Research Article
BibTex RIS Cite

TİPİK TÜRK EVİ VE İŞ YERLERİNDE DÜŞÜK FREKANSLI ELEKTROMANYETİK ALAN KAYNAKLARI İÇİN ELEKTROMANYETİK RİSK ANALİZİ

Year 2023, Volume: 1 Issue: 1, 1 - 14, 27.12.2023

Abstract

Günlük hayatta yaygınlaşan elektronik cihaz kullanımı, bu cihazların neden olduğu elektromanyetik alanlara (EMA) ve olası etkilerine dönük çalışmalara neden olmuştur. Bu çalışmada, ev ve iş yerlerinde kullanılan çeşitli elektrikli cihazların yakın çevresinde oluşturdukları EMA seviyeleri belirlenerek düşük frekans bölgesi için ölçümler gerçekleştirilmiştir. Ayrıca çocuk, kadın ve erkekler için EMA dozimetri analizleri yapılmıştır. Bu kapsamda, 50 Hz-100 kHz frekans aralığında dış kaynaklı manyetik alanların etkisiyle çocuk ile yetişkin insan vücudunda indüklenen elektrik alanlar ve akım yoğunlukları, eliptik modeller sayesinde hesaplanmıştır. Sonuçlar, manyetik alan şiddeti 1 µT değerine normalize edilerek gerçek değerler ışığında elde edilmiştir. Ayrıca, dış kaynaklı manyetik alanın vücut modelleri ile etkileşim şekline bağlı olarak elektromanyetik risk analizleri yapılmıştır. Ölçümlere göre, en yüksek elektrik alan değeri çamaşır makinesinden 3 cm uzaklıkta ölçülmüş ve 7,52 V/m olarak belirlenmiştir. En düşük elektrik alan değeri ise elektrikli tıraş makinesinden ve bulaşık makinesinden 1 m uzaklıkta ölçülmüş ve 0,07 V/m olarak tespit edilmiştir. Manyetik alan ölçümlerinde ise en yüksek değer, 3 cm uzaklıktaki bir elektrikli süpürgeden 9,81 μT olarak kaydedilirken, en düşük değer akıllı saat ve tablet cihazlarından 1 m uzaklıkta 0,023 μT olarak ölçülmüştür. Vücut dokusunda hesaplanan indüklenen akım yoğunluğu sonuçlarına göre en yüksek değer, manyetik alanın yüz hizasına dik gelmesiyle gözlenmiştir. Sonuçlar, uluslararası standartlara göre değerlendirilmiştir. Ayrıca, günlük hayatta ev ve iş yerlerinde elektromanyetik maruziyeti azaltmak için önerilerde bulunulmuştur.

References

  • [1] ICNIRP, Guidelines For Limiting Exposure to Time-Varying Electric and Magnetic Fields (1 Hz To 100 kHz), Health Phys. 99 (6), 818-836, 2010.
  • [2] N. Wertheimer and E. Leeper, Electrical Wiring Configurations and Childhood Cancer, Am. J. Epidemiol. 109 (3), 273-284, 1979.
  • [3] F.A. El-Marakby. Personal Exposure to Electromagnetic Fields Emitted from Household Electrical Appliances in Alexandria. Journal of High Institute of Public Health. 42 (2), 224-234, 2012.
  • [4] M. Gallastegi, A. Jiménez-Zabala, L. Santa-Marina, J.J. Aurrekoetxea, M. Ayerdi, J. Ibarluzea, A. Huss, Exposure To Extremely Low And İntermediate-Frequency Magnetic And Electric Fields Among Children From The INMA-Gipuzkoa Cohort, Environmental Research, 157, 190-197, 2017.
  • [5] C. Baumgardt-Elms, M. Schumann, W. Ahrens, K. Bromen, A. Stang, I. Jahn and K.H. Jockel. Residential Exposure to Overhead High-Voltage Lines and the Risk of Testicular Cancer: Results of a Population-Based Case–Control Study in Hamburg (Germany). Int Arch Occ Env Hea. 78 (1), 20-26, 2005.
  • [6] K. Ateş, Ş. Özen and H.F. Carlak, Elektrikli Ev Aletlerinin Elektromanyetik (EM) Işıma Karakteristiklerinin İncelenmesi ve EM Girişim analizi, 1st International Mediterranean Science and Engineering Congress (IMSEC 2016). 2016.
  • [7] W.T. Kaune, J.L. Gutmann and R. Kavet, Comparison of Coupling of Humans to Electric and Magnetic Fields With Frequencies Between 100 Hz and 100 kHz, Bioelectromagnetics. 18, 67-76, 1997.
  • [8] P.J. Dimbylow and R. Findlay, The Effects of Body Posture, Anatomy, Age and Pregnancy on the Calculation of Induced Current Densities at 50 Hz. Radiat Prot Dosim. 139 (4), 532-538, 2010.
  • [9] S. Ozen, Evaluation and Measurement of Magnetic Field Exposure at a Typical High-Voltage Substation and Its Power Lines. Radiat. Prot. Dosim 128 (2), 198-205, 2008.
  • [10] K. Ates, H.F. Carlak and S. Ozen, Magnetic Field Exposures due to Underground Power Cables: A Simulation Study, 2nd World Congress on Electrical Engineering and Computer Systems and Science (EECSS'16). 2016.
  • [11] K. Ates, H.F. Carlak and Sukru Ozen, Dosimetry Analysis of the Magnetic Field of Underground Power Cables and Magnetic Field Mitigation Using an Electromagnetic Shielding Technique, Int. J. Occup. Saf. Ergo. 28 (3), 1672-1682, 2022.
  • [12] S. Helhel and S. Ozen, Assessment of Occupational Exposure to Magnetic Fields in High-Voltage Substations (154/34.5 kV), Radiat. Prot. Dosim. 128 (4), 464-470, 2008.
  • [13] M.S. Linet, E.E. Hatch, R.A. Kleinerman, L.L. Robinson, W.T. Kaune, D.R. Friedman, R.K. Severson, C.M. Haines, C.T. Hartsock, S. Niwa vd. Residential Exposure to Magnetic Fields and Acute Lymphoblastic Leuke-Mia in Children. New Eng. J. Med. 337 (l), 1-7, 1997.
  • [14] C.H. Durney, H. Mussoudi and M.F. Iskender, Radio Frequency Radiation Dosimetry Handbook Fourth Ed. Brooks Air Force Base, TX: United State Air Force, School of Aerospace Medicine, Report USAFSAMTR-85-73, 1986.
  • [15] S. Ozen, Low-Frequency Transient Electric and Magnetic Fields Coupling to Child Body. Radiat. Prot. Dosim. 128 (1), 62-67, 2007.
  • [16] E. Yavuz Dirik, İş Yerleri ve Yaşam Alanlarında Bulunan Cihazların Elektromanyetik Alan Seviyelerinin Belirlenmesi ve Elektromanyetik Risk Analizi, Yüksek Lisans Tezi, Akdeniz Üniversitesi, 2022.
  • [17] M. Bedeloğlu, N. İl, K. Ateş, Ş. Özen, Measurement and Analysis of Electric and Magnetic Field Strength in Grid-Tied Photovoltaic Power System Components. Radiat. Prot. Dosim. 194 (1), 57-64, 2021.
  • [18] M. Erol, K. Ateş and Ş. Özen, Elektrikli Araçlarda Kablosuz Güç Transferi Sistemi Tasarımı ve Elektromanyetik Alan Maruziyetinin Değerlendirilmesi, Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 6 (1), 605-618, 2023.
  • [19] H.F. Carlak, Ş. Özen and S. Bilgin, Low-Frequency Exposure Analysis Using Electric and Magnetic Field Measurements and Predictions in the Proximity of Power Transmission Lines in Urban Areas, Turk. J. Electr. Eng. Co. 25 (5), 3994-4005, 2017.
  • [20] H. Massoudi, C.H. Durney and C.C. Johnson, Long-Wavelength Analysis of Plane Wave Irradiation of an Ellipsoidal Model of Man, IEEE Transact. Microwave Theory Tech. MTT-25 (1), 41-52, 1977.
  • [21] F.X. Hart, Numerical and Analytical Methods to Determine the Current Density Distributions Produced in Human and Rat Models by Electric and Magnetic Fields, Bioelectromagnetics. 13 (S1), 27-42, 1992.
  • [22] R.W.P. King, A Review of Analytically Determined Electric Fields and Currents Induced in the Human Body When Exposed to 50–60-Hz Electromagnetic Fields, IEEE Trans. Antennas Propag. 52 (5), 1186-1192, 2004.

ELECTROMAGNETIC RISK ANALYSIS FOR LOW FREQUENCY ELECTROMAGNETIC FIELD SOURCES IN TYPICAL TURKISH HOMES AND WORKPLACES

Year 2023, Volume: 1 Issue: 1, 1 - 14, 27.12.2023

Abstract

The widespread usage of electronic devices in daily life has led to studies on the electromagnetic fields (EMF) caused by these devices and their possible effects. In this study, EMF levels created in the vicinity of various household appliances and electrical devices used in workplaces were determined and measurements were carried out for the low frequency region. Additionally, EMF dosimetry analyzes were performed for children, females, and males. In this context, induced electric fields and current densities in the child and adult human body by the effect of external magnetic fields in the frequency range of 50 Hz-100 kHz were calculated using the ellipsoidal models. The results were obtained according to the realistic values by normalizing the magnetic field intensity to 1 µT. Furthermore, electromagnetic risk analyzes were carried out depending on the interaction of the external magnetic field with the body models. According to the measurements, the maximum electric field value was measured at 3 cm away from the washing machine and was determined to be 7.52 V/m. The minimum electric field value was measured at 1 m away from the electric razor and dishwasher and was detected to be 0.07 V/m. In magnetic field measurements, the maximum value was recorded as 9.81 μT from an electric vacuum cleaner at 3 cm, while the minimum value was measured as 0.023 μT at 1 m from smart watch and tablet devices. According to the results of the calculated induced current density in the body tissue, the maximum value was observed when the magnetic field was perpendicular to the face domain. The results were evaluated according to international standards. In addition, recommendations were declared to reduce electromagnetic exposure in houses and workplaces in daily life.

References

  • [1] ICNIRP, Guidelines For Limiting Exposure to Time-Varying Electric and Magnetic Fields (1 Hz To 100 kHz), Health Phys. 99 (6), 818-836, 2010.
  • [2] N. Wertheimer and E. Leeper, Electrical Wiring Configurations and Childhood Cancer, Am. J. Epidemiol. 109 (3), 273-284, 1979.
  • [3] F.A. El-Marakby. Personal Exposure to Electromagnetic Fields Emitted from Household Electrical Appliances in Alexandria. Journal of High Institute of Public Health. 42 (2), 224-234, 2012.
  • [4] M. Gallastegi, A. Jiménez-Zabala, L. Santa-Marina, J.J. Aurrekoetxea, M. Ayerdi, J. Ibarluzea, A. Huss, Exposure To Extremely Low And İntermediate-Frequency Magnetic And Electric Fields Among Children From The INMA-Gipuzkoa Cohort, Environmental Research, 157, 190-197, 2017.
  • [5] C. Baumgardt-Elms, M. Schumann, W. Ahrens, K. Bromen, A. Stang, I. Jahn and K.H. Jockel. Residential Exposure to Overhead High-Voltage Lines and the Risk of Testicular Cancer: Results of a Population-Based Case–Control Study in Hamburg (Germany). Int Arch Occ Env Hea. 78 (1), 20-26, 2005.
  • [6] K. Ateş, Ş. Özen and H.F. Carlak, Elektrikli Ev Aletlerinin Elektromanyetik (EM) Işıma Karakteristiklerinin İncelenmesi ve EM Girişim analizi, 1st International Mediterranean Science and Engineering Congress (IMSEC 2016). 2016.
  • [7] W.T. Kaune, J.L. Gutmann and R. Kavet, Comparison of Coupling of Humans to Electric and Magnetic Fields With Frequencies Between 100 Hz and 100 kHz, Bioelectromagnetics. 18, 67-76, 1997.
  • [8] P.J. Dimbylow and R. Findlay, The Effects of Body Posture, Anatomy, Age and Pregnancy on the Calculation of Induced Current Densities at 50 Hz. Radiat Prot Dosim. 139 (4), 532-538, 2010.
  • [9] S. Ozen, Evaluation and Measurement of Magnetic Field Exposure at a Typical High-Voltage Substation and Its Power Lines. Radiat. Prot. Dosim 128 (2), 198-205, 2008.
  • [10] K. Ates, H.F. Carlak and S. Ozen, Magnetic Field Exposures due to Underground Power Cables: A Simulation Study, 2nd World Congress on Electrical Engineering and Computer Systems and Science (EECSS'16). 2016.
  • [11] K. Ates, H.F. Carlak and Sukru Ozen, Dosimetry Analysis of the Magnetic Field of Underground Power Cables and Magnetic Field Mitigation Using an Electromagnetic Shielding Technique, Int. J. Occup. Saf. Ergo. 28 (3), 1672-1682, 2022.
  • [12] S. Helhel and S. Ozen, Assessment of Occupational Exposure to Magnetic Fields in High-Voltage Substations (154/34.5 kV), Radiat. Prot. Dosim. 128 (4), 464-470, 2008.
  • [13] M.S. Linet, E.E. Hatch, R.A. Kleinerman, L.L. Robinson, W.T. Kaune, D.R. Friedman, R.K. Severson, C.M. Haines, C.T. Hartsock, S. Niwa vd. Residential Exposure to Magnetic Fields and Acute Lymphoblastic Leuke-Mia in Children. New Eng. J. Med. 337 (l), 1-7, 1997.
  • [14] C.H. Durney, H. Mussoudi and M.F. Iskender, Radio Frequency Radiation Dosimetry Handbook Fourth Ed. Brooks Air Force Base, TX: United State Air Force, School of Aerospace Medicine, Report USAFSAMTR-85-73, 1986.
  • [15] S. Ozen, Low-Frequency Transient Electric and Magnetic Fields Coupling to Child Body. Radiat. Prot. Dosim. 128 (1), 62-67, 2007.
  • [16] E. Yavuz Dirik, İş Yerleri ve Yaşam Alanlarında Bulunan Cihazların Elektromanyetik Alan Seviyelerinin Belirlenmesi ve Elektromanyetik Risk Analizi, Yüksek Lisans Tezi, Akdeniz Üniversitesi, 2022.
  • [17] M. Bedeloğlu, N. İl, K. Ateş, Ş. Özen, Measurement and Analysis of Electric and Magnetic Field Strength in Grid-Tied Photovoltaic Power System Components. Radiat. Prot. Dosim. 194 (1), 57-64, 2021.
  • [18] M. Erol, K. Ateş and Ş. Özen, Elektrikli Araçlarda Kablosuz Güç Transferi Sistemi Tasarımı ve Elektromanyetik Alan Maruziyetinin Değerlendirilmesi, Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 6 (1), 605-618, 2023.
  • [19] H.F. Carlak, Ş. Özen and S. Bilgin, Low-Frequency Exposure Analysis Using Electric and Magnetic Field Measurements and Predictions in the Proximity of Power Transmission Lines in Urban Areas, Turk. J. Electr. Eng. Co. 25 (5), 3994-4005, 2017.
  • [20] H. Massoudi, C.H. Durney and C.C. Johnson, Long-Wavelength Analysis of Plane Wave Irradiation of an Ellipsoidal Model of Man, IEEE Transact. Microwave Theory Tech. MTT-25 (1), 41-52, 1977.
  • [21] F.X. Hart, Numerical and Analytical Methods to Determine the Current Density Distributions Produced in Human and Rat Models by Electric and Magnetic Fields, Bioelectromagnetics. 13 (S1), 27-42, 1992.
  • [22] R.W.P. King, A Review of Analytically Determined Electric Fields and Currents Induced in the Human Body When Exposed to 50–60-Hz Electromagnetic Fields, IEEE Trans. Antennas Propag. 52 (5), 1186-1192, 2004.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Engineering Electromagnetics
Journal Section Research Articles
Authors

Eda Yavuz Dirik 0000-0002-3845-2251

Kayhan Ateş 0000-0002-6016-6577

Şükrü Özen 0000-0002-5538-6786

Publication Date December 27, 2023
Submission Date October 30, 2023
Acceptance Date December 19, 2023
Published in Issue Year 2023 Volume: 1 Issue: 1

Cite

APA Yavuz Dirik, E., Ateş, K., & Özen, Ş. (2023). TİPİK TÜRK EVİ VE İŞ YERLERİNDE DÜŞÜK FREKANSLI ELEKTROMANYETİK ALAN KAYNAKLARI İÇİN ELEKTROMANYETİK RİSK ANALİZİ. Akdeniz Mühendislik Dergisi, 1(1), 1-14.
AMA Yavuz Dirik E, Ateş K, Özen Ş. TİPİK TÜRK EVİ VE İŞ YERLERİNDE DÜŞÜK FREKANSLI ELEKTROMANYETİK ALAN KAYNAKLARI İÇİN ELEKTROMANYETİK RİSK ANALİZİ. AKUJE. December 2023;1(1):1-14.
Chicago Yavuz Dirik, Eda, Kayhan Ateş, and Şükrü Özen. “TİPİK TÜRK EVİ VE İŞ YERLERİNDE DÜŞÜK FREKANSLI ELEKTROMANYETİK ALAN KAYNAKLARI İÇİN ELEKTROMANYETİK RİSK ANALİZİ”. Akdeniz Mühendislik Dergisi 1, no. 1 (December 2023): 1-14.
EndNote Yavuz Dirik E, Ateş K, Özen Ş (December 1, 2023) TİPİK TÜRK EVİ VE İŞ YERLERİNDE DÜŞÜK FREKANSLI ELEKTROMANYETİK ALAN KAYNAKLARI İÇİN ELEKTROMANYETİK RİSK ANALİZİ. Akdeniz Mühendislik Dergisi 1 1 1–14.
IEEE E. Yavuz Dirik, K. Ateş, and Ş. Özen, “TİPİK TÜRK EVİ VE İŞ YERLERİNDE DÜŞÜK FREKANSLI ELEKTROMANYETİK ALAN KAYNAKLARI İÇİN ELEKTROMANYETİK RİSK ANALİZİ”, AKUJE, vol. 1, no. 1, pp. 1–14, 2023.
ISNAD Yavuz Dirik, Eda et al. “TİPİK TÜRK EVİ VE İŞ YERLERİNDE DÜŞÜK FREKANSLI ELEKTROMANYETİK ALAN KAYNAKLARI İÇİN ELEKTROMANYETİK RİSK ANALİZİ”. Akdeniz Mühendislik Dergisi 1/1 (December 2023), 1-14.
JAMA Yavuz Dirik E, Ateş K, Özen Ş. TİPİK TÜRK EVİ VE İŞ YERLERİNDE DÜŞÜK FREKANSLI ELEKTROMANYETİK ALAN KAYNAKLARI İÇİN ELEKTROMANYETİK RİSK ANALİZİ. AKUJE. 2023;1:1–14.
MLA Yavuz Dirik, Eda et al. “TİPİK TÜRK EVİ VE İŞ YERLERİNDE DÜŞÜK FREKANSLI ELEKTROMANYETİK ALAN KAYNAKLARI İÇİN ELEKTROMANYETİK RİSK ANALİZİ”. Akdeniz Mühendislik Dergisi, vol. 1, no. 1, 2023, pp. 1-14.
Vancouver Yavuz Dirik E, Ateş K, Özen Ş. TİPİK TÜRK EVİ VE İŞ YERLERİNDE DÜŞÜK FREKANSLI ELEKTROMANYETİK ALAN KAYNAKLARI İÇİN ELEKTROMANYETİK RİSK ANALİZİ. AKUJE. 2023;1(1):1-14.