Research Article
BibTex RIS Cite

Advanced oxidation process for treatment of water containing mixture of Acid Red 17, Acid Yellow 11, Direct Yellow 12, Direct Blue 86 and Mordant Violet 40 dyes

Year 2023, Volume: 23 Issue: 2, 326 - 335, 03.05.2023
https://doi.org/10.35414/akufemubid.1170648

Abstract

The removal of dyes from wastewater is one of the biggest problems in the textile industry for
both environment and manufacturers. This study examined the possibility of applying ozone
(O3) and O3 in combination with ultraviolet (UV) to treat a mixture of synthetic wastewater
containing five different dyes (Acid Red 17, Acid Yellow 11, Direct Yellow 12, Direct Blue 86
and Mordant Violet 40) for the decolorization efficiency of dyes with different chromophore
and anchor groups. The contact time was studied in a batch reactor under the flow of O3 or
O3 combined with UV to achieve optimal operating conditions. The results showed that the
application of O3 was more effective than UV-assisted ozonation. The advanced oxidation of
each dye in this mixture was compared with the removal of the same dye in the solution
separately. The results proved that there is only a slight difference in the time required to
remove the dye from the mixture and the single dye in the water solution.

Supporting Institution

Science and Technological Development Fund (STDF) of Egypt

Project Number

Project No. CB-4874, CB-22816 and IG-34795

Thanks

The authors would like to thanks financial support from Science and Technological Development Fund (STDF) of Egypt (Project No. CB-4874, CB-22816 and IG-34795).

References

  • Alghamdi, M.M.; El-Zahhar, A.A.; Idris, A.M.; Said, T.O.; Sahlabji, T.; and El Nemr, A. (2019). Synthesis, Characterization and Application of a New Polymeric-Clay-Magnetite Composite Resin for Water Softening. Sep. Pur. Tech., 224: 356–365. https://doi.org/10.1016/j.seppur.2019.05.037
  • Amini, M.; Arami, M.; Mahmoodi, N.M.; and Akbari, A. (2011). Dye removal from colored textile wastewater using acrylic grafted nanomembrane. Desalination, 267: 107–113. ISSN 0011-9164.
  • Arslan, I.; and Balcioglu, I.A. (2000). Effect of common reactive dye auxiliaries on the ozonation of dyehouse effluents containing vinylsulphone and aminochlorotriazine dyes. Desalination, 130: 61-71. ISSN 0011-9164
  • Asiri, H.F.M.; Idris, A.M.; Said, T.O.; Sahlabji, T.; Alghamdi, M.M.; El-Zahhar, A.A.; and El Nemr, A. (2020). Monitoring and health risk assessment of some pesticides and organic pollutants in fruit and vegetables consumed in Asir Region, Saudi Arabia. Fresenius Environ. Bull., 29(1): 615-625.
  • El Nemr A. (Editor) (2012a). Textiles: Types, Uses and Production Methods. Nova Science Publishers, Inc. Hauppauge New York. Hard cover [ISBN: 978-1-62100-239-0], e-book [ISBN: 978-1-62100-284-0], 621pp.
  • El Nemr, A. (2007). Pomegranate husk as an adsorbent in the removal of toxic chromium from wastewater. Chem. Ecol., 23(5): 409-425.
  • El Nemr, A. (2009). Potential of pomegranate husk carbon for Cr(VI) removal from wastewater: kinetic and isotherm studies. J. Hazard. Mater., 161: 132-141.
  • El Nemr, A. (Editor) (2012b). Non-Conventional textile waste water treatment. Nova Science Publishers, Inc. Hauppauge New York. [Hard cover ISBN: 978-1-62100-079-2, e-book ISBN: 978-1-62100-228-4] 267pp.
  • El Nemr, A.; El-Said, G.F.; Khaled, A. (2016). Risk assessment of Organochlorines in molluscs from the Mediterranean and Red Sea coasts (Egypt). Water Environ. Res., 88(4): 325-337. http://dx.doi.org/10.2175/106143016X14504669767977
  • El Nemr, A.; El-Sikaily, A.; Khaled, A. (2010). Modeling of adsorption isotherms of Methylene Blue onto rice husk activated carbon. Egypt. J. Aquat. Res., 36(3): 403-425.
  • El Nemr, A.; Hassaan, M.A.; and Madkour, F.F. (2017). HPLC-MS/MS Mechanistic study of Direct Yellow 12 degradation using Ultraviolet assisted ozone process. J. Water Environ. Nanotech., 3(1): 1-11.
  • El Nemr, A.; Hassaan, M.A.; and Madkour, F.F. (2018). Advanced oxidation process (AOP) for detoxification of acid red 17 dye solution and degradation mechanism, Environ. processes, DOI: 10.1007/s40710-018-0284-9, 5, 95-113.
  • El Nemr, A.; Hassaan, M.A.; Madkour, F.F.; Idris, A.M.; Said, T.O.; Sahlabji, T.; Alghamdi, M.M.; and El-Zahhar, A.A. (2020). Advanced oxidation of AY-11 Dye Effluent: Detoxification and Degradation Mechanism. Toxin Reviews. In press 24/02/2020. https://doi.org/10.1080/15569543.2020.1736098
  • El Nemr, A.; Moneer, A.A.; Ragab, S.; and El Sikaily, A. (2016). Distribution and sources of n-alkanes and polycyclic aromatic hydrocarbons in Shellfish of the Egyptian Red Sea coast. Egypt. J. Aquat. Res., 42: 121-131. DOI: 10.1016/j.ejar.2016.05.003
  • El-Nemr, M.A.; Abdelmonem, N.M.; Ismail, I.M.A.; Ragab, S.; and El Nemr, A. (2020a) The efficient removal of the hazardous Azo Dye Acid Orange 7 from water using modified biochar from Pea peels. Desal. Water Treat., 203: 327–355.
  • El-Nemr, M.A.; Abdelmonem, N.M.; Ismail, I.M.A.; Ragab, S.; and El Nemr, A. (2020b) Removal of Acid Yellow 11 Dye using novel modified biochar derived from Watermelon Peels. Desal. Water Treat., 203: 403–431.
  • EPAP (2003). The Egyptian Pollution Abatement Project (EPAP) and Egyptian Environmental Affiars Agency (EEAA) 2003, (Self-Monitoring Manual for textile industry report), 76pp.
  • Glaze, W.H., Kang, J.W.; and Chapin, D.H. (1987). The chemistry of water treatment processesinvolving ozone, hydrogen peroxide and UV-radiation. Ozone: Sci. Eng., 9: 335–352. Guivarch, E.; Trevin, S.; and Lahitte, C. (2003). Degredation of azo dyes in water by electro-fenton process, Env.Chem. Lett. 1: 38-42.
  • Gupta, V.K.; Khamparia, S.; Tyagi, I.; Jaspal, D.; and Malviya A. (2015). Decolorization of mixture of dyes: A critical review. Global J. Environ. Sci. Manage., 1 (1): 71-94. DOI: 10.7508/gjesm.2015.01.007
  • Hassaan, M.A.; and El Nemr A. (2017). Advanced Oxidation Processes for Textile Wastewater Treatment. Internat. J. Photochem. Photobiol., 2(3): 85-93. DOI: 10.11648/j.ijpp.20170203.13
  • Hassaan, M.A., El Nemr, A.; and Madkour, F.F. (2017a). Testing the Advanced Oxidation Processes on the Degradation of Direct Blue 86 Dye in Wastewater. Egypt. J. Aquat. Res., 43: 11–19. DOI: 10.1016/j.ejar.2016.09.006
  • Hassaan, M.A.; El Nemr, A.; and Madkour, F.F. (2016). Application of Ozonation and UV assisted Ozonation for Decolorization of Direct Yellow 50 in Sea water. The Pharmaceutical and Chem. J., 3(2): 131-138.
  • Hassaan, M.A.; El Nemr, A.; and Madkour, F.F. (2017b). Advanced Oxidation Processes of Mordant Violet 40 Dye in Freshwater and Seawater. Egypt. J. Aquat. Res. 43: 1–9. DOI: 10.1016/j.ejar.2016.09.004
  • Hassaan, M.A.; Elkatory, M.R.; Ali, R.M.; and El Nemr, A. (2020). Photocatalytic degradation of reactive black 5 using photo-Fenton and ZnO nanoparticles under ultraviolet light irradiation. Egypt. J. Chem., Article 119, 63(4): 17-18. https://doi.org/10.21608/ejchem.2019.16297.1994
  • Helmy, E.T.; El Nemr, A.; Mousa, M.; Arafa, E.; and Eldafrawy, S. (2018). Photocatalytic degradation of organic dyes pollutants in the industrial textile wastewater by using synthesized TiO2, C-doped TiO2, S-doped TiO2 and C,S co-doped TiO2 nanoparticles. J. Water Environ. Nanotech., 3(2): 116-127.
  • Mahmoodi, N.M.; and Arami, M. (2010). Immobilized titania nanophotocatalysis: degradation, modeling and toxicity reduction of agricultural pollutants. J. Alloy. Compd., 506: 155–159, ISSN 0925-8388.
  • Mallevialle, J. (1982). Ozonation Manual for Water and Wastewater Treatment, John Wiley and Sons, New York, vol. 53. Oneill, C.; Hawkes, F.R.; Hawkes, D.L.; Lourenco, N.D.; Pinheiro, H.M.; and Dele, W. (1999). Colour in textile effluents-source, measurement, discharge consents and simulation: a review, J. Chem. Technol. Biotechnol. 74: 1009-1018.
  • Ragab, S.; El Sikaily, A.; and El Nemr, A. (2016). Concentrations and Sources of Pesticides and PCBs in Surficial Sediments of the Red Sea Coast, Egypt. Egypt. J. Aquat. Res., 42: 365–374. Robinson, T.; Macmullan, G.; Marchant, R.; and Nigam, P. (2001). Remediation of dyes in textile effluent: a critical review on current treatment technologies with proposed alternative, Bioresour. Technol. 77: 247-255.
  • Salem, D.M.S.; Khaled, A.; and El Nemr, A. (2013). Assessment of pesticides and polychlorinated biphenyls (PCBs) in sediments of the Egyptian Mediterranean Coast. Egypt. J. Aquat. Res. 39(2): 141-152. http://dx.doi.org/10.1016/j.ejar.2013.11.001
  • Salem, D.M.S.A.; El Sikaily, A.; and El Nemr, A. (2014a). Organocholorines and their risk in marine shellfish collected from the Mediterranean coast, Egypt. Egypt. J. Aquat. Res. 40: 93–101. http://dx.doi.org/10.1016/j.ejar.2014.03.004
  • Salem, D.M.S.A.; Morsy, F.A.-E.M.; El Nemr, A.; El-Sikaily, A.; and Khaled, A. (2014). The monitoring and risk assessment of aliphatic and aromatic hydrocarbons (PAHs) in sediments of the Red Sea, Egypt. Egypt. J. Aquat. Res., 40: 333–348. http://dx.doi.org/10.1016/j.ejar.2014.11.003
  • Sancar, B.; and Balci, O. (2013). Decolorization of different reactive dye wastewaters by O3 and O3/ultrasound alternatives depending on different working parameters. Textile Res. J., (83): 574-590.
  • Slokar, Y.M.; and Majcen Le Marechal, A. (1998). Methods of decoloration of textile wastewaters. Dyes Pigments. 37: 335–356, ISSN 0143-7208.
  • Song, S.; Xu, X.; Xu, L.; He, Z.; Ying, H.; Chen, J.; and Yan, B. (2008). Mineralization of CI reactive yellow 145 in aqueous solution by ultraviolet-enhanced ozonation, Ind. Eng. Chem. Res., 47: 1386-1391.
  • Steahlin, J.; and Hoigne, J. (1982). Decomposition of Ozone in Water: Rate of Initiation by Hydroxide Ions and Hydrogen Peroxide. Environ. Sci. Technol., 16: 676-681, ISSN 0013-936X
  • Sultan, M. (2002). Self-Monitoring Manual for textile industry Faculty of Engineering, Alexandria University, 30pp. https://r.search.yahoo.com/_ylt=AwrJ61Xp3aBgVRMAPBdXNyoA;_ylu=Y29sbwNiZjEEcG9zAzIEdnRpZAMEc2VjA3Ny/RV=2/RE=1621184105/RO=10/RU=http%3a%2f%2fdspace.daffodilvarsity.edu.bd%3a8080%2fbitstream%2fhandle%2f123456789%2f3050%2fP12483%2520%252817%2525%2529.pdf%3fsequence%3d1%26isAllowed%3dy/RK=2/RS=b8Ez8FWwMN.bGhyFlkyrpHM9qc0-
  • Sun, Q.; and Yang, L. (2003). The adsorption of basic dyes from aqueous solution on modified peat-resin particle. Water Res., 37: 1535- 1544.
  • Wijannarong, S.; Aroonsrimorakot, S.; Thavipoke, P.; and Sangjan, S. (2013). Removal of Reactive Dyes from Textile Dyeing Industrial Effluent by Ozonation Process. APCBEE Procedia, (5): 279-282.

Acid Red 17, Acid Yellow 11, Direct Yellow 12, Direct Blue 86 ve Mordant Violet 40 Boyalarının Karışımını İçeren Suyun Arıtılması İçin Gelişmiş Oksidasyon İşlemi

Year 2023, Volume: 23 Issue: 2, 326 - 335, 03.05.2023
https://doi.org/10.35414/akufemubid.1170648

Abstract

Boyaların atık sudan uzaklaştırılması hem çevre hem de üreticiler için tekstil endüstrisindeki
en büyük sorunlardan biridir. Bu makale, beş farklı boya (Asit Kırmızısı 17, Asit Sarısı 11,
Doğrudan Sarı 12, Doğrudan Mavi 86 ve Mordan Menekşe 40) içeren sentetik atık su karışımını
arıtmak için ultraviyole (UV) ile birlikte ozon (O3) ve O3 uygulama olasılığı farklı kromofor ve
ankraj gruplarına sahip boyaların renk giderme etkinliği için incelemiştir. Temas süresi,
optimum çalışma koşullarını elde etmek için UV ile kombine O3 veya O3 akışı altında bir kesikli
reaktörde incelenmiştir. Sonuçlar, O3 uygulamasının UV destekli ozonlamadan daha etkili
olduğunu göstermiştir. Bu karışımdaki her bir boyanın ileri oksidasyonu, aynı boyanın çözelti
içinde ayrı ayrı çıkarılmasıyla karşılaştırıldı. Sonuçlar, boyayı karışımdan ve su çözeltisindeki tek
boyayı çıkarmak için gereken sürede yalnızca küçük bir fark olduğunu kanıtlamıştır.

Project Number

Project No. CB-4874, CB-22816 and IG-34795

References

  • Alghamdi, M.M.; El-Zahhar, A.A.; Idris, A.M.; Said, T.O.; Sahlabji, T.; and El Nemr, A. (2019). Synthesis, Characterization and Application of a New Polymeric-Clay-Magnetite Composite Resin for Water Softening. Sep. Pur. Tech., 224: 356–365. https://doi.org/10.1016/j.seppur.2019.05.037
  • Amini, M.; Arami, M.; Mahmoodi, N.M.; and Akbari, A. (2011). Dye removal from colored textile wastewater using acrylic grafted nanomembrane. Desalination, 267: 107–113. ISSN 0011-9164.
  • Arslan, I.; and Balcioglu, I.A. (2000). Effect of common reactive dye auxiliaries on the ozonation of dyehouse effluents containing vinylsulphone and aminochlorotriazine dyes. Desalination, 130: 61-71. ISSN 0011-9164
  • Asiri, H.F.M.; Idris, A.M.; Said, T.O.; Sahlabji, T.; Alghamdi, M.M.; El-Zahhar, A.A.; and El Nemr, A. (2020). Monitoring and health risk assessment of some pesticides and organic pollutants in fruit and vegetables consumed in Asir Region, Saudi Arabia. Fresenius Environ. Bull., 29(1): 615-625.
  • El Nemr A. (Editor) (2012a). Textiles: Types, Uses and Production Methods. Nova Science Publishers, Inc. Hauppauge New York. Hard cover [ISBN: 978-1-62100-239-0], e-book [ISBN: 978-1-62100-284-0], 621pp.
  • El Nemr, A. (2007). Pomegranate husk as an adsorbent in the removal of toxic chromium from wastewater. Chem. Ecol., 23(5): 409-425.
  • El Nemr, A. (2009). Potential of pomegranate husk carbon for Cr(VI) removal from wastewater: kinetic and isotherm studies. J. Hazard. Mater., 161: 132-141.
  • El Nemr, A. (Editor) (2012b). Non-Conventional textile waste water treatment. Nova Science Publishers, Inc. Hauppauge New York. [Hard cover ISBN: 978-1-62100-079-2, e-book ISBN: 978-1-62100-228-4] 267pp.
  • El Nemr, A.; El-Said, G.F.; Khaled, A. (2016). Risk assessment of Organochlorines in molluscs from the Mediterranean and Red Sea coasts (Egypt). Water Environ. Res., 88(4): 325-337. http://dx.doi.org/10.2175/106143016X14504669767977
  • El Nemr, A.; El-Sikaily, A.; Khaled, A. (2010). Modeling of adsorption isotherms of Methylene Blue onto rice husk activated carbon. Egypt. J. Aquat. Res., 36(3): 403-425.
  • El Nemr, A.; Hassaan, M.A.; and Madkour, F.F. (2017). HPLC-MS/MS Mechanistic study of Direct Yellow 12 degradation using Ultraviolet assisted ozone process. J. Water Environ. Nanotech., 3(1): 1-11.
  • El Nemr, A.; Hassaan, M.A.; and Madkour, F.F. (2018). Advanced oxidation process (AOP) for detoxification of acid red 17 dye solution and degradation mechanism, Environ. processes, DOI: 10.1007/s40710-018-0284-9, 5, 95-113.
  • El Nemr, A.; Hassaan, M.A.; Madkour, F.F.; Idris, A.M.; Said, T.O.; Sahlabji, T.; Alghamdi, M.M.; and El-Zahhar, A.A. (2020). Advanced oxidation of AY-11 Dye Effluent: Detoxification and Degradation Mechanism. Toxin Reviews. In press 24/02/2020. https://doi.org/10.1080/15569543.2020.1736098
  • El Nemr, A.; Moneer, A.A.; Ragab, S.; and El Sikaily, A. (2016). Distribution and sources of n-alkanes and polycyclic aromatic hydrocarbons in Shellfish of the Egyptian Red Sea coast. Egypt. J. Aquat. Res., 42: 121-131. DOI: 10.1016/j.ejar.2016.05.003
  • El-Nemr, M.A.; Abdelmonem, N.M.; Ismail, I.M.A.; Ragab, S.; and El Nemr, A. (2020a) The efficient removal of the hazardous Azo Dye Acid Orange 7 from water using modified biochar from Pea peels. Desal. Water Treat., 203: 327–355.
  • El-Nemr, M.A.; Abdelmonem, N.M.; Ismail, I.M.A.; Ragab, S.; and El Nemr, A. (2020b) Removal of Acid Yellow 11 Dye using novel modified biochar derived from Watermelon Peels. Desal. Water Treat., 203: 403–431.
  • EPAP (2003). The Egyptian Pollution Abatement Project (EPAP) and Egyptian Environmental Affiars Agency (EEAA) 2003, (Self-Monitoring Manual for textile industry report), 76pp.
  • Glaze, W.H., Kang, J.W.; and Chapin, D.H. (1987). The chemistry of water treatment processesinvolving ozone, hydrogen peroxide and UV-radiation. Ozone: Sci. Eng., 9: 335–352. Guivarch, E.; Trevin, S.; and Lahitte, C. (2003). Degredation of azo dyes in water by electro-fenton process, Env.Chem. Lett. 1: 38-42.
  • Gupta, V.K.; Khamparia, S.; Tyagi, I.; Jaspal, D.; and Malviya A. (2015). Decolorization of mixture of dyes: A critical review. Global J. Environ. Sci. Manage., 1 (1): 71-94. DOI: 10.7508/gjesm.2015.01.007
  • Hassaan, M.A.; and El Nemr A. (2017). Advanced Oxidation Processes for Textile Wastewater Treatment. Internat. J. Photochem. Photobiol., 2(3): 85-93. DOI: 10.11648/j.ijpp.20170203.13
  • Hassaan, M.A., El Nemr, A.; and Madkour, F.F. (2017a). Testing the Advanced Oxidation Processes on the Degradation of Direct Blue 86 Dye in Wastewater. Egypt. J. Aquat. Res., 43: 11–19. DOI: 10.1016/j.ejar.2016.09.006
  • Hassaan, M.A.; El Nemr, A.; and Madkour, F.F. (2016). Application of Ozonation and UV assisted Ozonation for Decolorization of Direct Yellow 50 in Sea water. The Pharmaceutical and Chem. J., 3(2): 131-138.
  • Hassaan, M.A.; El Nemr, A.; and Madkour, F.F. (2017b). Advanced Oxidation Processes of Mordant Violet 40 Dye in Freshwater and Seawater. Egypt. J. Aquat. Res. 43: 1–9. DOI: 10.1016/j.ejar.2016.09.004
  • Hassaan, M.A.; Elkatory, M.R.; Ali, R.M.; and El Nemr, A. (2020). Photocatalytic degradation of reactive black 5 using photo-Fenton and ZnO nanoparticles under ultraviolet light irradiation. Egypt. J. Chem., Article 119, 63(4): 17-18. https://doi.org/10.21608/ejchem.2019.16297.1994
  • Helmy, E.T.; El Nemr, A.; Mousa, M.; Arafa, E.; and Eldafrawy, S. (2018). Photocatalytic degradation of organic dyes pollutants in the industrial textile wastewater by using synthesized TiO2, C-doped TiO2, S-doped TiO2 and C,S co-doped TiO2 nanoparticles. J. Water Environ. Nanotech., 3(2): 116-127.
  • Mahmoodi, N.M.; and Arami, M. (2010). Immobilized titania nanophotocatalysis: degradation, modeling and toxicity reduction of agricultural pollutants. J. Alloy. Compd., 506: 155–159, ISSN 0925-8388.
  • Mallevialle, J. (1982). Ozonation Manual for Water and Wastewater Treatment, John Wiley and Sons, New York, vol. 53. Oneill, C.; Hawkes, F.R.; Hawkes, D.L.; Lourenco, N.D.; Pinheiro, H.M.; and Dele, W. (1999). Colour in textile effluents-source, measurement, discharge consents and simulation: a review, J. Chem. Technol. Biotechnol. 74: 1009-1018.
  • Ragab, S.; El Sikaily, A.; and El Nemr, A. (2016). Concentrations and Sources of Pesticides and PCBs in Surficial Sediments of the Red Sea Coast, Egypt. Egypt. J. Aquat. Res., 42: 365–374. Robinson, T.; Macmullan, G.; Marchant, R.; and Nigam, P. (2001). Remediation of dyes in textile effluent: a critical review on current treatment technologies with proposed alternative, Bioresour. Technol. 77: 247-255.
  • Salem, D.M.S.; Khaled, A.; and El Nemr, A. (2013). Assessment of pesticides and polychlorinated biphenyls (PCBs) in sediments of the Egyptian Mediterranean Coast. Egypt. J. Aquat. Res. 39(2): 141-152. http://dx.doi.org/10.1016/j.ejar.2013.11.001
  • Salem, D.M.S.A.; El Sikaily, A.; and El Nemr, A. (2014a). Organocholorines and their risk in marine shellfish collected from the Mediterranean coast, Egypt. Egypt. J. Aquat. Res. 40: 93–101. http://dx.doi.org/10.1016/j.ejar.2014.03.004
  • Salem, D.M.S.A.; Morsy, F.A.-E.M.; El Nemr, A.; El-Sikaily, A.; and Khaled, A. (2014). The monitoring and risk assessment of aliphatic and aromatic hydrocarbons (PAHs) in sediments of the Red Sea, Egypt. Egypt. J. Aquat. Res., 40: 333–348. http://dx.doi.org/10.1016/j.ejar.2014.11.003
  • Sancar, B.; and Balci, O. (2013). Decolorization of different reactive dye wastewaters by O3 and O3/ultrasound alternatives depending on different working parameters. Textile Res. J., (83): 574-590.
  • Slokar, Y.M.; and Majcen Le Marechal, A. (1998). Methods of decoloration of textile wastewaters. Dyes Pigments. 37: 335–356, ISSN 0143-7208.
  • Song, S.; Xu, X.; Xu, L.; He, Z.; Ying, H.; Chen, J.; and Yan, B. (2008). Mineralization of CI reactive yellow 145 in aqueous solution by ultraviolet-enhanced ozonation, Ind. Eng. Chem. Res., 47: 1386-1391.
  • Steahlin, J.; and Hoigne, J. (1982). Decomposition of Ozone in Water: Rate of Initiation by Hydroxide Ions and Hydrogen Peroxide. Environ. Sci. Technol., 16: 676-681, ISSN 0013-936X
  • Sultan, M. (2002). Self-Monitoring Manual for textile industry Faculty of Engineering, Alexandria University, 30pp. https://r.search.yahoo.com/_ylt=AwrJ61Xp3aBgVRMAPBdXNyoA;_ylu=Y29sbwNiZjEEcG9zAzIEdnRpZAMEc2VjA3Ny/RV=2/RE=1621184105/RO=10/RU=http%3a%2f%2fdspace.daffodilvarsity.edu.bd%3a8080%2fbitstream%2fhandle%2f123456789%2f3050%2fP12483%2520%252817%2525%2529.pdf%3fsequence%3d1%26isAllowed%3dy/RK=2/RS=b8Ez8FWwMN.bGhyFlkyrpHM9qc0-
  • Sun, Q.; and Yang, L. (2003). The adsorption of basic dyes from aqueous solution on modified peat-resin particle. Water Res., 37: 1535- 1544.
  • Wijannarong, S.; Aroonsrimorakot, S.; Thavipoke, P.; and Sangjan, S. (2013). Removal of Reactive Dyes from Textile Dyeing Industrial Effluent by Ozonation Process. APCBEE Procedia, (5): 279-282.
There are 38 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Articles
Authors

Mohamed A. Hassaan This is me 0000-0002-8513-5304

Murat Yılmaz 0000-0002-6465-6960

Ahmed El Nemr This is me 0000-0003-2373-5846

Project Number Project No. CB-4874, CB-22816 and IG-34795
Early Pub Date April 28, 2023
Publication Date May 3, 2023
Submission Date September 3, 2022
Published in Issue Year 2023 Volume: 23 Issue: 2

Cite

APA Hassaan, M. A., Yılmaz, M., & El Nemr, A. (2023). Advanced oxidation process for treatment of water containing mixture of Acid Red 17, Acid Yellow 11, Direct Yellow 12, Direct Blue 86 and Mordant Violet 40 dyes. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 23(2), 326-335. https://doi.org/10.35414/akufemubid.1170648
AMA Hassaan MA, Yılmaz M, El Nemr A. Advanced oxidation process for treatment of water containing mixture of Acid Red 17, Acid Yellow 11, Direct Yellow 12, Direct Blue 86 and Mordant Violet 40 dyes. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. May 2023;23(2):326-335. doi:10.35414/akufemubid.1170648
Chicago Hassaan, Mohamed A., Murat Yılmaz, and Ahmed El Nemr. “Advanced Oxidation Process for Treatment of Water Containing Mixture of Acid Red 17, Acid Yellow 11, Direct Yellow 12, Direct Blue 86 and Mordant Violet 40 Dyes”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23, no. 2 (May 2023): 326-35. https://doi.org/10.35414/akufemubid.1170648.
EndNote Hassaan MA, Yılmaz M, El Nemr A (May 1, 2023) Advanced oxidation process for treatment of water containing mixture of Acid Red 17, Acid Yellow 11, Direct Yellow 12, Direct Blue 86 and Mordant Violet 40 dyes. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23 2 326–335.
IEEE M. A. Hassaan, M. Yılmaz, and A. El Nemr, “Advanced oxidation process for treatment of water containing mixture of Acid Red 17, Acid Yellow 11, Direct Yellow 12, Direct Blue 86 and Mordant Violet 40 dyes”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 23, no. 2, pp. 326–335, 2023, doi: 10.35414/akufemubid.1170648.
ISNAD Hassaan, Mohamed A. et al. “Advanced Oxidation Process for Treatment of Water Containing Mixture of Acid Red 17, Acid Yellow 11, Direct Yellow 12, Direct Blue 86 and Mordant Violet 40 Dyes”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23/2 (May 2023), 326-335. https://doi.org/10.35414/akufemubid.1170648.
JAMA Hassaan MA, Yılmaz M, El Nemr A. Advanced oxidation process for treatment of water containing mixture of Acid Red 17, Acid Yellow 11, Direct Yellow 12, Direct Blue 86 and Mordant Violet 40 dyes. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23:326–335.
MLA Hassaan, Mohamed A. et al. “Advanced Oxidation Process for Treatment of Water Containing Mixture of Acid Red 17, Acid Yellow 11, Direct Yellow 12, Direct Blue 86 and Mordant Violet 40 Dyes”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 23, no. 2, 2023, pp. 326-35, doi:10.35414/akufemubid.1170648.
Vancouver Hassaan MA, Yılmaz M, El Nemr A. Advanced oxidation process for treatment of water containing mixture of Acid Red 17, Acid Yellow 11, Direct Yellow 12, Direct Blue 86 and Mordant Violet 40 dyes. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23(2):326-35.