Research Article
BibTex RIS Cite

The Production of Chamotte Refractories by Incorporation of Foundry Waste Sand Obtained From Investment Casting of 7131 Steel

Year 2024, Volume: 24 Issue: 1, 126 - 135, 27.02.2024
https://doi.org/10.35414/akufemubid.1283088

Abstract

Alumina Silicate based molds become waste after being used in precision casting processes, and their accumulation without recycling harms the environment and becomes a problem. In this study, fireclay refractory materials were produced by using precision casting waste sand (PCWS-A) formed after precision casting of 7131 steel. The physical, mechanical and thermal shock properties of the produced chamotte refractory materials were determined, and XRD (X-ray diffraction method) and SEM (scanning electron microscope) analyzes of the materials were made. According to the results obtained, it was predicted that the mechanical and thermal properties of fireclay refractory materials produced using PCWS-A before and after the thermal shock test were improved, and therefore, the production of chamotte refractory bricks with investment casting waste sands would provide advantages in terms of performance, cost and environment. It is thought that the presence of zircon, which is known to contribute to the mechanical properties of refractory materials, in the PCWS-A used is effective in these advantages

References

  • Aksel, C., 2003. Mechanical properties and thermal shock behaviour of alumina-mullite-zirconia and alumina-mullite refractory materials by slip casting. Ceramics International, 29, 311-316, https://doi.org/10.1016/S0272-8842(02)00139-6.
  • In Annual Book of ASTM Standards 7 (2021) Standard Test Methods for Cold Crushing Strength and Modulus of Rupture of Refractories, Designation: ASTM C133-9, https://doi.org/10.1520/C0133-97R21.
  • In Annual Book of ASTM Standards (1991). Standard Test Methods for flexural strength of advanced ceramics at ambient temperature, Designation: C1161-90, https://doi.org/ 10.1520/C1161-18R23.
  • Bahtlı, T. and Bostancı, V.M., 2020. Effect of precision casting sand waste of 4140 steel on the sintering and densification behaviour of chamotte refractories. Journal of Thermal Analysis and Calorimetry, 142, 2385–2390, https://doi.org/10.1007/s10973-020-09956-6.
  • Bahtli, T. and Bostanci, V.M., 2019. Paslanmaz çeliklerin hassas döküm kumu atıklarının katılmasıyla üretilen beyaz ergimiş alümina refrakterlerinin mekanik özellikleri ve termal şok dayanımları. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 19 (Special issue), 440–446.
  • Başpınar, M.S., 2005. Müllit refrakterlerde bağlayıcı fazın optimizasyonu. Doktora Tezi, Anadolu Üniversitesi, Eskişehir, 202.
  • Biswas, N. and Chaudhuri, S., 1999. Comparative study of zirconia-mullite and alumina-zirconia composites. Bulletin of Materials Science, 22, 37-47, https://doi.org/10.1007/BF02745674.
  • Bragança, S.R., Vicenzi, J., Guerino, K., Bergmann, C.P., 2006. Recycling of iron foundry sand and glass waste as raw material for production of whiteware. Waste Management & Research: The Journal for a Sustainable Circular Economy, 24, 60–66, https://doi.org/10.1177/0734242X06061155.
  • British Standard. (1989). British standard testing of engineering ceramics BS 7134 British Standards Institution.
  • Ceylantekin, R. and Aksel, C., 2010. MgO-Spinel kompozit refrakterlere ZrSiO4 ilavesinin korozyon davranışına etkisi. Anadolu Üniversitesi Bilim ve Teknoloji Dergisi A- Uygulamalı Bilimler ve Mühendislik, 11, 103-104.
  • Gedik, A., 2008. Atık döküm kumlarının karayolu malzemesi olarak kullanımı, Yüksek lisans tezi. İstanbul Teknik Üniversitesi, İstanbul, 147.
  • Hossain, S.S. and Roy, P.K., 2020. Sustainable ceramics derived from solid wastes: a review. Journal of Asian Ceramic Societies, 8, 984-1009, https://doi.org/10.1080/21870764.2020.1815348.
  • Javed, U., Khushnood, R.A., Memon, S.A., Jalal, F.E. and Zafar, M.S., 2020. Sustainable incorporation of lime-bentonite clay composite for production of eco-friendly bricks. Journal of Cleaner Production, 263, 121469, https://doi.org/10.1016/j.jclepro.2020.121469.
  • Jones, S. and C. Yuan, 2003. Advances in shell moulding for investment casting. Journal of Materials Processing Technology, 135, 258-265, https://doi.org/10.1016/S0924-0136(02)00907-X.
  • Kanyo, J.E., Schafföner, S., Uwanyuze, R.S. and K.S. Leary, 2020. An overview of ceramic molds for investment casting of nickel superalloys. Journal of the European Ceramic Society, 40, 4955-4973, https://doi.org/10.1016/j.jeurceramsoc.2020.07.013.
  • Kazmi, S.M.S., Munir, M.J., Patnaikuni, I., Wu, Y.-F. and Fawad, U., 2018. Thermal performance enhancement of eco-friendly bricks incorporating agro-wastes. Energy and Buildings, 158, 1117-1129, https://doi.org/10.1016/j.enbuild.2017.10.056.
  • Körber, S., Völkl, R. and Glatzel, U., 2021. 3D printed polymer positive models for the investment casting of extremely thin-walled single crystals. Journal of Materials Processing Technology, 293, 117095, https://doi.org/10.1016/j.jmatprotec.2021.117095.
  • Lin, D.-F., Luo, H.-L., Lin, K.-L., Liu, Z.-K., 2017. Effects of waste glass and waste foundry sand additions on reclaimed tiles containing sewage sludge ash. Environmental Technology, 38, 1679–1688, https://doi.org/10.1080/09593330.2017.1296891.
  • Lingling, X., Wei, G., Tao, W. and Nanru, Y., 2005. Study on fired bricks with replacing clay by fly ash in high volume ratio. Construction and Building Materials, 19, 243-247, https://doi.org/10.1016/j.conbuildmat.2004.05.017.
  • Meng, W., Ma, C., Ge, T. and Zhong, X., 2016. Effect of zircon addition on the physical properties and coatability adherence of MgO–2CaO•SiO2–3CaO•SiO2 refractory materials. Ceramics International, 42, 9032–9037, https://doi.org/10.1016/j.ceramint.2016.02.140.
  • Mishra, S. and Ranjana, R., 2010. Reverse solidification path methodology for dewaxing ceramic shells in investment casting process. Materials and Manufacturing Processes, 25, 1385-1388, https://doi.org/10.1080/10426914.2010.496125.
  • Pattnaik, S., Karunakar, D.B. and Jha, P.K., 2012. Developments in investment casting process-a review. Journal of Materials Processing Technology, 212, 2332-2348, https://doi.org/10.1016/j.jmatprotec.2012.06.003.
  • Reijnders, L., (2007). Cleaner phosphogypsum, coal combustion ashes and waste incineration ashes for application in building materials: a review. Building and Environment, 42, 1036-1042, https://doi.org/10.1016/j.buildenv.2005.09.016.
  • Sahu, M.K. and Singh, L., 2017. Critical review on types of bricks type 13: wood ash bricks. International Journal of Mechanical and Production Engineering, 5, 80-83.
  • Samadi, M., Huseien, G.F. Mohammadhosseini, H., Lee, H.S., Abdul Shukor Lim, N.H., Tahir, M.M. and Alyousef, R., 2020. Waste ceramic as low cost and eco-friendly materials in the production of sustainable mortars. Journal of Cleaner Production, 266, 121825, https://doi.org/10.1016/j.jclepro.2020.121825.
  • Siddique, R., Singh, G., 2011. Utilization of waste foundry sand (WFS) in concrete manufacturing. Resources, Conservation and Recycling, 55, 885–892, https://doi.org/10.1016/j.resconrec.2011.05.001.
  • Torres, A., Bartlett, L., Pilgrim, C., 2017. Effect of foundry waste on the mechanical properties of Portland Cement Concrete. Construction and Building Materials, 135, 674–681, https://doi.org/10.1016/j.conbuildmat.2017.01.028.
  • Xiang, R.F., Li, Y.B., Li, S.J., Ma, X.Y., Li, Y.W. and Sang, S.B., 2016. Effect of zircon content on the microstructure and physical properties of chamotte refractories. Key Engineering Materials, 697, 604-607, https://doi.org/10.4028/www.scientific.net/KEM.697.604.
  • Xianga, R., Li, Y., Li, S., Xue, Z., He, Z., Ouyang, S., Xu, N., 2019. The potential usage of waste foundrys and from investment casting in refractory industry. Journal of Cleaner Production, 211, 1322-1327, https://doi.org/10.1016/j.jclepro.2018.11.280.
  • Yuan, C. and Jones, S., 2003. Investigation of fibre modified ceramic moulds for investment casting. Journal of the European Ceramic Society, 23, 399-407, https://doi.org/10.1016/S0955-2219(02)00153-X.
  • https://tudoksad.org.tr/turkiye-hassas-dokumde-avrupa-nin-yeni-adresi-oldu (28.09.2023)

7131 Çeliğinin Hassas Dökümünden Elde Edilen Döküm Atık Kumu Katılarak Şamot Refrakter Üretimi

Year 2024, Volume: 24 Issue: 1, 126 - 135, 27.02.2024
https://doi.org/10.35414/akufemubid.1283088

Abstract

Alüminasilikat esaslı kalıplar hassas döküm proseslerinde kullanıldıktan sonra atık haline gelerek, geri dönüşüm yapılmadan birikmesi çevreye zarar vermekte ve sorun haline gelmektedir. Bu çalışmada, 7131 çeliğinin hassas dökümünden sonra oluşan hassas döküm atık kumu (PCWS-A) kullanılarak şamot refrakter malzemeler üretilmiştir. Üretilen şamot refrakter malzemelerin fiziksel, mekanik ve termal şok özellikleri belirlenmiş, malzemelerinin XRD (X-ışını kırınım yöntemi) ve SEM (taramalı elektron mikroskobu) analizleri yapılmıştır.
Elde edilen sonuçlara göre termal şok testi öncesi ve sonrası PCWS-A kullanılarak üretilen şamot refrakter malzemelerin mekanik ve termal özelliklerinin iyileştirildiği ve dolayısıyla hassas döküm atık kumları ile şamot refrakter tuğla üretiminin performans, maliyet ve çevre açısından avantajlar sağlayacağı öngörülmüştür. Sağlanacak bu avantajlarda, kullanılan PCWS-A içerisinde refrakter malzemelerin mekanik özelliklerine katkı sağladığı bilinen zirkonun bulunmasının etkili olduğu düşünülmektedir.

References

  • Aksel, C., 2003. Mechanical properties and thermal shock behaviour of alumina-mullite-zirconia and alumina-mullite refractory materials by slip casting. Ceramics International, 29, 311-316, https://doi.org/10.1016/S0272-8842(02)00139-6.
  • In Annual Book of ASTM Standards 7 (2021) Standard Test Methods for Cold Crushing Strength and Modulus of Rupture of Refractories, Designation: ASTM C133-9, https://doi.org/10.1520/C0133-97R21.
  • In Annual Book of ASTM Standards (1991). Standard Test Methods for flexural strength of advanced ceramics at ambient temperature, Designation: C1161-90, https://doi.org/ 10.1520/C1161-18R23.
  • Bahtlı, T. and Bostancı, V.M., 2020. Effect of precision casting sand waste of 4140 steel on the sintering and densification behaviour of chamotte refractories. Journal of Thermal Analysis and Calorimetry, 142, 2385–2390, https://doi.org/10.1007/s10973-020-09956-6.
  • Bahtli, T. and Bostanci, V.M., 2019. Paslanmaz çeliklerin hassas döküm kumu atıklarının katılmasıyla üretilen beyaz ergimiş alümina refrakterlerinin mekanik özellikleri ve termal şok dayanımları. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 19 (Special issue), 440–446.
  • Başpınar, M.S., 2005. Müllit refrakterlerde bağlayıcı fazın optimizasyonu. Doktora Tezi, Anadolu Üniversitesi, Eskişehir, 202.
  • Biswas, N. and Chaudhuri, S., 1999. Comparative study of zirconia-mullite and alumina-zirconia composites. Bulletin of Materials Science, 22, 37-47, https://doi.org/10.1007/BF02745674.
  • Bragança, S.R., Vicenzi, J., Guerino, K., Bergmann, C.P., 2006. Recycling of iron foundry sand and glass waste as raw material for production of whiteware. Waste Management & Research: The Journal for a Sustainable Circular Economy, 24, 60–66, https://doi.org/10.1177/0734242X06061155.
  • British Standard. (1989). British standard testing of engineering ceramics BS 7134 British Standards Institution.
  • Ceylantekin, R. and Aksel, C., 2010. MgO-Spinel kompozit refrakterlere ZrSiO4 ilavesinin korozyon davranışına etkisi. Anadolu Üniversitesi Bilim ve Teknoloji Dergisi A- Uygulamalı Bilimler ve Mühendislik, 11, 103-104.
  • Gedik, A., 2008. Atık döküm kumlarının karayolu malzemesi olarak kullanımı, Yüksek lisans tezi. İstanbul Teknik Üniversitesi, İstanbul, 147.
  • Hossain, S.S. and Roy, P.K., 2020. Sustainable ceramics derived from solid wastes: a review. Journal of Asian Ceramic Societies, 8, 984-1009, https://doi.org/10.1080/21870764.2020.1815348.
  • Javed, U., Khushnood, R.A., Memon, S.A., Jalal, F.E. and Zafar, M.S., 2020. Sustainable incorporation of lime-bentonite clay composite for production of eco-friendly bricks. Journal of Cleaner Production, 263, 121469, https://doi.org/10.1016/j.jclepro.2020.121469.
  • Jones, S. and C. Yuan, 2003. Advances in shell moulding for investment casting. Journal of Materials Processing Technology, 135, 258-265, https://doi.org/10.1016/S0924-0136(02)00907-X.
  • Kanyo, J.E., Schafföner, S., Uwanyuze, R.S. and K.S. Leary, 2020. An overview of ceramic molds for investment casting of nickel superalloys. Journal of the European Ceramic Society, 40, 4955-4973, https://doi.org/10.1016/j.jeurceramsoc.2020.07.013.
  • Kazmi, S.M.S., Munir, M.J., Patnaikuni, I., Wu, Y.-F. and Fawad, U., 2018. Thermal performance enhancement of eco-friendly bricks incorporating agro-wastes. Energy and Buildings, 158, 1117-1129, https://doi.org/10.1016/j.enbuild.2017.10.056.
  • Körber, S., Völkl, R. and Glatzel, U., 2021. 3D printed polymer positive models for the investment casting of extremely thin-walled single crystals. Journal of Materials Processing Technology, 293, 117095, https://doi.org/10.1016/j.jmatprotec.2021.117095.
  • Lin, D.-F., Luo, H.-L., Lin, K.-L., Liu, Z.-K., 2017. Effects of waste glass and waste foundry sand additions on reclaimed tiles containing sewage sludge ash. Environmental Technology, 38, 1679–1688, https://doi.org/10.1080/09593330.2017.1296891.
  • Lingling, X., Wei, G., Tao, W. and Nanru, Y., 2005. Study on fired bricks with replacing clay by fly ash in high volume ratio. Construction and Building Materials, 19, 243-247, https://doi.org/10.1016/j.conbuildmat.2004.05.017.
  • Meng, W., Ma, C., Ge, T. and Zhong, X., 2016. Effect of zircon addition on the physical properties and coatability adherence of MgO–2CaO•SiO2–3CaO•SiO2 refractory materials. Ceramics International, 42, 9032–9037, https://doi.org/10.1016/j.ceramint.2016.02.140.
  • Mishra, S. and Ranjana, R., 2010. Reverse solidification path methodology for dewaxing ceramic shells in investment casting process. Materials and Manufacturing Processes, 25, 1385-1388, https://doi.org/10.1080/10426914.2010.496125.
  • Pattnaik, S., Karunakar, D.B. and Jha, P.K., 2012. Developments in investment casting process-a review. Journal of Materials Processing Technology, 212, 2332-2348, https://doi.org/10.1016/j.jmatprotec.2012.06.003.
  • Reijnders, L., (2007). Cleaner phosphogypsum, coal combustion ashes and waste incineration ashes for application in building materials: a review. Building and Environment, 42, 1036-1042, https://doi.org/10.1016/j.buildenv.2005.09.016.
  • Sahu, M.K. and Singh, L., 2017. Critical review on types of bricks type 13: wood ash bricks. International Journal of Mechanical and Production Engineering, 5, 80-83.
  • Samadi, M., Huseien, G.F. Mohammadhosseini, H., Lee, H.S., Abdul Shukor Lim, N.H., Tahir, M.M. and Alyousef, R., 2020. Waste ceramic as low cost and eco-friendly materials in the production of sustainable mortars. Journal of Cleaner Production, 266, 121825, https://doi.org/10.1016/j.jclepro.2020.121825.
  • Siddique, R., Singh, G., 2011. Utilization of waste foundry sand (WFS) in concrete manufacturing. Resources, Conservation and Recycling, 55, 885–892, https://doi.org/10.1016/j.resconrec.2011.05.001.
  • Torres, A., Bartlett, L., Pilgrim, C., 2017. Effect of foundry waste on the mechanical properties of Portland Cement Concrete. Construction and Building Materials, 135, 674–681, https://doi.org/10.1016/j.conbuildmat.2017.01.028.
  • Xiang, R.F., Li, Y.B., Li, S.J., Ma, X.Y., Li, Y.W. and Sang, S.B., 2016. Effect of zircon content on the microstructure and physical properties of chamotte refractories. Key Engineering Materials, 697, 604-607, https://doi.org/10.4028/www.scientific.net/KEM.697.604.
  • Xianga, R., Li, Y., Li, S., Xue, Z., He, Z., Ouyang, S., Xu, N., 2019. The potential usage of waste foundrys and from investment casting in refractory industry. Journal of Cleaner Production, 211, 1322-1327, https://doi.org/10.1016/j.jclepro.2018.11.280.
  • Yuan, C. and Jones, S., 2003. Investigation of fibre modified ceramic moulds for investment casting. Journal of the European Ceramic Society, 23, 399-407, https://doi.org/10.1016/S0955-2219(02)00153-X.
  • https://tudoksad.org.tr/turkiye-hassas-dokumde-avrupa-nin-yeni-adresi-oldu (28.09.2023)
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Ceramics in Materials Engineering
Journal Section Articles
Authors

Tuba Bahtlı 0000-0001-5682-6280

Veysel Murat Bostancı 0000-0001-9704-6467

Publication Date February 27, 2024
Submission Date April 14, 2023
Published in Issue Year 2024 Volume: 24 Issue: 1

Cite

APA Bahtlı, T., & Bostancı, V. M. (2024). 7131 Çeliğinin Hassas Dökümünden Elde Edilen Döküm Atık Kumu Katılarak Şamot Refrakter Üretimi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 24(1), 126-135. https://doi.org/10.35414/akufemubid.1283088
AMA Bahtlı T, Bostancı VM. 7131 Çeliğinin Hassas Dökümünden Elde Edilen Döküm Atık Kumu Katılarak Şamot Refrakter Üretimi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. February 2024;24(1):126-135. doi:10.35414/akufemubid.1283088
Chicago Bahtlı, Tuba, and Veysel Murat Bostancı. “7131 Çeliğinin Hassas Dökümünden Elde Edilen Döküm Atık Kumu Katılarak Şamot Refrakter Üretimi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24, no. 1 (February 2024): 126-35. https://doi.org/10.35414/akufemubid.1283088.
EndNote Bahtlı T, Bostancı VM (February 1, 2024) 7131 Çeliğinin Hassas Dökümünden Elde Edilen Döküm Atık Kumu Katılarak Şamot Refrakter Üretimi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24 1 126–135.
IEEE T. Bahtlı and V. M. Bostancı, “7131 Çeliğinin Hassas Dökümünden Elde Edilen Döküm Atık Kumu Katılarak Şamot Refrakter Üretimi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 1, pp. 126–135, 2024, doi: 10.35414/akufemubid.1283088.
ISNAD Bahtlı, Tuba - Bostancı, Veysel Murat. “7131 Çeliğinin Hassas Dökümünden Elde Edilen Döküm Atık Kumu Katılarak Şamot Refrakter Üretimi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24/1 (February 2024), 126-135. https://doi.org/10.35414/akufemubid.1283088.
JAMA Bahtlı T, Bostancı VM. 7131 Çeliğinin Hassas Dökümünden Elde Edilen Döküm Atık Kumu Katılarak Şamot Refrakter Üretimi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24:126–135.
MLA Bahtlı, Tuba and Veysel Murat Bostancı. “7131 Çeliğinin Hassas Dökümünden Elde Edilen Döküm Atık Kumu Katılarak Şamot Refrakter Üretimi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 1, 2024, pp. 126-35, doi:10.35414/akufemubid.1283088.
Vancouver Bahtlı T, Bostancı VM. 7131 Çeliğinin Hassas Dökümünden Elde Edilen Döküm Atık Kumu Katılarak Şamot Refrakter Üretimi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24(1):126-35.