  • Bogas, J. A., Gomes, M. G. and Gomes, A., 2013. Compressive strength evaluation of structural lightweight concrete by non-destructive ultrasonic pulse velocity method. Ultrasonics, 53(5), 962-972.
  • Bulut, Ü., 2010. Use of perlite as a pozzolanic addition in lime mortars. Gazi University Journal of Science, 23(3), 305-313.
  • Chen, Y. G., Guan, L. L., Zhu, S. Y. and Chen, W. J., 2021. Foamed concrete containing fly ash: Properties and application to backfilling. Construction and Building Materials, 273, 121685.
  • De Rose, L. and Morris, J., 1999. The influence of mix design on the properties of microcellular concrete. Thomas Telford: London, UK, 185-197.
  • Demir, İ., Başpınar, M.S. and Kahraman, E., 2019. Köpük Beton Üretiminde Uygun Akışkanlaştırıcı/Priz Hızlandırıcı Katkı Türünün Araştırılması. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 19(2), 390-400.
  • Demirboğa, R. and Gül, R., 2003. The effects of expanded perlite aggregate, silica fume and fly ash on the thermal conductivity of lightweight concrete. Cement and concrete research, 33(5), 723-727.
  • Demirboğa, R., Örüng, İ. and Gül, R., 2001. Effects of expanded perlite aggregate and mineral admixtures on the compressive strength of low-density concretes. Cement and Concrete Research, 31(11), 1627-1632.
  • Doğan, C. and Demir, İ. 2021. The Effect of Marble Powder and Fly Ash on Mechanical Properties of Cement Mortars. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 21(5), 1137-1145.
  • Ekinci, D., 2014. Türkiye’de Köpük Beton. Yapı Teknolojisi ve Malzeme, Mimarlık Dergisi, 376.
  • Falliano, D., Restuccia, L., Ferro, G. A. and Gugliandolo, E., 2020. Strategies to increase the compressive strength of ultra-lightweight foamed concrete. Procedia Structural Integrity, 28, 1673-1678.
  • Feng, P., Garboczi, E. J., Miao, C. and Bullard, J. W. 2015. Microstructural origins of cement paste degradation by external sulfate attack. Construction and building materials, 96, 391-403.
  • Ghosh, A., Ghosh, A. and Neogi, S., 2018. Reuse of fly ash and bottom ash in mortars with improved thermal conductivity performance for buildings. Heliyon, 4(11), e00934.
  • Gopalakrishnan, R., Sounthararajan, V. M., Mohan, A. and Tholkapiyan, M., 2020. The strength and durability of fly ash and quarry dust light weight foam concrete. Materials Today: Proceedings, 22, 1117-1124.
  • Güçlüer, K., Ünal, O., Demir, İ. and Baspinar, M., 2015. An investigation of steam curing pressure effect on pozzolan additive autoclaved aerated concrete. TEM Journal, 4(1), 78-82.
  • Huang, Z., Zhang, T. and Wen, Z., 2015. Proportioning and characterization of portland cementbased ultra-lightweight foam concretes. Construction & Building Materials, 79, 390-396.
  • Ibrahim, M., Ahmad, A., Barry, M. S., Alhems, L. M. and Mohamed Suhoothi, A.C., 2020. Durability of structural lightweight concrete containing expanded perlite aggregate. International Journal of Concrete Structures and Materials, 14(1), 1-15.
  • Jiang, J., Lu, Z., Niu, Y., Li, J. and Zhang, Y., 2016. Study on the preparation and properties of high-porosity foamed concretes based on ordinary Portland cement. Materials & Design, 92, 949-959.
  • Jones, M.R. and McCarthy, A., 2005. Preliminary views on the potential of foamed concrete as a structural material. Magazine of Concrete Research, 57, 21-31.
  • Jones, M.R., McCarthy, A. and Dhir, R.K., 2005. Recycled and secondary aggregate in foamed concrete. WRAP Research Report, The Waste and Resources Action Programme. Banbury, Oxon: London, UK, OX16 0AH.
  • Jones, M.R., McCarthy, M.J. and McCarthy, A., 2003. Moving fly ash utilization in concrete forward: a UK perspective. 2003 International Ash Utilization Symposium, Centre for Applied Energy Research. University of Kentucky, UK, 20-22.
  • Kearsley, E.P. and Wainwright, P.J., 2001. The effect of high fly ash content on the compressive strength of foamed concrete. Cement and Concrete Research, 31, 105-12.
  • Kearsley, E.P., 1996. The use of foamed concrete for affordable development in third world countries. Appropriate Concrete Technology. London: E&FN Spon, 233-243.
  • Kunther, W., Lothenbach, B. and Scrivener, K. L. 2013. On the relevance of volume increase for the length changes of mortar bars in sulfate solutions. Cement and Concrete Research, 46, 23-29.
  • Kurugol, S., 2012. Correlation of Ultrasound Pulse Velocity with Pozzolanic Activity and Mechanical Properties in Lime-Calcined Clay Mortars. Gazi University Journal of Science, 25(1), 219-233.
  • Kuzielová, E., Pach, L. and Palou, M., 2016. Effect of activated foaming agent on the foam concrete properties. Construction and Building Materials, 12, 998-1004.
  • Lafhaj, Z., Goueygou, M., Djerbi, A. and Kaczmarek, M., 2006. Correlation between porosity, permeability and ultrasonic parameters of mortar with variable water/cement ratio and water content. Cement and Concrete Research, 36(4), 625-633.
  • Lanzón, M. and García-Ruiz, P. A., 2008. Lightweight cement mortars: Advantages and inconveniences of expanded perlite and its influence on fresh and hardened state and durability. Construction and Building Materials, 22(8), 1798-1806.
  • Lee, Y.L. and Hung, Y.T., 2005. Exploitation of solid wastes with foamed concrete. Use of Foamed Concrete in Construction, London: Thomas Telford, 15-22.
  • Lian, C., Zhuge, Y. and Beecham, S., 2011. The relationship between porosity and strength for porous concrete. Construction and Building Materials, 25(11), 4294-4298.
  • Liu, T., Shi, G., Li, G. and Wang, Z., 2019. Lightweight foamed concrete with foam agent addition. Materials Science and Engineering, 490(3), 032033.
  • Lubej, S., Anžel, I., Jelušič, P., Kosec, L. and Ivanič, A., 2016. The effect of delayed ettringite formation on fine grained aerated concrete mechanical properties. Science and Engineering of Composite Materials, 23(3), 325-334.
  • Mendes, J. C., Barreto, R. R., Costa, L. C. B., Brigolini, G. J. and Peixoto, R. A. F., 2020. Correlation between ultrasonic pulse velocity and thermal conductivity of cement-based composites. Journal of Nondestructive Evaluation, 39(2), 1-10.
  • Nambiar, E. K. and Ramamurthy, K., 2006. Influence of filler type on the properties of foam concrete. Cement and concrete composites, 28(5), 475-480.
  • Nambiar, E.K. and Ramamurthy, K., 2007. Air‐void characterisation of foam concrete. Cement and Concrete Research, 37(2), 221-230.
  • Narayanan, J.S. and Ramamurthy, K., 2012. Identification of set-accelerator for enhancing the productivity of foam concrete block manufacture. Construction and Building Materials, 37, 144-152.
  • Ozvan, A., Tapan, M., Erik, O., Efe, T. and Depci, T., 2012. Compressive strength of scoria added Portland cement concretes. Gazi University Journal of Science, 25(3), 769-775.
  • Papayianni, I. and Milud, I.A., 2005. Production Of Foamed Concrete with High Calcium Fly Ash. International Conference on the Use of Foamed Concrete in Construction, University of Dundee, Scotland, 23-28.
  • Pickford, C. and Crompton, S., 1996. Foam concrete in bridge construction. Concrete, 1996, 14-15.
  • Regan, P.E. and Arasteh, A.R., 1990. Lightweight aggregate foamed concrete. Designated Structural Engineer, 68(9), 167-173.
  • Sengul, O., Azizi, S., Karaosmanoglu, F. and Tasdemir, M. A., 2011. Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete. Energy and Buildings, 43(2-3), 671-676.
  • Sharook, S., Sathyan, D. and Madhavan, M. K., 2020. Thermo-mechanical and durability properties of expanded perlite aggregate foamed concrete. Proceedings of the Institution of Civil Engineers-Construction Materials, 1-9.
  • Sychova, A., Svatovskaya, L. and Sychov, M., 2019. The Improvement of the Quality of Construction Foam and Non-Autoclave Foam Concrete on Its Basis through the Introduction of Nanosize Additives. In Foams-Emerging Technologies. IntechOpen.
  • TS 13655, 2014. Specification for masonry units - Foamed concrete masonry units. Ankara, Turkey: Turkish Standard Institute.
  • TS 825, 2008. Thermal insulation requirements for buildings. Ankara, Turkey: Turkish Standard Institute.
  • TS EN 197-1, 2002. Cement-part 1: Compositions and conformity criteria for common cements. Ankara, Turkey: Turkish Standard Institute.
  • TS EN 934-2, 2002. Admixtures for concrete, mortar and grout. Ankara, Turkey: Turkish Standard Institute.
  • Turner, M., 2001. Fast set foamed concrete for same day reinstatement of openings in highways. Properties, Applications and Latest Technological Developments, Loughborough University: Leicestershire, UK, 12-18.
  • Wee, T.H., Babu, D.S., Tamilselvan, T. and Lin, H.S., 2006. Air-void systems of foamed concrete and its effect on mechanical properties. ACI Materials Journal, 103(1), 45-52.
  • Wei, S., Yıqıang, C., Yunshang, Z. and Jones, M.R., 2013. Characterization and simulation of microstructure and thermal properties of foam concrete. Construction and Building Materials, 47, 1278-1291.
  • Wongkeo, W., Thongsanitgarn, P., Pimraksa, K. and Chaipanich, A., 2012. Compressive strength, flexural strength and thermal conductivity of autoclaved concrete block made using bottom ash as cement replacement materials. Materials & Design, 35, 434-439.
  • Xiong, H., Yuan, K., Xu, J. and Wen, M., 2021. Pore structure, adsorption, and water absorption of expanded perlite mortar in external thermal insulation composite system during aging. Cement and Concrete Composites, 116, 103900.
There are 56 citations in total.

Details

Primary Language English
Subjects Civil Engineering
Journal Section Articles
Authors

İsmail Demir 0000-0001-8493-0309

Mustafa Serhat Başpınar 0000-0003-2086-1935

Cüneyt Doğan 0000-0002-6662-8381

Project Number [Project no: 19.FEN BİL.25].
Early Pub Date December 15, 2022
Publication Date December 28, 2022
Submission Date October 3, 2022
Published in Issue Year 2022 Volume: 22 Issue: 6

Cite

APA Demir, İ., Başpınar, M. S., & Doğan, C. (2022). Investigation of the Effects of Fly Ash, Fine Sand and Expanded Perlite on the Properties on Foam Concrete. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 22(6), 1425-1433. https://doi.org/10.35414/akufemubid.1183957
AMA Demir İ, Başpınar MS, Doğan C. Investigation of the Effects of Fly Ash, Fine Sand and Expanded Perlite on the Properties on Foam Concrete. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. December 2022;22(6):1425-1433. doi:10.35414/akufemubid.1183957
Chicago Demir, İsmail, Mustafa Serhat Başpınar, and Cüneyt Doğan. “Investigation of the Effects of Fly Ash, Fine Sand and Expanded Perlite on the Properties on Foam Concrete”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22, no. 6 (December 2022): 1425-33. https://doi.org/10.35414/akufemubid.1183957.
EndNote Demir İ, Başpınar MS, Doğan C (December 1, 2022) Investigation of the Effects of Fly Ash, Fine Sand and Expanded Perlite on the Properties on Foam Concrete. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22 6 1425–1433.
IEEE İ. Demir, M. S. Başpınar, and C. Doğan, “Investigation of the Effects of Fly Ash, Fine Sand and Expanded Perlite on the Properties on Foam Concrete”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 22, no. 6, pp. 1425–1433, 2022, doi: 10.35414/akufemubid.1183957.
ISNAD Demir, İsmail et al. “Investigation of the Effects of Fly Ash, Fine Sand and Expanded Perlite on the Properties on Foam Concrete”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22/6 (December 2022), 1425-1433. https://doi.org/10.35414/akufemubid.1183957.
JAMA Demir İ, Başpınar MS, Doğan C. Investigation of the Effects of Fly Ash, Fine Sand and Expanded Perlite on the Properties on Foam Concrete. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22:1425–1433.
MLA Demir, İsmail et al. “Investigation of the Effects of Fly Ash, Fine Sand and Expanded Perlite on the Properties on Foam Concrete”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 22, no. 6, 2022, pp. 1425-33, doi:10.35414/akufemubid.1183957.
Vancouver Demir İ, Başpınar MS, Doğan C. Investigation of the Effects of Fly Ash, Fine Sand and Expanded Perlite on the Properties on Foam Concrete. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22(6):1425-33.