The Use of Boron Compounds in Graphene Oxide Synthesis by Modified Hummers Method
Year 2024,
Volume: 24 Issue: 5, 1235 - 1241, 01.10.2024
Esra Yılmaz Mertsoy
,
Haluk Korucu
Abstract
In this study, the performance evaluation of graphene oxide synthesis from graphite by the Hummers Tour method was focused on. In the Hummers Tour method, it was aimed to evaluate the effects of these chemicals on graphene oxide synthesis by changing only phosphoric acid, boric acid, or borax decahydrate compounds so that all conditions remain the same. In graphene oxide samples; Surface area (YA) by BET analysis, structure characterization by FTIR, Zeta Potential (ZP) and Particle size distribution (PB) by ZETA-SİZER, oxidation degrees (C/O) by SEM+EDS, crystal size (KB) by XRD analysis and defect rate in structure (ID/IG) by Raman analysis were analyzed and the recovery rates between the samples were determined. The recovery rates were determined by reference to the characteristics of the graphite sample. The best results for recovery rates; It was obtained in the graphene oxide sample synthesized with phosphoric acid with 7.7% for YA and 37.9% for PB, and in the graphene oxide sample synthesized with borax decahydrate with 97.4% for C/O ratio, 100.5% for ZP and 84.30% for KB. The recovery rate for D/G was obtained in the graphene oxide sample synthesized with boric acid at 67.85%. The results of the study have shown that it is advantageous to use boron compounds instead of phosphoric acid in the synthesis of graphene oxide.
Project Number
MF081123B33
References
- Abdel-Aal, S. K., Beskrovnyi, A. I., Ionov, A. M., Mozhchil, R. N., & Abdel-Rahman, A. S. (2021). structure investigation by neutron diffraction and x‐ray diffraction of graphene nanocomposite CuO–rGO prepared by low‐cost method. physica status solidi 218(12):2100138.
https://doi.org/10.1002/pssa.202100138
- Bai Y., Xu T., and X. Zhang, 2020. “Graphene-based biosensors for detection of biomarkers,” Micromachines 11(1):60
https://doi.org/10.3390/mi11010060
- Banu, E. T., and Ayça, D. (2022). An Alternative Pre-Treatment Sterilization Solution Synthesis Utilizing Boric Acid Doped Graphene Oxide. Iran. J. Chem. Chem. Eng. 41(11):3718-3725
https://doi.org/10.30492/IJCCE.2022.532683.4806
- Brodie, B. C. 1859. On the atomic weight of graphite. Philosophical transactions of the royal society of London, 149: 249-259.
https://doi.org/10.1098/rstl.1859.0013
- Chaloupková, Z., Belza, J., & Poláková, K. (2023). Detection of Graphene Oxide in Single HeLa Cells based on MCR-Raman Spectroscopy. Automation, Robotics & Communications for Industry 4(5):186-196
https://doi.org/10.1039/D3AY01122D
- Farjadian F. et al. 2020,, “Recent Developments in Graphene and Graphene Oxide: Properties, Synthesis, and Modifications: A Review,” ChemistrySelect, 5(33): 10200–10219
https://doi.org/10.1002/slct.202002501
- Gao, B., Feng, X., Zhang, Y., Zhou, Z., Wei, J., Qiao, R., ... & Zhang, X. (2024). Graphene-based aerogels in water and air treatment: a review. Chemical Engineering Journal, 484:149604.
https://doi.org/10.1016/j.cej.2024.149604
- Guliyev, R. (2015). An investigation of borogypsum utilization for the production of triple superphosphate containing boron fertilizers. Fresenius Environmental Bulletin, 24(3):748-754.
https://doi.org/10.30728/boron.311162
- Guliyeva, N. A., Abaszade, R. G., Khanmammadova, E. A., & Azizov, E. M. (2023). Synthesis and analysis of nanostructured graphene oxide. Journal of Optoelectronic and Biomedical Materials, 15(1):23-30.
https://doi.org/10.15251/JOBM.2023.151.23
- Hummers, W. S. and Offeman, R.E. 1958. Preparation of graphitic oxide. Journal of the American Chemical Society, 80(6): 1339.
https://doi.org/10.1021/ja01539a017
- Jia Y., Zhang, J., Zhang C., Han D., Han J., Tao Y., 2022. Practical Graphene Technologies for Electrochemical Energy Storage, Advanced Functional Materials, 32(42), 1–17.
https://doi.org/10.1002/adfm.202204272
- Korucu, H. 2022. Evaluation of the performance on reduced graphene oxide synthesized using ascorbic acid and sodium borohydride: Experimental designs‐based multi‐response optimization application. Journal of Molecular Structure, 1268:133715.
https://doi.org/10.1016/j.molstruc.2022.133715
- Korucu, H., Mohamed, A. I., Yartaşı, A., & Uğur, M. 2023. The detailed Characterization of graphene oxide. Chemical Papers, 1-20.
https://doi.org/10.1007/s11696-023-02897-y
- Marcano, D.C., Kosynkin, D.V., 2010. Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.B., Lu, W. and Tour, J.M. Improved synthesis of graphene oxide. ACS Nana, 4(8): 4806-4814.
https://doi.org/10.1021/nn1006368
- Mannan, M. A., Hirano, Y., Quitain, A. T., Koinuma, M., & Kida, T. (2018). Boron doped graphene oxide: synthesis and application to glucose responsive reactivity. J. Mater. Sci. Eng, 7(5):1-6.
https://doi.org/10.4172/2169-0022.1000492
- Muniyalakshmi, M., Sethuraman, K., & Silambarasan, D. (2020). Synthesis and characterization of graphene oxide nanosheets. Materials Today: Proceedings, 21, 408-410.
https://doi.org/10.1016/j.matpr.2019.06.375
- Sanchez, S. N. B., da Silveira Salla, J., Cesconeto, L. P., da Rocha, G. L., Virmond, E., & Moreira, R. D. F. P. M. (2024). Synthesis of multi-layer graphene oxide from HCl-treated coke and Brazilian coals by sulfuric acid thermal exfoliation and ozone oxidation. Heliyon, 10(9):30546
https://doi.org/10.1016/j.heliyon.2024.e30546
- Song, S., Shen, H., Wang, Y., Chu, X., Xie, J., Zhou, N., & Shen, J. (2020). Biomedical application of graphene: From drug delivery, tumor therapy, to theranostics. Colloids and Surfaces B: Biointerfaces, 185: 110596.
https://doi.org/10.1016/j.colsurfb.2019.110596
- Staudenmaier, L. 1898. Verfahren zur Darstellung der Graphitsäure. Berichte der Deutschen Chemischen Gesellschaft, 31(2): 1481-1487.
- Şimşek, B., Ultav, G., Korucu, H. and Yartaşı, A., 2018. İmprovement of the graphene oxide dispersion properties with the use of TOPSIS based Taguchi application. Periodica Polyechnica Chemical Engineering, 62(3): 323-335
https://doi.org/10.3311/PPch.11412
- Surekha, G., Krishnaiah, K. V., Ravi, N., & Suvarna, R. P. (2020, March). FTIR, Raman and XRD analysis of graphene oxide films prepared by modified Hummers method. In Journal of Physics: Conference Series 1495(1):012012
https://doi.org/10.1088/1742-6596/1495/1/012012
- Zhang, Q., Yang, Y., Fan, H., Feng, L., Wen, G., & Qin, L. C. (2022). Synthesis of graphene oxide using boric acid in hummers method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 652 (2022): 129802
https://doi.org/10.1016/j.colsurfa.2022.129802
Modifiye Hummers Yöntemi ile Grafen Oksit Sentezinde Bor Bileşiklerinin Kullanılması
Year 2024,
Volume: 24 Issue: 5, 1235 - 1241, 01.10.2024
Esra Yılmaz Mertsoy
,
Haluk Korucu
Abstract
Bu çalışmada grafitten Hummers Tour metodu ile grafen oksit sentezinin performans değerlendirilmesi üzerinde durulmuştur. Hummers Tour metodunda tüm şartlar aynı kalacak şekilde sadece fosforik asit, borik asit veya boraks dekahidrat bileşikleri değiştirilerek, bu kimyasalların grafen oksit sentezi üzerindeki etkilerinin değerlendirilmesi hedeflenmiştir. Grafen oksit örneklerinde; BET analizi ile yüzey alan (YA), FTIR ile yapı karakterizasyonu, ZETA-SIZER ile Zeta Potansiyeli (ZP) ve Parçacık boyut dağılımı (PB), SEM+EDS ile oksidasyon dereceleri (C/O), XRD analizi ile kristal boyutu (KB) ve Raman analizi ile yapıdaki kusur oranı (ID/IG) analiz edilerek, örnekler arasındaki iyileşme oranları belirlenmiştir. İyileşme oranları grafit örneğinin özellikleri referans alınarak belirlenmiştir. İyileşme oranları için en iyi sonuçlar; YA için % 7,7 ve PB için %37,9 ile fosforik asit ile sentezlenen grafen oksit örneğinde ve C/O oranı için %97,4 , ZP için %100,5 ve KB için ise % 84,30 ile boraks dekahidrat ile sentezlenen grafen oksit örneğinde elde edilmiştir. D/G için iyi iyileşme oranı % 67,85 ile borik asit le sentezlenen grafen oksit örneğinde elde edilmiştir. Çalışma sonuçları göstermiştir ki grafen oksit sentezinde fosforik asit yerine bor bileşiklerinin kullanılması avantajlı olmaktadır.
Ethical Statement
Bu çalışmanın, özgün bir çalışma olduğunu; çalışmanın hazırlık, veri toplama, analiz
ve bilgilerin sunumu olmak üzere tüm aşamalarından bilimsel etik ilke ve kurallarına uygun
davrandığımı; bu çalışma kapsamında elde edilmeyen tüm veri ve bilgiler için kaynak
gösterdiğimi ve bu kaynaklara kaynakçada yer verdiğimi; kullanılan verilerde herhangi bir
değişiklik yapmadığımı, çalışmanın Committee on Publication Ethics (COPE)' in tüm şartlarını
ve koşullarını kabul ederek etik görev ve sorumluluklara riayet ettiğimi beyan ederim.
Herhangi bir zamanda, çalışmayla ilgili yaptığım bu beyana aykırı bir durumun
saptanması durumunda, ortaya çıkacak tüm ahlaki ve hukuki sonuçlara razı olduğumu
bildiririm.
Supporting Institution
Çankırı Karatekin Üniversitesi
Project Number
MF081123B33
Thanks
Bu araştırma Çankırı Karatekin Üniversitesi tarafından finanse edilen Bilimsel Araştırma Projesi (MF081123B33) desteği ile gerçekleştirilmiştir. Yazarlar Çankırı Karatekin Üniversitesi Bilimsel Araştırma Proje Yönetim Birimi'ne (ÇAKÜ-BAP) teşekkür eder.
References
- Abdel-Aal, S. K., Beskrovnyi, A. I., Ionov, A. M., Mozhchil, R. N., & Abdel-Rahman, A. S. (2021). structure investigation by neutron diffraction and x‐ray diffraction of graphene nanocomposite CuO–rGO prepared by low‐cost method. physica status solidi 218(12):2100138.
https://doi.org/10.1002/pssa.202100138
- Bai Y., Xu T., and X. Zhang, 2020. “Graphene-based biosensors for detection of biomarkers,” Micromachines 11(1):60
https://doi.org/10.3390/mi11010060
- Banu, E. T., and Ayça, D. (2022). An Alternative Pre-Treatment Sterilization Solution Synthesis Utilizing Boric Acid Doped Graphene Oxide. Iran. J. Chem. Chem. Eng. 41(11):3718-3725
https://doi.org/10.30492/IJCCE.2022.532683.4806
- Brodie, B. C. 1859. On the atomic weight of graphite. Philosophical transactions of the royal society of London, 149: 249-259.
https://doi.org/10.1098/rstl.1859.0013
- Chaloupková, Z., Belza, J., & Poláková, K. (2023). Detection of Graphene Oxide in Single HeLa Cells based on MCR-Raman Spectroscopy. Automation, Robotics & Communications for Industry 4(5):186-196
https://doi.org/10.1039/D3AY01122D
- Farjadian F. et al. 2020,, “Recent Developments in Graphene and Graphene Oxide: Properties, Synthesis, and Modifications: A Review,” ChemistrySelect, 5(33): 10200–10219
https://doi.org/10.1002/slct.202002501
- Gao, B., Feng, X., Zhang, Y., Zhou, Z., Wei, J., Qiao, R., ... & Zhang, X. (2024). Graphene-based aerogels in water and air treatment: a review. Chemical Engineering Journal, 484:149604.
https://doi.org/10.1016/j.cej.2024.149604
- Guliyev, R. (2015). An investigation of borogypsum utilization for the production of triple superphosphate containing boron fertilizers. Fresenius Environmental Bulletin, 24(3):748-754.
https://doi.org/10.30728/boron.311162
- Guliyeva, N. A., Abaszade, R. G., Khanmammadova, E. A., & Azizov, E. M. (2023). Synthesis and analysis of nanostructured graphene oxide. Journal of Optoelectronic and Biomedical Materials, 15(1):23-30.
https://doi.org/10.15251/JOBM.2023.151.23
- Hummers, W. S. and Offeman, R.E. 1958. Preparation of graphitic oxide. Journal of the American Chemical Society, 80(6): 1339.
https://doi.org/10.1021/ja01539a017
- Jia Y., Zhang, J., Zhang C., Han D., Han J., Tao Y., 2022. Practical Graphene Technologies for Electrochemical Energy Storage, Advanced Functional Materials, 32(42), 1–17.
https://doi.org/10.1002/adfm.202204272
- Korucu, H. 2022. Evaluation of the performance on reduced graphene oxide synthesized using ascorbic acid and sodium borohydride: Experimental designs‐based multi‐response optimization application. Journal of Molecular Structure, 1268:133715.
https://doi.org/10.1016/j.molstruc.2022.133715
- Korucu, H., Mohamed, A. I., Yartaşı, A., & Uğur, M. 2023. The detailed Characterization of graphene oxide. Chemical Papers, 1-20.
https://doi.org/10.1007/s11696-023-02897-y
- Marcano, D.C., Kosynkin, D.V., 2010. Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.B., Lu, W. and Tour, J.M. Improved synthesis of graphene oxide. ACS Nana, 4(8): 4806-4814.
https://doi.org/10.1021/nn1006368
- Mannan, M. A., Hirano, Y., Quitain, A. T., Koinuma, M., & Kida, T. (2018). Boron doped graphene oxide: synthesis and application to glucose responsive reactivity. J. Mater. Sci. Eng, 7(5):1-6.
https://doi.org/10.4172/2169-0022.1000492
- Muniyalakshmi, M., Sethuraman, K., & Silambarasan, D. (2020). Synthesis and characterization of graphene oxide nanosheets. Materials Today: Proceedings, 21, 408-410.
https://doi.org/10.1016/j.matpr.2019.06.375
- Sanchez, S. N. B., da Silveira Salla, J., Cesconeto, L. P., da Rocha, G. L., Virmond, E., & Moreira, R. D. F. P. M. (2024). Synthesis of multi-layer graphene oxide from HCl-treated coke and Brazilian coals by sulfuric acid thermal exfoliation and ozone oxidation. Heliyon, 10(9):30546
https://doi.org/10.1016/j.heliyon.2024.e30546
- Song, S., Shen, H., Wang, Y., Chu, X., Xie, J., Zhou, N., & Shen, J. (2020). Biomedical application of graphene: From drug delivery, tumor therapy, to theranostics. Colloids and Surfaces B: Biointerfaces, 185: 110596.
https://doi.org/10.1016/j.colsurfb.2019.110596
- Staudenmaier, L. 1898. Verfahren zur Darstellung der Graphitsäure. Berichte der Deutschen Chemischen Gesellschaft, 31(2): 1481-1487.
- Şimşek, B., Ultav, G., Korucu, H. and Yartaşı, A., 2018. İmprovement of the graphene oxide dispersion properties with the use of TOPSIS based Taguchi application. Periodica Polyechnica Chemical Engineering, 62(3): 323-335
https://doi.org/10.3311/PPch.11412
- Surekha, G., Krishnaiah, K. V., Ravi, N., & Suvarna, R. P. (2020, March). FTIR, Raman and XRD analysis of graphene oxide films prepared by modified Hummers method. In Journal of Physics: Conference Series 1495(1):012012
https://doi.org/10.1088/1742-6596/1495/1/012012
- Zhang, Q., Yang, Y., Fan, H., Feng, L., Wen, G., & Qin, L. C. (2022). Synthesis of graphene oxide using boric acid in hummers method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 652 (2022): 129802
https://doi.org/10.1016/j.colsurfa.2022.129802