Research Article
BibTex RIS Cite

Test Hızının S2-Cam Elyaf Takviyeli Polimerlerin Düzlem Dışı Mekanik Özelliklerine Etkisi

Year 2025, Volume: 25 Issue: 2, 407 - 413, 11.04.2025
https://doi.org/10.35414/akufemubid.1530498

Abstract

Test hızları, fiber takviyeli polimerik malzemelerin mekanik tepkisini değiştiren önemli parametrelerdir. Bu çalışma kapsamında, düzlem dışı yükleme koşulu altında farklı test hızları ile S2-cam elyaf takviyeli polimerik malzemelerin eğilme davranışlarını inceledik. Düzlem dışı yükleme koşulu üç noktalı eğilme fikstürüyle sağlandı. 20 mm/dk, 40 mm/dk ve 60 mm/dk olmak üzere üç farklı test hızı bu çalışmada kullanıldı. Maksimum yükte sehim miktarı, eğilme modülü ve eğilme mukavemeti test hızına bağlı olarak analiz edildi. Test hızı 20 mm/dk’dan 40 mm/dk'ya çıktıkça hem eğilme mukavemetinin hem de eğilme modülünün artış eğilimi gösterdiği bulundu. Bununla birlikte, yer değiştirme hızı 40 mm/dk'dan 60 mm/dk'ya yükseldiğinde eğilme mukavemetinde ve modülde bir düşüş gözlemlendi.

Project Number

221M085

References

  • Amjadi, M., & Fatemi, A. (2020). Tensile behavior of high-density polyethylene ıncluding the effects of processing technique, thickness, temperature, and strain rate. In Polymers, 12(9), 1857-1870 https://doi.org/10.3390/polym12091857
  • Barre, S., Chotard, T., & Benzeggagh, M. L. (1996). Comparative study of strain rate effects on mechanical properties of glass fibre-reinforced thermoset matrix composite. Composites Part A: Applied Science and Manufacturing, 27(12), 1169–1181. https://doi.org/10.1016/1359-835X(96)00075-9
  • Brown, K. A., Brooks, R., & Warrior, N. A. (2010a). The static and high strain rate behaviour of a commingled E-glass/polypropylene woven fabric composite. Composites Science and Technology, 70(2), 272–283. https://doi.org/10.1016/j.compscitech.2009.10.018
  • Brown, K. A., Brooks, R., & Warrior, N. A. (2010b). The static and high strain rate behaviour of a commingled E-glass/polypropylene woven fabric composite. Composites Science and Technology, 70(2), 272–283. Cui, J., Wang, S., Wang, S., Li, G., Wang, P., & Liang, C. (2019). The effects of strain rates on mechanical properties and failure behavior of long glass fiber reinforced thermoplastic composites. Polymers, 11(12), 2019-2036 https://doi.org/10.3390/polym11122019
  • Hsiao, H. M., & Daniel, I. M. (1998). Strain rate behavior of composite materials. Composites Part B: Engineering, 29(5), 521–533. https://doi.org/10.1016/S1359-8368(98)00008-0
  • Jemii, H., Bahri, A., Taktak, R., Guermazi, N., & Lebon, F. (2022). Mechanical behavior and fracture characteristics of polymeric pipes under curved three point bending tests: Experimental and numerical approaches. Engineering Failure Analysis, 138, 106352. https://doi.org/10.1016/j.engfailanal.2022.106352
  • Kıyak, B., & Kaman, M. O. (2018). Karbon fiber kompozit sandviç levhaların yanal mukavemet davranışlarının araştırılması. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 18(2), 684–691. https://doi.org/10.5578/fmbd.67199
  • Li, X., Yan, Y., Guo, L., & Xu, C. (2016). Effect of strain rate on the mechanical properties of carbon/epoxy composites under quasi-static and dynamic loadings. Polymer Testing, 52, 254–264. https://doi.org/10.1016/j.polymertesting.2016.05.002
  • Mei, J., Liu, J., & Huang, W. (2022). Three-point bending behaviors of the foam-filled CFRP X-core sandwich panel: Experimental investigation and analytical modelling. Composite Structures, 284, 115206. https://doi.org/10.1016/j.compstruct.2022.115206
  • Perry, J. I., & Walley, S. M. (2022). Measuring the effect of strain rate on deformation and damage in fibre-reinforced composites: A Review. Journal of Dynamic Behavior of Materials, 8(2), 178–213. https://doi.org/10.1007/s40870-022-00331-0
  • Shah Khan, M. Z., Simpson, G., & Gellert, E. P. (2000). Resistance of glass-fibre reinforced polymer composites to increasing compressive strain rates and loading rates. Composites Part A: Applied Science and Manufacturing, 31(1), 57–67. https://doi.org/10.1016/S1359-835X(99)00051-2
  • Wang, Q., Wang, J., Wang, A., Zhou, C., Hu, J., & Pan, F. (2023). Effect of strain rate and temperature on the tensile properties of long glass fiber-reinforced polypropylene composites. In Polymers, 15(15), 3260 https://doi.org/10.3390/polym15153260
  • Weng, F., Fang, Y., Ren, M., Sun, J., & Feng, L. (2021). Effect of high strain rate on shear properties of carbon fiber reinforced composites. Composites Science and Technology, 203, 108599. https://doi.org/10.1016/j.compscitech.2020.108599
  • Zhai, Z., Jiang, B., & Drummer, D. (2018a). Strain rate-dependent mechanical behavior of quasi-unidirectional E-glass fabric reinforced polypropylene composites under off-axis tensile loading. Polymer Testing, 69, 276–285. https://doi.org/10.1016/j.polymertesting.2018.05.033
  • Zniker, H., Feddal, I., Ouaki, B., & Bouzakraoui, S. (2023). Experimental and numerical ınvestigation of mechanical behavior and failure mechanisms of pvc foam sandwich and grp laminated composites under three-point bending loading. Journal of Failure Analysis and Prevention, 23(1), 66–78. https://doi.org/10.1007/s11668-023-01596-w

Effect of Crosshead Displacements Rates on the Out of Plane Mechanical Properties of S2-Glass Fiber Reinforced Polymers

Year 2025, Volume: 25 Issue: 2, 407 - 413, 11.04.2025
https://doi.org/10.35414/akufemubid.1530498

Abstract

Crosshead displacement rates are significant parameters that alter the mechanical response of fiber reinforced polymeric materials. In this study, we examined the bending behavior of S2-glass fiber reinforced polymeric materials with different crosshead displacement rates under out-of-plane loading condition. Out of plane loading condition is achieved with a three-point bending fixture. Three different crosshead displacement rates, 20 mm/min, 40 mm/min, and 60 mm/min, are chosen. Flexural strength, flexural modulus, and flexural strain at maximum load is analyzed. It is found that as the crosshead displacement rate increases from 20 mm/min to 40 mm/min, both flexural strength and flexural modulus shows an upward trend. However, when the crosshead displacement rate increases from 40 mm/min to 60 mm/min a drop in the flexural strength and modulus is observed.

Project Number

221M085

References

  • Amjadi, M., & Fatemi, A. (2020). Tensile behavior of high-density polyethylene ıncluding the effects of processing technique, thickness, temperature, and strain rate. In Polymers, 12(9), 1857-1870 https://doi.org/10.3390/polym12091857
  • Barre, S., Chotard, T., & Benzeggagh, M. L. (1996). Comparative study of strain rate effects on mechanical properties of glass fibre-reinforced thermoset matrix composite. Composites Part A: Applied Science and Manufacturing, 27(12), 1169–1181. https://doi.org/10.1016/1359-835X(96)00075-9
  • Brown, K. A., Brooks, R., & Warrior, N. A. (2010a). The static and high strain rate behaviour of a commingled E-glass/polypropylene woven fabric composite. Composites Science and Technology, 70(2), 272–283. https://doi.org/10.1016/j.compscitech.2009.10.018
  • Brown, K. A., Brooks, R., & Warrior, N. A. (2010b). The static and high strain rate behaviour of a commingled E-glass/polypropylene woven fabric composite. Composites Science and Technology, 70(2), 272–283. Cui, J., Wang, S., Wang, S., Li, G., Wang, P., & Liang, C. (2019). The effects of strain rates on mechanical properties and failure behavior of long glass fiber reinforced thermoplastic composites. Polymers, 11(12), 2019-2036 https://doi.org/10.3390/polym11122019
  • Hsiao, H. M., & Daniel, I. M. (1998). Strain rate behavior of composite materials. Composites Part B: Engineering, 29(5), 521–533. https://doi.org/10.1016/S1359-8368(98)00008-0
  • Jemii, H., Bahri, A., Taktak, R., Guermazi, N., & Lebon, F. (2022). Mechanical behavior and fracture characteristics of polymeric pipes under curved three point bending tests: Experimental and numerical approaches. Engineering Failure Analysis, 138, 106352. https://doi.org/10.1016/j.engfailanal.2022.106352
  • Kıyak, B., & Kaman, M. O. (2018). Karbon fiber kompozit sandviç levhaların yanal mukavemet davranışlarının araştırılması. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 18(2), 684–691. https://doi.org/10.5578/fmbd.67199
  • Li, X., Yan, Y., Guo, L., & Xu, C. (2016). Effect of strain rate on the mechanical properties of carbon/epoxy composites under quasi-static and dynamic loadings. Polymer Testing, 52, 254–264. https://doi.org/10.1016/j.polymertesting.2016.05.002
  • Mei, J., Liu, J., & Huang, W. (2022). Three-point bending behaviors of the foam-filled CFRP X-core sandwich panel: Experimental investigation and analytical modelling. Composite Structures, 284, 115206. https://doi.org/10.1016/j.compstruct.2022.115206
  • Perry, J. I., & Walley, S. M. (2022). Measuring the effect of strain rate on deformation and damage in fibre-reinforced composites: A Review. Journal of Dynamic Behavior of Materials, 8(2), 178–213. https://doi.org/10.1007/s40870-022-00331-0
  • Shah Khan, M. Z., Simpson, G., & Gellert, E. P. (2000). Resistance of glass-fibre reinforced polymer composites to increasing compressive strain rates and loading rates. Composites Part A: Applied Science and Manufacturing, 31(1), 57–67. https://doi.org/10.1016/S1359-835X(99)00051-2
  • Wang, Q., Wang, J., Wang, A., Zhou, C., Hu, J., & Pan, F. (2023). Effect of strain rate and temperature on the tensile properties of long glass fiber-reinforced polypropylene composites. In Polymers, 15(15), 3260 https://doi.org/10.3390/polym15153260
  • Weng, F., Fang, Y., Ren, M., Sun, J., & Feng, L. (2021). Effect of high strain rate on shear properties of carbon fiber reinforced composites. Composites Science and Technology, 203, 108599. https://doi.org/10.1016/j.compscitech.2020.108599
  • Zhai, Z., Jiang, B., & Drummer, D. (2018a). Strain rate-dependent mechanical behavior of quasi-unidirectional E-glass fabric reinforced polypropylene composites under off-axis tensile loading. Polymer Testing, 69, 276–285. https://doi.org/10.1016/j.polymertesting.2018.05.033
  • Zniker, H., Feddal, I., Ouaki, B., & Bouzakraoui, S. (2023). Experimental and numerical ınvestigation of mechanical behavior and failure mechanisms of pvc foam sandwich and grp laminated composites under three-point bending loading. Journal of Failure Analysis and Prevention, 23(1), 66–78. https://doi.org/10.1007/s11668-023-01596-w
There are 15 citations in total.

Details

Primary Language English
Subjects Polymer Science and Technologies, Composite and Hybrid Materials
Journal Section Articles
Authors

Cagatay Yilmaz 0000-0002-8063-151X

Sara Eltahir 0009-0000-1520-2279

Project Number 221M085
Early Pub Date March 28, 2025
Publication Date April 11, 2025
Submission Date August 9, 2024
Acceptance Date November 12, 2024
Published in Issue Year 2025 Volume: 25 Issue: 2

Cite

APA Yilmaz, C., & Eltahir, S. (2025). Effect of Crosshead Displacements Rates on the Out of Plane Mechanical Properties of S2-Glass Fiber Reinforced Polymers. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 25(2), 407-413. https://doi.org/10.35414/akufemubid.1530498
AMA Yilmaz C, Eltahir S. Effect of Crosshead Displacements Rates on the Out of Plane Mechanical Properties of S2-Glass Fiber Reinforced Polymers. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. April 2025;25(2):407-413. doi:10.35414/akufemubid.1530498
Chicago Yilmaz, Cagatay, and Sara Eltahir. “Effect of Crosshead Displacements Rates on the Out of Plane Mechanical Properties of S2-Glass Fiber Reinforced Polymers”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25, no. 2 (April 2025): 407-13. https://doi.org/10.35414/akufemubid.1530498.
EndNote Yilmaz C, Eltahir S (April 1, 2025) Effect of Crosshead Displacements Rates on the Out of Plane Mechanical Properties of S2-Glass Fiber Reinforced Polymers. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25 2 407–413.
IEEE C. Yilmaz and S. Eltahir, “Effect of Crosshead Displacements Rates on the Out of Plane Mechanical Properties of S2-Glass Fiber Reinforced Polymers”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 25, no. 2, pp. 407–413, 2025, doi: 10.35414/akufemubid.1530498.
ISNAD Yilmaz, Cagatay - Eltahir, Sara. “Effect of Crosshead Displacements Rates on the Out of Plane Mechanical Properties of S2-Glass Fiber Reinforced Polymers”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25/2 (April 2025), 407-413. https://doi.org/10.35414/akufemubid.1530498.
JAMA Yilmaz C, Eltahir S. Effect of Crosshead Displacements Rates on the Out of Plane Mechanical Properties of S2-Glass Fiber Reinforced Polymers. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25:407–413.
MLA Yilmaz, Cagatay and Sara Eltahir. “Effect of Crosshead Displacements Rates on the Out of Plane Mechanical Properties of S2-Glass Fiber Reinforced Polymers”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 25, no. 2, 2025, pp. 407-13, doi:10.35414/akufemubid.1530498.
Vancouver Yilmaz C, Eltahir S. Effect of Crosshead Displacements Rates on the Out of Plane Mechanical Properties of S2-Glass Fiber Reinforced Polymers. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25(2):407-13.