Research Article
BibTex RIS Cite

Devirli Grupların Power Graflarının Enerjileri İçin Bazı Sınırlar

Year 2023, Volume: 23 Issue: 6, 1412 - 1417, 28.12.2023
https://doi.org/10.35414/akufemubid.1259571

Abstract

Bu çalışmada, sonlu bir devirli grubun power grafının komşuluk matrisi yapısı dikkate alınarak, sonlu devirli grupların power graflarının enerjileri için bazı alt ve üst sınırlar elde edilmiştir. Daha sonra devirli bir grubun mertebesinin bir asal sayının pozitif tam sayı kuvveti olması durumu ile bu devirli gruba karşılık gelen power grafın tamlığı arasındaki ilişki kullanılarak bazı sonuçlar verilmiştir.

References

  • Abreu, N.M.M., Gutman, I., Robbiano, M. and So, W., 2010. Applications of a theorem by Ky Fan in the theory of graph energy. Linear Algebra and its Applications, 432, 2163-2169.
  • Cameron, P.J., 2010. The power graph of a finite group ll. Journal of Group Theory 13, 779-783.
  • Cameron, P.J. and Ghosh, S., 2011. The power graph of a finite group. Discrete Mathematics, 311(3), 1220-1222.
  • Cavers, M., Fallat, S., Kirkland, S., 2010. On the normalized laplacian energy and general Randi'c index R₋₁ of graphs. Linear Algebra and its Applications, 443, 172-190.
  • Chakrabarty, I., Ghosh, S., Sen, M.K., 2009. Undirected Power Graphs of Semigroups. Semigroup Forum, 78, 410-426.
  • Chattopadhyay, S., Panigrahi, P., 2014. Connectivity and planarity of power graphs of finite cylclic, dihedral and dicyclic groups. Algebra and Discrete Mathematics, 18, 42-49.
  • Chattopadhyay, S., Panigrahi, P., 2015. Some relations between power graphs and Cayley graphs. Journal of the Egyptian Mathematical Society, 23, 457-462.
  • Chattopadhyay, S., Panigrahi, P. and Atik, F., 2018. Spectral radius of power graphs on certain finite groups, Indagationes Mathematicae, 29, 730-737.
  • Gutman, I., 1978. The energy of graph. 10. Steirmarkisches Mathematisches Symposium, 103, 1-22.
  • Gutman, I. and Zhou, B., 2006. Laplacian energy of a graph. Linear Algebra and its Applications, 414, 29-37.
  • Gutman, I., Indulal, G. and Vijayakumar, A., 2008. On distance energy of graphs. MATCH Communications in Mathematical and Computer Chemistry, 60, 461-472.
  • Horn, R.A. and Johnson, C.R., 2012. Matrix Analysis. 2 nd edition, Cambridge/United Kingdom: Cambridge University Press, 42.
  • Hwang, S.G., 2004. Cauchy's interlace theorem for eigenvalues of hermitian matrices. The American Mathematical Monthly, 111, 157-159.
  • Kelarev, A.V. and Quinn, S.J., 2002. Directed graphs and combinatorial properties of semigroups. Journal of Algebra, 251(1), 16-26.
  • Kelarev, A.V. and Quinn, S.J., 2004. A combinatorial property and power graphs of semigroups. Commentationes Mathematicae Universitatis Carolinae, 45(1), 1-7.
  • Kelarev, A.V. and Quinn, S.J., 2000. A combinatorial property and power graphs of groups. Contributions to General Algebra, 12, 229-235.
  • Lütkepohl, H., 1996. Handbook of matrices. First edition, Chichester: John Wiley & Sons, 268, 280.
  • Oboudi, M.R., 2019. A new lower bound for the energy of graphs. Linear Algebra and its Applications, 580, 384-395.

Some Bounds for The Energies of The Power Graphs of Cyclic Groups

Year 2023, Volume: 23 Issue: 6, 1412 - 1417, 28.12.2023
https://doi.org/10.35414/akufemubid.1259571

Abstract

In this study, some lower and upper bounds were obtained for the energies of the power graphs of finite cyclic groups by considering the adjacency matrix structure of the power graph of a finite cyclic group. Then, some results are given using the relationship between the case where the order of a cyclic group is the positive integer power of a prime number and the completeness of the power graph corresponding to this cyclic group.

References

  • Abreu, N.M.M., Gutman, I., Robbiano, M. and So, W., 2010. Applications of a theorem by Ky Fan in the theory of graph energy. Linear Algebra and its Applications, 432, 2163-2169.
  • Cameron, P.J., 2010. The power graph of a finite group ll. Journal of Group Theory 13, 779-783.
  • Cameron, P.J. and Ghosh, S., 2011. The power graph of a finite group. Discrete Mathematics, 311(3), 1220-1222.
  • Cavers, M., Fallat, S., Kirkland, S., 2010. On the normalized laplacian energy and general Randi'c index R₋₁ of graphs. Linear Algebra and its Applications, 443, 172-190.
  • Chakrabarty, I., Ghosh, S., Sen, M.K., 2009. Undirected Power Graphs of Semigroups. Semigroup Forum, 78, 410-426.
  • Chattopadhyay, S., Panigrahi, P., 2014. Connectivity and planarity of power graphs of finite cylclic, dihedral and dicyclic groups. Algebra and Discrete Mathematics, 18, 42-49.
  • Chattopadhyay, S., Panigrahi, P., 2015. Some relations between power graphs and Cayley graphs. Journal of the Egyptian Mathematical Society, 23, 457-462.
  • Chattopadhyay, S., Panigrahi, P. and Atik, F., 2018. Spectral radius of power graphs on certain finite groups, Indagationes Mathematicae, 29, 730-737.
  • Gutman, I., 1978. The energy of graph. 10. Steirmarkisches Mathematisches Symposium, 103, 1-22.
  • Gutman, I. and Zhou, B., 2006. Laplacian energy of a graph. Linear Algebra and its Applications, 414, 29-37.
  • Gutman, I., Indulal, G. and Vijayakumar, A., 2008. On distance energy of graphs. MATCH Communications in Mathematical and Computer Chemistry, 60, 461-472.
  • Horn, R.A. and Johnson, C.R., 2012. Matrix Analysis. 2 nd edition, Cambridge/United Kingdom: Cambridge University Press, 42.
  • Hwang, S.G., 2004. Cauchy's interlace theorem for eigenvalues of hermitian matrices. The American Mathematical Monthly, 111, 157-159.
  • Kelarev, A.V. and Quinn, S.J., 2002. Directed graphs and combinatorial properties of semigroups. Journal of Algebra, 251(1), 16-26.
  • Kelarev, A.V. and Quinn, S.J., 2004. A combinatorial property and power graphs of semigroups. Commentationes Mathematicae Universitatis Carolinae, 45(1), 1-7.
  • Kelarev, A.V. and Quinn, S.J., 2000. A combinatorial property and power graphs of groups. Contributions to General Algebra, 12, 229-235.
  • Lütkepohl, H., 1996. Handbook of matrices. First edition, Chichester: John Wiley & Sons, 268, 280.
  • Oboudi, M.R., 2019. A new lower bound for the energy of graphs. Linear Algebra and its Applications, 580, 384-395.
There are 18 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Nurşah Mutlu Varlıoğlu 0000-0003-0873-6277

Şerife Büyükköse 0000-0001-7629-4277

Early Pub Date December 22, 2023
Publication Date December 28, 2023
Submission Date March 3, 2023
Published in Issue Year 2023 Volume: 23 Issue: 6

Cite

APA Mutlu Varlıoğlu, N., & Büyükköse, Ş. (2023). Some Bounds for The Energies of The Power Graphs of Cyclic Groups. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 23(6), 1412-1417. https://doi.org/10.35414/akufemubid.1259571
AMA Mutlu Varlıoğlu N, Büyükköse Ş. Some Bounds for The Energies of The Power Graphs of Cyclic Groups. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. December 2023;23(6):1412-1417. doi:10.35414/akufemubid.1259571
Chicago Mutlu Varlıoğlu, Nurşah, and Şerife Büyükköse. “Some Bounds for The Energies of The Power Graphs of Cyclic Groups”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23, no. 6 (December 2023): 1412-17. https://doi.org/10.35414/akufemubid.1259571.
EndNote Mutlu Varlıoğlu N, Büyükköse Ş (December 1, 2023) Some Bounds for The Energies of The Power Graphs of Cyclic Groups. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23 6 1412–1417.
IEEE N. Mutlu Varlıoğlu and Ş. Büyükköse, “Some Bounds for The Energies of The Power Graphs of Cyclic Groups”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 23, no. 6, pp. 1412–1417, 2023, doi: 10.35414/akufemubid.1259571.
ISNAD Mutlu Varlıoğlu, Nurşah - Büyükköse, Şerife. “Some Bounds for The Energies of The Power Graphs of Cyclic Groups”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23/6 (December 2023), 1412-1417. https://doi.org/10.35414/akufemubid.1259571.
JAMA Mutlu Varlıoğlu N, Büyükköse Ş. Some Bounds for The Energies of The Power Graphs of Cyclic Groups. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23:1412–1417.
MLA Mutlu Varlıoğlu, Nurşah and Şerife Büyükköse. “Some Bounds for The Energies of The Power Graphs of Cyclic Groups”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 23, no. 6, 2023, pp. 1412-7, doi:10.35414/akufemubid.1259571.
Vancouver Mutlu Varlıoğlu N, Büyükköse Ş. Some Bounds for The Energies of The Power Graphs of Cyclic Groups. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23(6):1412-7.