Research Article
BibTex RIS Cite

Ticari Kompozit Kemiklerin ve CJP Teknolojisi Kullanılarak Üretilen 3B Baskılı Kemiklerin Mekanik Özelliklerinin Değerlendirilmesi

Year 2024, Volume: 24 Issue: 06, 1506 - 1515

Abstract

Kadavra kemikleri ve yapay kemikler, ameliyat öncesi çalışmalar gerçekleştirmek için ve eğitim amacıyla faydalanılmaktadır. Kadavra kemiklerini bulmak zordur, etik izinler gerektirir ve enfeksiyon tehlikesi barındırırlar. Bu yüzden uygulamada ticari yapay kemikler tercih edilmektedir. Bununla birlikte, bu ticari alternatif standart olarak ortalama bir boyut ve geometride üretildiğinden onları belirli bir cerrahi simülasyona uyarlamak neredeyse imkansızdır. Ayrıca, bu yapay kemikler, erişilebilirliklerini sınırlayan nispeten yüksek maliyetlere sahiptir. Diğer yandan, üç boyutlu (3B) baskı teknolojilerinden birisi olan ColorJet baskı (CJP) hızlı ve uygun maliyetli bir alternatif sunmaktadır. Fakat 3B’lu baskılı modellerin mekanik olarak yapay kemiklere uyum sağlayıp sağlayamayacağı belirsizdir. Bu çalışmada, 3B’lu baskılı kemikler ile yapay ticari kompozit kemiklerin mekanik özellikler açısından karşılaştırması gerçekleştirilmiştir. ISO5833 standardı temel alınarak basma testleri 14 baskılı ve 14 kompozit kemiklere uygulanmıştır. Gerilme-şekil değiştirme, kırılma yükü ve elastik modülü gibi mekanik özellikler hesaplanmış ve bu sonuçlar istatistik analiz yöntemlerinden birisi olan iki örnekli bağımsız t-testi kullanılarak karşılaştırılmıştır. Sonuç olarak, kemik modelleri arasında gerilme ve kırılma yük değerleri açısından anlamlı bir fark bulunmamıştır (sırasıyla p<0.52 ve p<0.17), ancak elastik modülü istatistiksel olarak anlamlıdır (p<0.01). Bu test sonuçları, diğer yöntemlere göre daha hızlı üretim kapasitesi bulunan bu teknolojinin yapay kemiklerle benzer dayanıklılık gösterebileceği ortaya çıkarılmıştır. Böylece hastaya özel kemik modelleri gerektiren ameliyat öncesi planlamada ve deneysel biyomekanik çalışmalarda yapay kemikler yerine 3B baskılı kemikler kullanılabilir.

Supporting Institution

İzmir Katip Çelebi Üniversitesi BAP

Project Number

2023-TDR-FEBE-0005

References

  • Abdullah, A. M., Mohamad, D., Din, T. N. D. T, Yahya, S., Akil, H. M., Rajion, Z. A. 2019. Fabrication of nasal prosthesis utilising an affordable 3D printer. Int J Adv Manuf Technol, 100: 1907-1912. https://doi.org/10.1007/s00170-018-2831-y.
  • Al-Dulimi, Z., Wallis, M., Tan, D. K., Maniruzzaman, M., Nokhodchi, A. 2020. 3D printing technology as innovative solutions for biomedical applications. Drug Discov Today, 26: 360-383. https://doi.org/10.1016/j.drudis.2020.11.013.
  • Awari, G., Thorat, C., Ambade, V., Kothari, D. P. 2021. Additive manufacturing and 3D printing technology: principles and applications. 1st ed., CRC Press, USA.
  • Bakhtiar, S. M., Butt, H. A., Zeb, S., Quddusi, D., M., Gul, S., Dilshad, E. 2018. 3D printing technologies and their applications in biomedical science. In: D. Barh, V. Azevedo [eds.], Omics Technologies and Bio-Engineering. Elsevier, pp. 167-189.
  • Beaupied, H., Lespessailles., E., Benhamou, C. L. 2007. Evaluation of macrostructural bone biomechanics. Joint Bone Spine, 74: 233-239. https://doi.org/10.1016/j.jbspin.2007.01.019.
  • Blaszczyk, M., Jabbar, R., Szmyd, B., Radek, M. 2021. 3D printing of rapid, low-cost and patient-specific models of brain vasculature for use in preoperative planning in clipping of intracranial aneurysms. Journal of Clinical Medicine, 10: 1201. https://doi.org/10.3390/jcm10061201.
  • Brunello, G., Sivolella, S., Meneghello, R., Ferroni, L., Gardin, C., Piattelli, A. 2016. Powder-based 3D printing for bone tissue engineering. Biotechnol Adv, 34: 740-753. https://doi.org/10.1016/j.biotechadv.2016.03.009.
  • Cheng, L., Shoma Suresh, K., He, H., Rajput, R. S., Feng, Q., Ramesh, S., Ramalingam, M. 2021. 3D printing of micro-and nanoscale bone substitutes: a review on technical and translational perspectives. Int J Nanomedicine, 16: 4289. https://doi.org/10.2147/IJN.S311001.
  • Choonara, Y. E., du Toit, L. C., Kumar, P., Kondiah, P. P., Pillay, V. 2016. 3D-printing and the effect on medical costs: a new era? Expert Rev Pharmacoecon Outcomes Res, 16: 23-32. https://doi.org/10.1586/14737167.2016.1138860.
  • Cimerman, M., Kristan, A. 2007. Preoperative planning in pelvic and acetabular surgery: the value of advanced computerised planning modules. Injury, 38: 442-449. https://doi.org/10.1016/j.injury.2007.01.033.
  • Dini, F., Ghaffari, S. A., Javadpour, J., & Rezaie, H. R. 2022. Binder jetting of hydroxyapatite/carboxymethyl chitosan/polyvinylpyrrolidone/dextrin composite: the role of polymeric adhesive and particle size distribution on printability of powders. J Mater Eng Perform, 31(7), 5801-5811. https://doi.org/10.1007/s11665-022-06671-1.
  • Du, W., Ren, X., Pei, Z., Ma, C. 2020. Ceramic binder jetting additive manufacturing: a literature review on density. J Manuf Sci Eng, 142: 040801. https://doi.org/10.1115/1.4046248.
  • Dudek, P. 2013. Fdm 3D printing technology in manufacturing composite elements. Archives of metallurgy and materials, 58: 1415-1418. https://doi.org/10.2478/amm-2013-0186.
  • Elfar, J., Stanbury, S., Menorca, R. M. G., Reed, J. D. 2014. Composite bone models in orthopaedic surgery research and education. J Am Acad Orthop Surg, 22: 111. https://doi.org/10.5435/JAAOS-22-02-111.
  • Fatma, N., Haleem, A., Javaid, M., & Khan, S. 2021. Comparison of fused deposition modeling and color jet 3D printing technologies for the printing of mathematical geometries. Journal of Industrial Integration and Management, 6: 93-105. https://doi.org/10.1142/S2424862220500104.
  • Fina, F., Goyanes, A., Gaisford, S., Basit, A. W. 2017. Selective laser sintering (SLS) 3D printing of medicines. Int J Pharm, 529: 285-293. https://doi.org/10.1016/j.ijpharm.2017.06.082.
  • Gardner, M. P., Chong, A. C., Pollock, A. G., Wooley, P. H. 2010. Mechanical evaluation of large-size fourth-generation composite femur and tibia models. Annals of biomedical engineering, 38: 613-620. https://doi.org/10.1007/s10439-009-9887-7.
  • George, E., Liacouras, P., Rybicki, F. J., & Mitsouras, D. 2017. Measuring and establishing the accuracy and reproducibility of 3D printed medical models. Radiographics, 37(5): 1424-1450. https://doi.org/10.1148/rg.2017160165.
  • Hausmann, J. T. 2006. Sawbones in biomechanical settings-a review. Osteosynthesis and Trauma Care, 14: 259-264. https://doi.org/10.1055/s-2006-942333.
  • Hochman, J. B., Kraut, J., Kazmerik, K., Unger, B. J. 2014. Generation of a 3D printed temporal bone model with internal fidelity and validation of the mechanical construct. Otolaryngol Head Neck Surg (1979), 150: 448-454. https://doi.org/10.1177/0194599813518008.
  • Kadakia, R. J., Wixted, C. M., Allen, N. B., Hanselman, A. E., Adams, S. B. 2020. Clinical applications of custom 3D printed implants in complex lower extremity reconstruction. 3D Print Med, 6: 1-6. https://doi.org/10.1186/s41205-020-00083-4.
  • Kim, G. B., Lee, S., Kim, H., Yang, D. H., Kim, Y. H., Kyung, Y. S., Kim, N. 2016. Three-dimensional printing: basic principles and applications in medicine and radiology. Korean J Radiol, 17: 182-197. https://doi.org/10.3348/kjr.2016.17.2.182.
  • Kudelski, R., Cieslik, J., Kulpa, M., Dudek, P., Zagorski, K., Rumin, R. 2017. Comparison of cost, material and time usage in FDM and SLS 3D printing methods. 13th International conference on perspective technologies and methods in MEMS design (MEMSTECH), p. 12-14, Lviv, Ukraine.
  • Lee, J. Y., An, J., Chua, C. K. 2017. Fundamentals and applications of 3D printing for novel materials. Appl Mater Today, 7: 120-133. https://doi.org/10.1016/j.apmt.2017.02.004.
  • Lim, K. H. A., Loo, Z. Y., Goldie, S. J., Adams, J. W., McMenamin, P. G. 2016. Use of 3D printed models in medical education: A randomized control trial comparing 3D prints versus cadaveric materials for learning external cardiac anatomy. Anat Sci Educ, 9: 213-221. https://doi.org/10.1002/ase.1573.
  • Lv, X., Ye, F., Cheng, L., Fan, S., Liu, Y. 2019. Binder jetting of ceramics: Powders, binders, printing parameters, equipment, and post-treatment. Ceramics International, 45: 12609-12624. https://doi.org/10.1016/j.ceramint.2019.04.012.
  • Miedzinska, D., Gieleta, R., Malek, E. 2020. Experimental study of strength properties of SLA resins under low and high strain rates. Mechanics of Materials, 141, 103245. https://doi.org/10.1016/j.mechmat.2019.103245.
  • Mihcin, S., Ciklacandir, S. 2022. Towards integration of the finite element modeling technique into biomedical engineering education. Biomed Eng (Singapore), 34: 2150054. https://doi.org/10.4015/S101623722150054X.
  • Nagl, K. 2021. A comparison of the biomechanical behaviour of simple artificial, composite, and 3D FDM printed human femoral bones. PhD Thesis, TU Wien, Vienna, Austria.
  • Nagl, K., Reisinger, A., & Pahr, D. H. 2022. The biomechanical behavior of 3D printed human femoral bones based on generic and patient-specific geometries. 3D Print Med, 8(1): 35. https://doi.org/10.1186/s41205-022-00162-8.
  • Navarro, M., Michiardi, A., Castano, O., Planell, J. A. 2008. Biomaterials in orthopaedics. J R Soc Interface, 5: 1137-1158. https://doi.org/10.1098/rsif.2008.0151.
  • O’Toole III, R. V., Jaramaz, B., DiGioia III, A. M., Visnic, C. D., Reid, R. H. 1995. Biomechanics for preoperative planning and surgical simulations in orthopaedics. Comput Biol Med, 25: 183-191. https://doi.org/10.1016/0010-4825(94)00043-P.
  • Rafiee, M., Farahani, R. D., Therriault, D. 2020. Multi-material 3D and 4D printing: a survey. Advanced Science, 7: 1902307. https://doi.org/10.1002/advs.201902307.
  • Ruiz, O. G., Dhaher, Y. 2021. Multi-color and multi-material 3D printing of knee joint models. 3D Printing in Medicine, 7: 1-16. https://doi.org/10.1186/s41205-021-00100-0.
  • Shahrubudin, N., Lee, T. C., Ramlan, R. 2019. An overview on 3D printing technology: Technological, materials, and applications. Procedia Manuf, 35: 1286-1296. https://doi.org/10.1016/j.promfg.2019.06.089.
  • Tai, B. L., Kao, Y. T., Payne, N., Zheng, Y., Chen, L., Shih, A. J. 2018. 3D printed composite for simulating thermal and mechanical responses of the cortical bone in orthopaedic surgery. Med Eng Phys, 61: 61-68. https://doi.org/10.1016/j.medengphy.2018.08.004.
  • Victor, S. P., Muthu, J. 2014. Polymer ceramic composite materials for orthopedic applications—relevance and need for mechanical match and bone regeneration. Journal of Mechatronics, 2: 1-10. https://doi.org/10.1166/jom.2014.1030.
  • Wu, D., Spanou, A., Diez-Escudero, A., & Persson, C. 2020. 3D-printed PLA/HA composite structures as synthetic trabecular bone: A feasibility study using fused deposition modeling. J Mech Behav Biomed Mater, 103: 103608. https://doi.org/10.1016/j.jmbbm.2019.103608.
  • Wu, G., Zhou, B., Bi, Y., Zhao, Y. 2008. Selective laser sintering technology for customized fabrication of facial prostheses. The Journal of prosthetic dentistry, 100: 56-60. https://doi.org/10.1016/S0022-3913(08)60138-9.
  • Xu, N., Ye, X., Wei, D., Zhong, J., Chen, Y., Xu, G., He, D. 2014. 3D artificial bones for bone repair prepared by computed tomography-guided fused deposition modeling for bone repair. ACS Appl Mater Interfaces, 6: 14952-14963. https://doi.org/10.1021/am502716t.
  • Zdero, R., Brzozowski, P., & Schemitsch, E. H. 2023. Biomechanical properties of artificial bones made by Sawbones: A review. Med Eng Phys, 104017. https://doi.org/10.1016/j.medengphy.2023.104017.
  • Zhang, J., Allardyce, B. J., Rajkhowa, R., Wang, X., Liu, X. 2021. 3D printing of silk powder by binder jetting technique. Addit Manuf, 38, 101820. https://doi.org/10.1016/j.addma.2020.101820.
  • Ziaee, M., Crane, N. B. 2019. Binder jetting: A review of process, materials, and methods. Addit Manuf, 28: 781–801. https://doi.org/10.1016/j.addma.2019.05.031

The Evaluation of Mechanical Properties of Commercial Composite Bones and 3D-Printed Bones Produced Using the CJP Technology

Year 2024, Volume: 24 Issue: 06, 1506 - 1515

Abstract

Cadaver bones and artificial bones are utilized to perform preoperative studies and education purposes. Cadaver bones are hard to find, require ethical permissions, and have infection hazards. Therefore, commercial artificial bones are preferred in practice. Nonetheless, since these commercial alternatives are standardly produced in an average size and geometry, it is almost impossible to adapt them to a specific surgical simulation. In addition, these artificial bones have relatively high costs, which limits their accessibility. On the other hand, ColorJet printing (CJP), one of the three-dimensional printing technologies, offers a rapid and cost-effective alternative. However, whether the printed 3D-printed models can mechanically comply with artificial bones is unclear. In this study, 3D-printed bones and artificial commercial composite bones were compared in terms of mechanical properties. Compression tests were applied over 14 printed and 14 composite bones using the ISO 5833 standard. Mechanical properties including stress-strain, load to failure, and elastic modulus were calculated, and these results were compared using the two-sample independent t-test, which is one of the statistical analysis methods. Consequently, there was no significant difference between the bone models in terms of stress and failure load values (p<0.52 and p<0.17, respectively), however, the elastic modulus was statistically significant (p<0.01). These test findings demonstrated that this technology, which has a faster production capacity than other methods, can show similar strength to artificial bones. Thus, 3D-printed bones can be utilized instead of artificial bones in preoperative planning, which needs patient-specific bone models, and experimental biomechanical studies.

Supporting Institution

Izmir Katip Celebi University Scientific Research Council Agency

Project Number

2023-TDR-FEBE-0005

References

  • Abdullah, A. M., Mohamad, D., Din, T. N. D. T, Yahya, S., Akil, H. M., Rajion, Z. A. 2019. Fabrication of nasal prosthesis utilising an affordable 3D printer. Int J Adv Manuf Technol, 100: 1907-1912. https://doi.org/10.1007/s00170-018-2831-y.
  • Al-Dulimi, Z., Wallis, M., Tan, D. K., Maniruzzaman, M., Nokhodchi, A. 2020. 3D printing technology as innovative solutions for biomedical applications. Drug Discov Today, 26: 360-383. https://doi.org/10.1016/j.drudis.2020.11.013.
  • Awari, G., Thorat, C., Ambade, V., Kothari, D. P. 2021. Additive manufacturing and 3D printing technology: principles and applications. 1st ed., CRC Press, USA.
  • Bakhtiar, S. M., Butt, H. A., Zeb, S., Quddusi, D., M., Gul, S., Dilshad, E. 2018. 3D printing technologies and their applications in biomedical science. In: D. Barh, V. Azevedo [eds.], Omics Technologies and Bio-Engineering. Elsevier, pp. 167-189.
  • Beaupied, H., Lespessailles., E., Benhamou, C. L. 2007. Evaluation of macrostructural bone biomechanics. Joint Bone Spine, 74: 233-239. https://doi.org/10.1016/j.jbspin.2007.01.019.
  • Blaszczyk, M., Jabbar, R., Szmyd, B., Radek, M. 2021. 3D printing of rapid, low-cost and patient-specific models of brain vasculature for use in preoperative planning in clipping of intracranial aneurysms. Journal of Clinical Medicine, 10: 1201. https://doi.org/10.3390/jcm10061201.
  • Brunello, G., Sivolella, S., Meneghello, R., Ferroni, L., Gardin, C., Piattelli, A. 2016. Powder-based 3D printing for bone tissue engineering. Biotechnol Adv, 34: 740-753. https://doi.org/10.1016/j.biotechadv.2016.03.009.
  • Cheng, L., Shoma Suresh, K., He, H., Rajput, R. S., Feng, Q., Ramesh, S., Ramalingam, M. 2021. 3D printing of micro-and nanoscale bone substitutes: a review on technical and translational perspectives. Int J Nanomedicine, 16: 4289. https://doi.org/10.2147/IJN.S311001.
  • Choonara, Y. E., du Toit, L. C., Kumar, P., Kondiah, P. P., Pillay, V. 2016. 3D-printing and the effect on medical costs: a new era? Expert Rev Pharmacoecon Outcomes Res, 16: 23-32. https://doi.org/10.1586/14737167.2016.1138860.
  • Cimerman, M., Kristan, A. 2007. Preoperative planning in pelvic and acetabular surgery: the value of advanced computerised planning modules. Injury, 38: 442-449. https://doi.org/10.1016/j.injury.2007.01.033.
  • Dini, F., Ghaffari, S. A., Javadpour, J., & Rezaie, H. R. 2022. Binder jetting of hydroxyapatite/carboxymethyl chitosan/polyvinylpyrrolidone/dextrin composite: the role of polymeric adhesive and particle size distribution on printability of powders. J Mater Eng Perform, 31(7), 5801-5811. https://doi.org/10.1007/s11665-022-06671-1.
  • Du, W., Ren, X., Pei, Z., Ma, C. 2020. Ceramic binder jetting additive manufacturing: a literature review on density. J Manuf Sci Eng, 142: 040801. https://doi.org/10.1115/1.4046248.
  • Dudek, P. 2013. Fdm 3D printing technology in manufacturing composite elements. Archives of metallurgy and materials, 58: 1415-1418. https://doi.org/10.2478/amm-2013-0186.
  • Elfar, J., Stanbury, S., Menorca, R. M. G., Reed, J. D. 2014. Composite bone models in orthopaedic surgery research and education. J Am Acad Orthop Surg, 22: 111. https://doi.org/10.5435/JAAOS-22-02-111.
  • Fatma, N., Haleem, A., Javaid, M., & Khan, S. 2021. Comparison of fused deposition modeling and color jet 3D printing technologies for the printing of mathematical geometries. Journal of Industrial Integration and Management, 6: 93-105. https://doi.org/10.1142/S2424862220500104.
  • Fina, F., Goyanes, A., Gaisford, S., Basit, A. W. 2017. Selective laser sintering (SLS) 3D printing of medicines. Int J Pharm, 529: 285-293. https://doi.org/10.1016/j.ijpharm.2017.06.082.
  • Gardner, M. P., Chong, A. C., Pollock, A. G., Wooley, P. H. 2010. Mechanical evaluation of large-size fourth-generation composite femur and tibia models. Annals of biomedical engineering, 38: 613-620. https://doi.org/10.1007/s10439-009-9887-7.
  • George, E., Liacouras, P., Rybicki, F. J., & Mitsouras, D. 2017. Measuring and establishing the accuracy and reproducibility of 3D printed medical models. Radiographics, 37(5): 1424-1450. https://doi.org/10.1148/rg.2017160165.
  • Hausmann, J. T. 2006. Sawbones in biomechanical settings-a review. Osteosynthesis and Trauma Care, 14: 259-264. https://doi.org/10.1055/s-2006-942333.
  • Hochman, J. B., Kraut, J., Kazmerik, K., Unger, B. J. 2014. Generation of a 3D printed temporal bone model with internal fidelity and validation of the mechanical construct. Otolaryngol Head Neck Surg (1979), 150: 448-454. https://doi.org/10.1177/0194599813518008.
  • Kadakia, R. J., Wixted, C. M., Allen, N. B., Hanselman, A. E., Adams, S. B. 2020. Clinical applications of custom 3D printed implants in complex lower extremity reconstruction. 3D Print Med, 6: 1-6. https://doi.org/10.1186/s41205-020-00083-4.
  • Kim, G. B., Lee, S., Kim, H., Yang, D. H., Kim, Y. H., Kyung, Y. S., Kim, N. 2016. Three-dimensional printing: basic principles and applications in medicine and radiology. Korean J Radiol, 17: 182-197. https://doi.org/10.3348/kjr.2016.17.2.182.
  • Kudelski, R., Cieslik, J., Kulpa, M., Dudek, P., Zagorski, K., Rumin, R. 2017. Comparison of cost, material and time usage in FDM and SLS 3D printing methods. 13th International conference on perspective technologies and methods in MEMS design (MEMSTECH), p. 12-14, Lviv, Ukraine.
  • Lee, J. Y., An, J., Chua, C. K. 2017. Fundamentals and applications of 3D printing for novel materials. Appl Mater Today, 7: 120-133. https://doi.org/10.1016/j.apmt.2017.02.004.
  • Lim, K. H. A., Loo, Z. Y., Goldie, S. J., Adams, J. W., McMenamin, P. G. 2016. Use of 3D printed models in medical education: A randomized control trial comparing 3D prints versus cadaveric materials for learning external cardiac anatomy. Anat Sci Educ, 9: 213-221. https://doi.org/10.1002/ase.1573.
  • Lv, X., Ye, F., Cheng, L., Fan, S., Liu, Y. 2019. Binder jetting of ceramics: Powders, binders, printing parameters, equipment, and post-treatment. Ceramics International, 45: 12609-12624. https://doi.org/10.1016/j.ceramint.2019.04.012.
  • Miedzinska, D., Gieleta, R., Malek, E. 2020. Experimental study of strength properties of SLA resins under low and high strain rates. Mechanics of Materials, 141, 103245. https://doi.org/10.1016/j.mechmat.2019.103245.
  • Mihcin, S., Ciklacandir, S. 2022. Towards integration of the finite element modeling technique into biomedical engineering education. Biomed Eng (Singapore), 34: 2150054. https://doi.org/10.4015/S101623722150054X.
  • Nagl, K. 2021. A comparison of the biomechanical behaviour of simple artificial, composite, and 3D FDM printed human femoral bones. PhD Thesis, TU Wien, Vienna, Austria.
  • Nagl, K., Reisinger, A., & Pahr, D. H. 2022. The biomechanical behavior of 3D printed human femoral bones based on generic and patient-specific geometries. 3D Print Med, 8(1): 35. https://doi.org/10.1186/s41205-022-00162-8.
  • Navarro, M., Michiardi, A., Castano, O., Planell, J. A. 2008. Biomaterials in orthopaedics. J R Soc Interface, 5: 1137-1158. https://doi.org/10.1098/rsif.2008.0151.
  • O’Toole III, R. V., Jaramaz, B., DiGioia III, A. M., Visnic, C. D., Reid, R. H. 1995. Biomechanics for preoperative planning and surgical simulations in orthopaedics. Comput Biol Med, 25: 183-191. https://doi.org/10.1016/0010-4825(94)00043-P.
  • Rafiee, M., Farahani, R. D., Therriault, D. 2020. Multi-material 3D and 4D printing: a survey. Advanced Science, 7: 1902307. https://doi.org/10.1002/advs.201902307.
  • Ruiz, O. G., Dhaher, Y. 2021. Multi-color and multi-material 3D printing of knee joint models. 3D Printing in Medicine, 7: 1-16. https://doi.org/10.1186/s41205-021-00100-0.
  • Shahrubudin, N., Lee, T. C., Ramlan, R. 2019. An overview on 3D printing technology: Technological, materials, and applications. Procedia Manuf, 35: 1286-1296. https://doi.org/10.1016/j.promfg.2019.06.089.
  • Tai, B. L., Kao, Y. T., Payne, N., Zheng, Y., Chen, L., Shih, A. J. 2018. 3D printed composite for simulating thermal and mechanical responses of the cortical bone in orthopaedic surgery. Med Eng Phys, 61: 61-68. https://doi.org/10.1016/j.medengphy.2018.08.004.
  • Victor, S. P., Muthu, J. 2014. Polymer ceramic composite materials for orthopedic applications—relevance and need for mechanical match and bone regeneration. Journal of Mechatronics, 2: 1-10. https://doi.org/10.1166/jom.2014.1030.
  • Wu, D., Spanou, A., Diez-Escudero, A., & Persson, C. 2020. 3D-printed PLA/HA composite structures as synthetic trabecular bone: A feasibility study using fused deposition modeling. J Mech Behav Biomed Mater, 103: 103608. https://doi.org/10.1016/j.jmbbm.2019.103608.
  • Wu, G., Zhou, B., Bi, Y., Zhao, Y. 2008. Selective laser sintering technology for customized fabrication of facial prostheses. The Journal of prosthetic dentistry, 100: 56-60. https://doi.org/10.1016/S0022-3913(08)60138-9.
  • Xu, N., Ye, X., Wei, D., Zhong, J., Chen, Y., Xu, G., He, D. 2014. 3D artificial bones for bone repair prepared by computed tomography-guided fused deposition modeling for bone repair. ACS Appl Mater Interfaces, 6: 14952-14963. https://doi.org/10.1021/am502716t.
  • Zdero, R., Brzozowski, P., & Schemitsch, E. H. 2023. Biomechanical properties of artificial bones made by Sawbones: A review. Med Eng Phys, 104017. https://doi.org/10.1016/j.medengphy.2023.104017.
  • Zhang, J., Allardyce, B. J., Rajkhowa, R., Wang, X., Liu, X. 2021. 3D printing of silk powder by binder jetting technique. Addit Manuf, 38, 101820. https://doi.org/10.1016/j.addma.2020.101820.
  • Ziaee, M., Crane, N. B. 2019. Binder jetting: A review of process, materials, and methods. Addit Manuf, 28: 781–801. https://doi.org/10.1016/j.addma.2019.05.031
There are 43 citations in total.

Details

Primary Language English
Subjects Biomedical Engineering (Other)
Journal Section Articles
Authors

Samet Çıklaçandır 0000-0003-2076-2400

Yalçın İşler 0000-0002-2150-4756

Project Number 2023-TDR-FEBE-0005
Early Pub Date November 11, 2024
Publication Date
Submission Date April 9, 2024
Acceptance Date August 5, 2024
Published in Issue Year 2024 Volume: 24 Issue: 06

Cite

APA Çıklaçandır, S., & İşler, Y. (2024). The Evaluation of Mechanical Properties of Commercial Composite Bones and 3D-Printed Bones Produced Using the CJP Technology. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 24(06), 1506-1515.
AMA Çıklaçandır S, İşler Y. The Evaluation of Mechanical Properties of Commercial Composite Bones and 3D-Printed Bones Produced Using the CJP Technology. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. November 2024;24(06):1506-1515.
Chicago Çıklaçandır, Samet, and Yalçın İşler. “The Evaluation of Mechanical Properties of Commercial Composite Bones and 3D-Printed Bones Produced Using the CJP Technology”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24, no. 06 (November 2024): 1506-15.
EndNote Çıklaçandır S, İşler Y (November 1, 2024) The Evaluation of Mechanical Properties of Commercial Composite Bones and 3D-Printed Bones Produced Using the CJP Technology. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24 06 1506–1515.
IEEE S. Çıklaçandır and Y. İşler, “The Evaluation of Mechanical Properties of Commercial Composite Bones and 3D-Printed Bones Produced Using the CJP Technology”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 06, pp. 1506–1515, 2024.
ISNAD Çıklaçandır, Samet - İşler, Yalçın. “The Evaluation of Mechanical Properties of Commercial Composite Bones and 3D-Printed Bones Produced Using the CJP Technology”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24/06 (November 2024), 1506-1515.
JAMA Çıklaçandır S, İşler Y. The Evaluation of Mechanical Properties of Commercial Composite Bones and 3D-Printed Bones Produced Using the CJP Technology. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24:1506–1515.
MLA Çıklaçandır, Samet and Yalçın İşler. “The Evaluation of Mechanical Properties of Commercial Composite Bones and 3D-Printed Bones Produced Using the CJP Technology”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 06, 2024, pp. 1506-15.
Vancouver Çıklaçandır S, İşler Y. The Evaluation of Mechanical Properties of Commercial Composite Bones and 3D-Printed Bones Produced Using the CJP Technology. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24(06):1506-15.