Devirli Grupların Power Graflarının Enerjileri İçin Bazı Sınırlar
Year 2023,
Volume: 23 Issue: 6, 1412 - 1417, 28.12.2023
Nurşah Mutlu Varlıoğlu
,
Şerife Büyükköse
Abstract
Bu çalışmada, sonlu bir devirli grubun power grafının komşuluk matrisi yapısı dikkate alınarak, sonlu devirli grupların power graflarının enerjileri için bazı alt ve üst sınırlar elde edilmiştir. Daha sonra devirli bir grubun mertebesinin bir asal sayının pozitif tam sayı kuvveti olması durumu ile bu devirli gruba karşılık gelen power grafın tamlığı arasındaki ilişki kullanılarak bazı sonuçlar verilmiştir.
References
- Abreu, N.M.M., Gutman, I., Robbiano, M. and So, W., 2010. Applications of a theorem by Ky Fan in the theory of graph energy. Linear Algebra and its Applications, 432, 2163-2169.
- Cameron, P.J., 2010. The power graph of a finite group ll. Journal of Group Theory 13, 779-783.
- Cameron, P.J. and Ghosh, S., 2011. The power graph of a finite group. Discrete Mathematics, 311(3), 1220-1222.
- Cavers, M., Fallat, S., Kirkland, S., 2010. On the normalized laplacian energy and general Randi'c index R₋₁ of graphs. Linear Algebra and its Applications, 443, 172-190.
- Chakrabarty, I., Ghosh, S., Sen, M.K., 2009. Undirected Power Graphs of Semigroups. Semigroup Forum, 78, 410-426.
- Chattopadhyay, S., Panigrahi, P., 2014. Connectivity and planarity of power graphs of finite cylclic, dihedral and dicyclic groups. Algebra and Discrete Mathematics, 18, 42-49.
- Chattopadhyay, S., Panigrahi, P., 2015. Some relations between power graphs and Cayley graphs. Journal of the Egyptian Mathematical Society, 23, 457-462.
- Chattopadhyay, S., Panigrahi, P. and Atik, F., 2018. Spectral radius of power graphs on certain finite groups, Indagationes Mathematicae, 29, 730-737.
- Gutman, I., 1978. The energy of graph. 10. Steirmarkisches Mathematisches Symposium, 103, 1-22.
- Gutman, I. and Zhou, B., 2006. Laplacian energy of a graph. Linear Algebra and its Applications, 414, 29-37.
- Gutman, I., Indulal, G. and Vijayakumar, A., 2008. On distance energy of graphs. MATCH Communications in Mathematical and Computer Chemistry, 60, 461-472.
- Horn, R.A. and Johnson, C.R., 2012. Matrix Analysis. 2 nd edition, Cambridge/United Kingdom: Cambridge University Press, 42.
- Hwang, S.G., 2004. Cauchy's interlace theorem for eigenvalues of hermitian matrices. The American Mathematical Monthly, 111, 157-159.
- Kelarev, A.V. and Quinn, S.J., 2002. Directed graphs and combinatorial properties of semigroups. Journal of Algebra, 251(1), 16-26.
- Kelarev, A.V. and Quinn, S.J., 2004. A combinatorial property and power graphs of semigroups. Commentationes Mathematicae Universitatis Carolinae, 45(1), 1-7.
- Kelarev, A.V. and Quinn, S.J., 2000. A combinatorial property and power graphs of groups. Contributions to General Algebra, 12, 229-235.
- Lütkepohl, H., 1996. Handbook of matrices. First edition, Chichester: John Wiley & Sons, 268, 280.
- Oboudi, M.R., 2019. A new lower bound for the energy of graphs. Linear Algebra and its Applications, 580, 384-395.
Some Bounds for The Energies of The Power Graphs of Cyclic Groups
Year 2023,
Volume: 23 Issue: 6, 1412 - 1417, 28.12.2023
Nurşah Mutlu Varlıoğlu
,
Şerife Büyükköse
Abstract
In this study, some lower and upper bounds were obtained for the energies of the power graphs of finite cyclic groups by considering the adjacency matrix structure of the power graph of a finite cyclic group. Then, some results are given using the relationship between the case where the order of a cyclic group is the positive integer power of a prime number and the completeness of the power graph corresponding to this cyclic group.
References
- Abreu, N.M.M., Gutman, I., Robbiano, M. and So, W., 2010. Applications of a theorem by Ky Fan in the theory of graph energy. Linear Algebra and its Applications, 432, 2163-2169.
- Cameron, P.J., 2010. The power graph of a finite group ll. Journal of Group Theory 13, 779-783.
- Cameron, P.J. and Ghosh, S., 2011. The power graph of a finite group. Discrete Mathematics, 311(3), 1220-1222.
- Cavers, M., Fallat, S., Kirkland, S., 2010. On the normalized laplacian energy and general Randi'c index R₋₁ of graphs. Linear Algebra and its Applications, 443, 172-190.
- Chakrabarty, I., Ghosh, S., Sen, M.K., 2009. Undirected Power Graphs of Semigroups. Semigroup Forum, 78, 410-426.
- Chattopadhyay, S., Panigrahi, P., 2014. Connectivity and planarity of power graphs of finite cylclic, dihedral and dicyclic groups. Algebra and Discrete Mathematics, 18, 42-49.
- Chattopadhyay, S., Panigrahi, P., 2015. Some relations between power graphs and Cayley graphs. Journal of the Egyptian Mathematical Society, 23, 457-462.
- Chattopadhyay, S., Panigrahi, P. and Atik, F., 2018. Spectral radius of power graphs on certain finite groups, Indagationes Mathematicae, 29, 730-737.
- Gutman, I., 1978. The energy of graph. 10. Steirmarkisches Mathematisches Symposium, 103, 1-22.
- Gutman, I. and Zhou, B., 2006. Laplacian energy of a graph. Linear Algebra and its Applications, 414, 29-37.
- Gutman, I., Indulal, G. and Vijayakumar, A., 2008. On distance energy of graphs. MATCH Communications in Mathematical and Computer Chemistry, 60, 461-472.
- Horn, R.A. and Johnson, C.R., 2012. Matrix Analysis. 2 nd edition, Cambridge/United Kingdom: Cambridge University Press, 42.
- Hwang, S.G., 2004. Cauchy's interlace theorem for eigenvalues of hermitian matrices. The American Mathematical Monthly, 111, 157-159.
- Kelarev, A.V. and Quinn, S.J., 2002. Directed graphs and combinatorial properties of semigroups. Journal of Algebra, 251(1), 16-26.
- Kelarev, A.V. and Quinn, S.J., 2004. A combinatorial property and power graphs of semigroups. Commentationes Mathematicae Universitatis Carolinae, 45(1), 1-7.
- Kelarev, A.V. and Quinn, S.J., 2000. A combinatorial property and power graphs of groups. Contributions to General Algebra, 12, 229-235.
- Lütkepohl, H., 1996. Handbook of matrices. First edition, Chichester: John Wiley & Sons, 268, 280.
- Oboudi, M.R., 2019. A new lower bound for the energy of graphs. Linear Algebra and its Applications, 580, 384-395.