Research Article
BibTex RIS Cite

Endemik Soğanın inhibe edici etkisinin değerlendirilmesi: Hesaplamalı çalışma ile fenolik bileşik ve enzim inhibisyonu analizi

Year 2023, Volume: 23 Issue: 4, 828 - 836, 31.08.2023
https://doi.org/10.35414/akufemubid.1261347

Abstract

Çok sayıda Allium türü, biyolojik aktivitelerine dayalı olarak tamamlayıcı tıpta kullanılmaktadır. Bu çalışmada, A. kastambulense soğan ekstresinin fenolik içeriği ve enzim inhibisyon yeteneği bilgisayar destekli moleküler kenetlenme çalışmaları incelenmiştir. Soğan ekstraktının enzim inhibisyonu aktivitesi, çalışılan altı enzim için 54.70±1.74 - 134.3±2.12 aralığında IC50'ye sahiptir. Metanol-kloroform soğan ekstresinin ters faz HPLC analizinde kateşin, klorojenik asit, gentisik asit, vanilik asit ve apigenin fenolik bileşenleri temsil eden metabolitler olarak bulunmuştur. Bir flavonoid olan kateşin flavonoid en bol bulunan bileşen olarak tespit edildi. TPC ve TFC değerleri sırasıyla 6.86 ± 0.36 mg g-1 ve 3.22 ± 0.14 mg g-1 olarak hesaplandı. Son olarak, kateşin ligandı, üzerinde çalışılan enzimlere karşı düşük bağlanma enerjisi değerlerine (- 5,778 - -8,872 kcal/mol) sahiptir.

References

  • Armağan, M., 2021. Allium shinasii (Amaryllidaceae), a new species from Turkey. Nordic Journal of Botany, 39,1–8. doi: 10.1111/njb.03145
  • Baydoun, S., Chalak, L., Dalleh, H., Arnold, N., 2015. Ethnopharmacological survey of medicinal plants used in traditional medicine by the communities of Mount Hermon, Lebanon. Journal of Ethnopharmacology, 173,139–156. doi: 10.1016/j.jep.2015.06.052
  • Đorđevski, N., Uba, A.I., Zengin, G., Božunović, J., Gašić, U., Ristanović, E., Ćirić, A., Nikolić, B., Stojković, D., 2023. Chemical and Biological Investigations of Allium scorodoprasum L. Flower Extracts. Pharmaceuticals, 16,1–20. doi: 10.3390/ph16010021
  • Dutta, T., Anand, U., Saha, S.C., Mane, A.B., Prasanth, D.A,. Kandimalla, R., Proćków, J., Dey, A., 2021. Advancing urban ethnopharmacology: A modern concept of sustainability, conservation and cross-cultural adaptations of medicinal plant lore in the urban environment. Conservation Physiology, 9,1–20. doi: 10.1093/conphys/coab073
  • Eberhardt, J., Santos-Martins, D., Tillack, A.F., Forli, S., 2021. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. Journal of Chemical Information and Modeling, 61(8), 3891–3898 doi: 10.1021/acs.jcim.1c00203
  • Ellman, G.L., Courtney, K.D., Andres, V., Featherstone, R.M., 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7,88–95. doi: 10.1016/0006-2952(61)90145-9
  • Elmastaş, M., Demir, A., Genç, N., Dölek, Ü., Güneş, M., 2017. Changes in flavonoid and phenolic acid contents in some Rosa species during ripening. Food Chemistry, 235,154–159. doi: 10.1016/j.foodchem.2017.05.004
  • Emir, A., Emir, C., Yıldırım, H., 2020. Characterization of phenolic profile by LC-ESI-MS/MS and enzyme inhibitory activities of two wild edible garlic: Allium nigrum L. and Allium subhirsutum L. Journal of Food Biochemistry, 44,1–14. doi: 10.1111/jfbc.13165
  • Emir, C., Coban, G., Emir, A., 2022. Metabolomics profiling, biological activities, and molecular docking studies of elephant garlic (Allium ampeloprasum L.). Process Biochemistry, 116,49–59. doi: 10.1016/j.procbio.2022.03.002
  • Emir, C., Emir, A., 2021. Phytochemical analyses with LC-MS/MS and in vitro enzyme inhibitory activities of an endemic species “Allium stylosum O. Schwarz” (Amaryllidaceae). South African Journal of Botany, 136,70–75. doi: 10.1016/j.sajb.2020.04.023
  • Gonçalves, S,, Romano, A., 2017. Inhibitory Properties of Phenolic Compounds Against Enzymes Linked with Human Diseases. In: Soto-Hernández M (ed) Phenolic Compounds Biological Activity. IntechOpen, 1-22.
  • Ikram, M., Rehman, S., Subhan, F., Akhtar, M.N., Sinnokrot, M.O. 2017. Synthesis, characterization, thermal degradation and urease inhibitory studies of the new hydrazide based Schiff base ligand 2-(2-hydroxyphenyl)-3-{[(E)-(2-hydroxyphenyl)methylidene]amino}-2,3-dihydroquinazolin-4(1H)-one. Open Chemistry, 15,308–319. doi: 10.1515/chem-2017-0035
  • Kadyrbayeva, G., Zagórska, J., Grzegorczyk, A., Gaweł-Bęben, K., Strzępek-Gomółka, M., Ludwiczuk, A., Czech, K., Kumar, M., Koch, W., Malm, A., Głowniak, K., Sakipova, Z., Kukula-Koch, W., 2021. The phenolic compounds profile and cosmeceutical significance of two kazakh species of onions: Allium galanthum and A. turkestanicum. Molecules, 26(18),1-20. doi: 10.3390/molecules26185491
  • Kim, H.Y., 2007. Effects of onion (Allium cepa) skin extract on pancreatic lipase and body weight-related parameters. Food Science, Biotechnology. 16,434–438
  • Li, F., Wang, Z.M., Wu, J.J., Wang, J., Xie S.S., Lan, J.S., Xu, W., Kong, L.Y., Wang, X.B., 2016. Synthesis and pharmacological evaluation of donepezil-based agents as new cholinesterase/ monoamine oxidase inhibitors for the potential application against Alzheimer’s disease. Journal of Enzyme Inhibition and Medicinal Chemistry, 31,41–53. oi: 10.1080/14756366.2016.1201814
  • Maccelli, A., Cesa, S., Cairone, F., Secci, D., Menghini, L., Chiavarino, B., Fornarini, S., Crestoni, M.E., Locatelli, M., 2020. Metabolic profiling of different wild and cultivated Allium species based on high-resolution mass spectrometry, high-performance liquid chromatography-photodiode array detector, and color analysis. Journal of Mass Spectrometry, 55,1–12. doi: 10.1002/jms.4525
  • Makarian, M., Gonzalez, M., Salvador, S.M., Lorzadeh, S., Hudson, P.K., Pecic, S., 2022. Synthesis, kinetic evaluation and molecular docking studies of donepezil-based acetylcholinesterase inhibitors. Journal of Molecular Structure, 1247,1-10. doi: 10.1016/j.molstruc.2021.131425
  • Marrelli, M., Russo, C., Statti, G., Argentieri, M.P., Meleleo, D., Mallamaci, R., Avato, P., Conforti, F., 2022. Phytochemical and biological characterization of dry outer scales extract from Tropea red onion (Allium cepa L. var. Tropea)–A promising inhibitor of pancreatic lipase. Phytomedicine Plus, 2,100235. doi: 10.1016/j.phyplu.2022.100235
  • Masuda T, Yamashita D, Takeda Y, Yonemori S (2005) Screening for tyrosinase inhibitors among extracts of seashore plants and identification of potent inhibitors from Garcinia subelliptica. Biosci Biotechnol Biochem 69:197–201 . doi: 10.1271/bbb.69.197
  • El-Korany M., Mohamed Helmy, S., Mahmoud El-Halawany, O., El-Mohammadi Ragab, A., Hafez Zedan H., 2020. Kojic acid repurposing as a pancreatic lipase inhibitor and the optimization of its production from a local Aspergillus oryzae soil isolate. BMC Biotechnology, 20,1–16 . doi: 10.1186/s12896-020-00644-9
  • Nikkhahi, M., Souri, E., Sarkhail, P., Baeeri, M., Mohammadhosseini, N., 2018. Evaluation of anti-tyrosinase activity of Allium ursinum extracts and their metal complexes. Acta Scientiarum Polonorum, Technologia Alimentaria, 17,219–226. doi: 10.17306/J.AFS.0585
  • Ocal, M., Altunoglu, Y.C., Angeloni, S., Mustafa, A.M., Caprioli, G., Zengin, G., Paksoy, M.Y., Baloglu, M.C., 2022. Comparative content, biological and anticancer activities of Heracleum humile extracts obtained by ultrasound-assisted extraction method. Chemistry & Biodiversity, e202101040. doi: 10.1002/cbdv.202101040
  • Pękal, A., Pyrzynska, K., 2014. Evaluation of Aluminium Complexation Reaction for Flavonoid Content Assay. Food Analytical Methods, 7,1776–1782. doi: 10.1007/s12161-014-9814-x
  • Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng E.C, Ferrin, T.E., 2004. UCSF Chimera – A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13),1605-12. doi: 10.1002/jcc.20084
  • Phetmanee, T., Wunnakup, T., Lukkunaprasit, T., Madaka, F., Settharaksa, S., Kamkaen, N., Vipunnqeun, N., Charoenchai, L., 2020. Anti-tyrosinase and anti-melanogenic potential of shallots (Allium ascalonicum) from various cultivation sites in Thailand. Thai Journal of Pharmaceutical Sciences, 44,107–116
  • Rocchetti, G., Zhang, L., Bocchi, S., Giuberti, G., Ak, G., Elbasan, F., Yıldıztugay, E., Ceylan, R., Picot-Allain, M.C.N., Mahomoodally, M.F., Lucini, L., Zengin, G. 2022. The functional potential of nine Allium species related to their untargeted phytochemical characterization, antioxidant capacity and enzyme inhibitory ability. Food Chemistry, 368,1-12. doi: 10.1016/j.foodchem.2021.130782
  • San Diego: Accelrys Software Inc. (2012) Discovery Studio odeling Environment, Release 3.5. In: Accelrys Softw. Inc.
  • Shabana, S., Kawai, A., Kai, K., Akiyama, K., Hayashi, H., 2010. Inhibitory activity against urease of quercetin glycosides isolated from Allium cepa and Psidium guajava. Bioscience, Biotechnology, and Biochemistry, 74,878–880. doi: 10.1271/bbb.90895
  • Singleton, V.L., Rosi, J.A., 1965. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture, 16,144–158
  • Takim, K., Yigin, A., Koyuncu, I., Kaya, R., Gülçin, İ., 2021. Anticancer, anticholinesterase and antidiabetic activities of tunceli garlic (Allium tuncelianum): determining its phytochemical content by LC–MS/MS analysis. Journal of Food Measurement and Characterization, 15,3323–3335. doi: 10.1007/s11694-021-00912-y
  • Thring, T.S.A., Hili, P., Naughton, D.P., 2009. Anti-collagenase, anti-elastase and anti-oxidant activities of extracts from 21 plants. BMC Complementary Medicine and Therapies, 9,1–11. doi: 10.1186/1472-6882-9-27
  • Troot, O., Olson, A., 2010. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. Journal of Computational Chemistry, 31,455–461
  • Wang, W., Li, J., Zhang, H., Wang, X., Fan, J., Zhang, X., 2019. Phenolic compounds and bioactivity evaluation of aqueous and methanol extracts of Allium mongolicum Regel. Food Science & Nutrition, 7,779–787 . doi: 10.1002/fsn3.926
  • Zeng, Y., Li, Y., Yang, J., Pu, X., Du, J., Yang, X., Yang, T., Yang, S., 2017. Therapeutic Role of Functional Components in Alliums for Preventive Chronic Disease in Human Being. Evidence-Based Complementary and Alternative Medicine, 1-13. doi: 10.1155/2017/9402849
  • Zengin, M,, Genc, H., Taslimi, P., Kestane, A., Guclu, E., Ogutlu, A., Karabay, O., Gulçin, İ., 2018. Novel thymol bearing oxypropanolamine derivatives as potent some metabolic enzyme inhibitors – Their antidiabetic, anticholinergic and antibacterial potentials. Bioorganic Chemistry, 81,119–126. doi: 10.1016/j.bioorg.2018.08.003.

Evaluation of inhibitory potency of endemic Onion bulbs: Analysis of phenolic compounds and enzyme inhibition with the computational study

Year 2023, Volume: 23 Issue: 4, 828 - 836, 31.08.2023
https://doi.org/10.35414/akufemubid.1261347

Abstract

Numerous Allium species have been utilized in complementary medicine based on their biological activities. In the present work, the bulb extract of A. kastambulense was studied for its phenolic content and enzyme inhibition ability assisted by computer-aided molecular docking studies. The evaluation of enzyme inhibition activity of the bulb extract showed that it has 54.70±1.74 134.3±2.12 IC50 for six studied enzymes, respectively. In the reverse-phase HPLC analysis of methanol-chloroform bulb extract, catechin, chlorogenic acid, gentisic acid, vanillic acid, and apigenin were founded to be the represented group of phenolic components. Catechin flavonoid was extensively detected as the most abundant ingredient, and TPC and TFC were calculated at 6.86 ± 0.36 mg g− 1 and 3.22 ± 0.14 mg g− 1. Finally, the catechin ligand has low binding energy values against the studied enzymes with -5.778 - -8.872 kcal/mol.

References

  • Armağan, M., 2021. Allium shinasii (Amaryllidaceae), a new species from Turkey. Nordic Journal of Botany, 39,1–8. doi: 10.1111/njb.03145
  • Baydoun, S., Chalak, L., Dalleh, H., Arnold, N., 2015. Ethnopharmacological survey of medicinal plants used in traditional medicine by the communities of Mount Hermon, Lebanon. Journal of Ethnopharmacology, 173,139–156. doi: 10.1016/j.jep.2015.06.052
  • Đorđevski, N., Uba, A.I., Zengin, G., Božunović, J., Gašić, U., Ristanović, E., Ćirić, A., Nikolić, B., Stojković, D., 2023. Chemical and Biological Investigations of Allium scorodoprasum L. Flower Extracts. Pharmaceuticals, 16,1–20. doi: 10.3390/ph16010021
  • Dutta, T., Anand, U., Saha, S.C., Mane, A.B., Prasanth, D.A,. Kandimalla, R., Proćków, J., Dey, A., 2021. Advancing urban ethnopharmacology: A modern concept of sustainability, conservation and cross-cultural adaptations of medicinal plant lore in the urban environment. Conservation Physiology, 9,1–20. doi: 10.1093/conphys/coab073
  • Eberhardt, J., Santos-Martins, D., Tillack, A.F., Forli, S., 2021. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. Journal of Chemical Information and Modeling, 61(8), 3891–3898 doi: 10.1021/acs.jcim.1c00203
  • Ellman, G.L., Courtney, K.D., Andres, V., Featherstone, R.M., 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7,88–95. doi: 10.1016/0006-2952(61)90145-9
  • Elmastaş, M., Demir, A., Genç, N., Dölek, Ü., Güneş, M., 2017. Changes in flavonoid and phenolic acid contents in some Rosa species during ripening. Food Chemistry, 235,154–159. doi: 10.1016/j.foodchem.2017.05.004
  • Emir, A., Emir, C., Yıldırım, H., 2020. Characterization of phenolic profile by LC-ESI-MS/MS and enzyme inhibitory activities of two wild edible garlic: Allium nigrum L. and Allium subhirsutum L. Journal of Food Biochemistry, 44,1–14. doi: 10.1111/jfbc.13165
  • Emir, C., Coban, G., Emir, A., 2022. Metabolomics profiling, biological activities, and molecular docking studies of elephant garlic (Allium ampeloprasum L.). Process Biochemistry, 116,49–59. doi: 10.1016/j.procbio.2022.03.002
  • Emir, C., Emir, A., 2021. Phytochemical analyses with LC-MS/MS and in vitro enzyme inhibitory activities of an endemic species “Allium stylosum O. Schwarz” (Amaryllidaceae). South African Journal of Botany, 136,70–75. doi: 10.1016/j.sajb.2020.04.023
  • Gonçalves, S,, Romano, A., 2017. Inhibitory Properties of Phenolic Compounds Against Enzymes Linked with Human Diseases. In: Soto-Hernández M (ed) Phenolic Compounds Biological Activity. IntechOpen, 1-22.
  • Ikram, M., Rehman, S., Subhan, F., Akhtar, M.N., Sinnokrot, M.O. 2017. Synthesis, characterization, thermal degradation and urease inhibitory studies of the new hydrazide based Schiff base ligand 2-(2-hydroxyphenyl)-3-{[(E)-(2-hydroxyphenyl)methylidene]amino}-2,3-dihydroquinazolin-4(1H)-one. Open Chemistry, 15,308–319. doi: 10.1515/chem-2017-0035
  • Kadyrbayeva, G., Zagórska, J., Grzegorczyk, A., Gaweł-Bęben, K., Strzępek-Gomółka, M., Ludwiczuk, A., Czech, K., Kumar, M., Koch, W., Malm, A., Głowniak, K., Sakipova, Z., Kukula-Koch, W., 2021. The phenolic compounds profile and cosmeceutical significance of two kazakh species of onions: Allium galanthum and A. turkestanicum. Molecules, 26(18),1-20. doi: 10.3390/molecules26185491
  • Kim, H.Y., 2007. Effects of onion (Allium cepa) skin extract on pancreatic lipase and body weight-related parameters. Food Science, Biotechnology. 16,434–438
  • Li, F., Wang, Z.M., Wu, J.J., Wang, J., Xie S.S., Lan, J.S., Xu, W., Kong, L.Y., Wang, X.B., 2016. Synthesis and pharmacological evaluation of donepezil-based agents as new cholinesterase/ monoamine oxidase inhibitors for the potential application against Alzheimer’s disease. Journal of Enzyme Inhibition and Medicinal Chemistry, 31,41–53. oi: 10.1080/14756366.2016.1201814
  • Maccelli, A., Cesa, S., Cairone, F., Secci, D., Menghini, L., Chiavarino, B., Fornarini, S., Crestoni, M.E., Locatelli, M., 2020. Metabolic profiling of different wild and cultivated Allium species based on high-resolution mass spectrometry, high-performance liquid chromatography-photodiode array detector, and color analysis. Journal of Mass Spectrometry, 55,1–12. doi: 10.1002/jms.4525
  • Makarian, M., Gonzalez, M., Salvador, S.M., Lorzadeh, S., Hudson, P.K., Pecic, S., 2022. Synthesis, kinetic evaluation and molecular docking studies of donepezil-based acetylcholinesterase inhibitors. Journal of Molecular Structure, 1247,1-10. doi: 10.1016/j.molstruc.2021.131425
  • Marrelli, M., Russo, C., Statti, G., Argentieri, M.P., Meleleo, D., Mallamaci, R., Avato, P., Conforti, F., 2022. Phytochemical and biological characterization of dry outer scales extract from Tropea red onion (Allium cepa L. var. Tropea)–A promising inhibitor of pancreatic lipase. Phytomedicine Plus, 2,100235. doi: 10.1016/j.phyplu.2022.100235
  • Masuda T, Yamashita D, Takeda Y, Yonemori S (2005) Screening for tyrosinase inhibitors among extracts of seashore plants and identification of potent inhibitors from Garcinia subelliptica. Biosci Biotechnol Biochem 69:197–201 . doi: 10.1271/bbb.69.197
  • El-Korany M., Mohamed Helmy, S., Mahmoud El-Halawany, O., El-Mohammadi Ragab, A., Hafez Zedan H., 2020. Kojic acid repurposing as a pancreatic lipase inhibitor and the optimization of its production from a local Aspergillus oryzae soil isolate. BMC Biotechnology, 20,1–16 . doi: 10.1186/s12896-020-00644-9
  • Nikkhahi, M., Souri, E., Sarkhail, P., Baeeri, M., Mohammadhosseini, N., 2018. Evaluation of anti-tyrosinase activity of Allium ursinum extracts and their metal complexes. Acta Scientiarum Polonorum, Technologia Alimentaria, 17,219–226. doi: 10.17306/J.AFS.0585
  • Ocal, M., Altunoglu, Y.C., Angeloni, S., Mustafa, A.M., Caprioli, G., Zengin, G., Paksoy, M.Y., Baloglu, M.C., 2022. Comparative content, biological and anticancer activities of Heracleum humile extracts obtained by ultrasound-assisted extraction method. Chemistry & Biodiversity, e202101040. doi: 10.1002/cbdv.202101040
  • Pękal, A., Pyrzynska, K., 2014. Evaluation of Aluminium Complexation Reaction for Flavonoid Content Assay. Food Analytical Methods, 7,1776–1782. doi: 10.1007/s12161-014-9814-x
  • Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng E.C, Ferrin, T.E., 2004. UCSF Chimera – A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13),1605-12. doi: 10.1002/jcc.20084
  • Phetmanee, T., Wunnakup, T., Lukkunaprasit, T., Madaka, F., Settharaksa, S., Kamkaen, N., Vipunnqeun, N., Charoenchai, L., 2020. Anti-tyrosinase and anti-melanogenic potential of shallots (Allium ascalonicum) from various cultivation sites in Thailand. Thai Journal of Pharmaceutical Sciences, 44,107–116
  • Rocchetti, G., Zhang, L., Bocchi, S., Giuberti, G., Ak, G., Elbasan, F., Yıldıztugay, E., Ceylan, R., Picot-Allain, M.C.N., Mahomoodally, M.F., Lucini, L., Zengin, G. 2022. The functional potential of nine Allium species related to their untargeted phytochemical characterization, antioxidant capacity and enzyme inhibitory ability. Food Chemistry, 368,1-12. doi: 10.1016/j.foodchem.2021.130782
  • San Diego: Accelrys Software Inc. (2012) Discovery Studio odeling Environment, Release 3.5. In: Accelrys Softw. Inc.
  • Shabana, S., Kawai, A., Kai, K., Akiyama, K., Hayashi, H., 2010. Inhibitory activity against urease of quercetin glycosides isolated from Allium cepa and Psidium guajava. Bioscience, Biotechnology, and Biochemistry, 74,878–880. doi: 10.1271/bbb.90895
  • Singleton, V.L., Rosi, J.A., 1965. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture, 16,144–158
  • Takim, K., Yigin, A., Koyuncu, I., Kaya, R., Gülçin, İ., 2021. Anticancer, anticholinesterase and antidiabetic activities of tunceli garlic (Allium tuncelianum): determining its phytochemical content by LC–MS/MS analysis. Journal of Food Measurement and Characterization, 15,3323–3335. doi: 10.1007/s11694-021-00912-y
  • Thring, T.S.A., Hili, P., Naughton, D.P., 2009. Anti-collagenase, anti-elastase and anti-oxidant activities of extracts from 21 plants. BMC Complementary Medicine and Therapies, 9,1–11. doi: 10.1186/1472-6882-9-27
  • Troot, O., Olson, A., 2010. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. Journal of Computational Chemistry, 31,455–461
  • Wang, W., Li, J., Zhang, H., Wang, X., Fan, J., Zhang, X., 2019. Phenolic compounds and bioactivity evaluation of aqueous and methanol extracts of Allium mongolicum Regel. Food Science & Nutrition, 7,779–787 . doi: 10.1002/fsn3.926
  • Zeng, Y., Li, Y., Yang, J., Pu, X., Du, J., Yang, X., Yang, T., Yang, S., 2017. Therapeutic Role of Functional Components in Alliums for Preventive Chronic Disease in Human Being. Evidence-Based Complementary and Alternative Medicine, 1-13. doi: 10.1155/2017/9402849
  • Zengin, M,, Genc, H., Taslimi, P., Kestane, A., Guclu, E., Ogutlu, A., Karabay, O., Gulçin, İ., 2018. Novel thymol bearing oxypropanolamine derivatives as potent some metabolic enzyme inhibitors – Their antidiabetic, anticholinergic and antibacterial potentials. Bioorganic Chemistry, 81,119–126. doi: 10.1016/j.bioorg.2018.08.003.
There are 35 citations in total.

Details

Primary Language English
Subjects Structural Biology, Organic Chemistry
Journal Section Articles
Authors

Dursun Kısa 0000-0002-7681-2385

Early Pub Date August 29, 2023
Publication Date August 31, 2023
Submission Date March 7, 2023
Published in Issue Year 2023 Volume: 23 Issue: 4

Cite

APA Kısa, D. (2023). Evaluation of inhibitory potency of endemic Onion bulbs: Analysis of phenolic compounds and enzyme inhibition with the computational study. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 23(4), 828-836. https://doi.org/10.35414/akufemubid.1261347
AMA Kısa D. Evaluation of inhibitory potency of endemic Onion bulbs: Analysis of phenolic compounds and enzyme inhibition with the computational study. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. August 2023;23(4):828-836. doi:10.35414/akufemubid.1261347
Chicago Kısa, Dursun. “Evaluation of Inhibitory Potency of Endemic Onion Bulbs: Analysis of Phenolic Compounds and Enzyme Inhibition With the Computational Study”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23, no. 4 (August 2023): 828-36. https://doi.org/10.35414/akufemubid.1261347.
EndNote Kısa D (August 1, 2023) Evaluation of inhibitory potency of endemic Onion bulbs: Analysis of phenolic compounds and enzyme inhibition with the computational study. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23 4 828–836.
IEEE D. Kısa, “Evaluation of inhibitory potency of endemic Onion bulbs: Analysis of phenolic compounds and enzyme inhibition with the computational study”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 23, no. 4, pp. 828–836, 2023, doi: 10.35414/akufemubid.1261347.
ISNAD Kısa, Dursun. “Evaluation of Inhibitory Potency of Endemic Onion Bulbs: Analysis of Phenolic Compounds and Enzyme Inhibition With the Computational Study”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23/4 (August 2023), 828-836. https://doi.org/10.35414/akufemubid.1261347.
JAMA Kısa D. Evaluation of inhibitory potency of endemic Onion bulbs: Analysis of phenolic compounds and enzyme inhibition with the computational study. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23:828–836.
MLA Kısa, Dursun. “Evaluation of Inhibitory Potency of Endemic Onion Bulbs: Analysis of Phenolic Compounds and Enzyme Inhibition With the Computational Study”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 23, no. 4, 2023, pp. 828-36, doi:10.35414/akufemubid.1261347.
Vancouver Kısa D. Evaluation of inhibitory potency of endemic Onion bulbs: Analysis of phenolic compounds and enzyme inhibition with the computational study. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23(4):828-36.