Research Article
BibTex RIS Cite

A non-analog Monte Carlo simulation method for slab albedo problem with linear-anisotropic scattering

Year 2021, Volume: 3 Issue: 1, 1 - 13, 31.03.2021
https://doi.org/10.46740/alku.825400

Abstract

In this study, a non-analog Monte Carlo method is developed to simulate the albedo and transmission factor of an infinite non-multiplying slab media subjected to a direction-dependent one-speed neutron beam on the left side. In order to obtain more precise results different variance reduction techniques such as forced collision, implicit capture, and Russian-Roulette are taken into consideration. For different incident directions of the neutrons and in the case of both isotropic and linear anisotropic scatterings, the albedo and transmission factor are estimated from the Monte Carlo and compared with the results obtained from the H_(N=7) deterministic method. It is seen that in most cases, the results of both Monte Carlo and H_(N=7) methods are comparable with each other. In some cases, it is also observed that the deterministic method falls short in predicting the albedo and transmission factor, whereas, in contrast, the results of the Monte Carlo are physically meaningful.

Supporting Institution

-

Project Number

-

References

  • [1] Hoffman, A. J. (2013),” A Time-Dependent Method of Characteristics Formulation with Time Derivative Propagation”, PhD thesis, University of Michigan.
  • [2] Duderstadt, J. J. (1976), Nuclear reactor analysis. Wiley.
  • [3] Hanuš, M. (2014), Mathematical Modeling of Neutron Transport, PhD thesis, University of West Bohemia.
  • [4] Wu, Yican. (2019), Neutronics of advanced nuclear systems. Springer.
  • [5] Kalos, M. H., & Whitlock, P. A. (2009), Monte carlo methods. John Wiley & Sons.
  • [6] Seco, J., & Verhaegen, F. (2013), Monte Carlo techniques in radiation therapy, CRC press.
  • [7] Dupree, S. A., & Fraley, S. K. (2012), A Monte Carlo primer: A Practical approach to radiation transport. Springer Science & Business Media.
  • [8] Haghighat, A. (2016), Monte Carlo Methods for Particle Transport, Crc Press.
  • [9] Saidi, P., Sadeghi, M., and Tenreiro, C. (2013), “Variance reduction of Monte Carlo simulation in nuclear engineering”. In Theory and Applications of Monte Carlo Simulations”. Intech Open.
  • [10] Bulut, S., and M. Ç. Güleçyüz. (2005),”The HN method for slab albedo problem for linearly anisotropic scattering”, Kerntechnik 70.5-6, 301-308.
  • [11] Karataşlı, Muhammet, Tahsin Özer, and Ahmet Varinlioğlu. (2015),” Second Type Chebyshev Polynomial Approximation to Linearly Anisotropic Neutron Transport Equation in Slab Geometry”, Suleyman Demirel University Journal of Science 10.2.
  • [12] Güleçyüz, M. Ç., A. Kaşkaş, and C. Tezcan. (1999),” Slab albedo problem for anisotropic scattering using singular eigenfunction solution of the CN equations”, Journal of Quantitative Spectroscopy and Radiative Transfer, 61.3, 329-338.
  • [13] Grandjean, P., and C. E. Siewert. (1979), “The FN method in neutron-transport theory. Part II: applications and numerical results”, Nuclear Science and Engineering 69.2, 161-168.
  • [14] Stacey, Weston M. (2007), Nuclear reactor physics. Vol. 2. Weinheim: wiley-vch.
  • [15] Prinja A.K., Larsen E.W. (2010), General Principles of Neutron Transport. In: Cacuci D.G. (eds) Handbook of Nuclear Engineering. Springer, Boston, MA.
  • [16] Schwenk-Ferrero, (1986), Aleksandra.”GANTRAS: A system of codes for the solution of the multigroup transport equation with a rigorous treatment of anisotropic neutron scattering. Plane and spherical geometry, gscs.
  • [17] INÖNÜ, Erdal. (1970),”Orthogonality of a set of polynomials encountered in neutron‐transport and radiative‐transfer theories”. Journal of Mathematical Physics, 11.2, 568-577.
  • [18] MIKA, Janusz R. (1961),”Neutron transport with anisotropic scattering”, Nuclear science and engineering, 11.4: 415-427.
  • [19] Coveyou, R. R. (1965), “A monte carlo technique for selecting neutron scattering angles from anisotropic distributions”, Nuclear science and engineering, 260-262.
  • [20] Lux, Iván. (1982), “Semicontinuous selection of scattering angles from low-order Pn scattering densities”, Nuclear science and Engineering 82.3,332-337.
  • [21] Lux, I. (1991), and K. Koblinger. Monte Carlo Particle Transport Methods: Neutron and Photon Calculations, CRC Boca Raton.
  • [22] Bielajew, Alex F. (2001), “Fundamentals of the Monte Carlo method for neutral and charged particle transport”, The University of Michigan.
  • [23] Singkarat, Somsorn. (1990), “Study of the multiple scattering effect in TEBENE using the Monte Carlo method”. No. CTH-RF--69. Chalmers Univ. of Tech.

A non-analog Monte Carlo simulation method for slab albedo problem with linear-anisotropic scattering

Year 2021, Volume: 3 Issue: 1, 1 - 13, 31.03.2021
https://doi.org/10.46740/alku.825400

Abstract

Bu çalışmada, sol taraftan bir anizotropik ve tek hızlı nötron demetine maruz kalan sonsuz çoğaltıcı olmayan bir levha ortamının albedo ve iletim faktörünü simüle etmek için analog olmayan bir Monte Carlo yöntemi geliştirilmiştir. Daha yüksek hassasiyete sahip sonuçlar elde etmek için, simülasyon sırasında zorla çarpışma, örtük yakalama ve Russian-Roulette gibi farklı varyans azaltma teknikleri kullanılmıştır. Nötronların farklı geliş yönleri için, hem izotropik hem de lineer anizotropik saçılımlar durumunda, albedo ve iletim faktörü Monte Carlo'dan tahmin edilip ve H_(N=7) deterministik yönteminden elde edilen sonuçlarla karşılaştırılmıştır. Çoğu durumda Monte Carlo ve H_(N=7) Metotlarının sonuçlarının birbiriyle karşılaştırılabilir olduğu görülmektedir. Bazı durumlarda, deterministik yöntemin albedo ve iletim faktörünü tahmin etmede yetersiz kaldığı, buna karşın Monte Carlo'nun sonuçlarının fiziksel olarak anlamlı olduğu görülmektedir.

Project Number

-

References

  • [1] Hoffman, A. J. (2013),” A Time-Dependent Method of Characteristics Formulation with Time Derivative Propagation”, PhD thesis, University of Michigan.
  • [2] Duderstadt, J. J. (1976), Nuclear reactor analysis. Wiley.
  • [3] Hanuš, M. (2014), Mathematical Modeling of Neutron Transport, PhD thesis, University of West Bohemia.
  • [4] Wu, Yican. (2019), Neutronics of advanced nuclear systems. Springer.
  • [5] Kalos, M. H., & Whitlock, P. A. (2009), Monte carlo methods. John Wiley & Sons.
  • [6] Seco, J., & Verhaegen, F. (2013), Monte Carlo techniques in radiation therapy, CRC press.
  • [7] Dupree, S. A., & Fraley, S. K. (2012), A Monte Carlo primer: A Practical approach to radiation transport. Springer Science & Business Media.
  • [8] Haghighat, A. (2016), Monte Carlo Methods for Particle Transport, Crc Press.
  • [9] Saidi, P., Sadeghi, M., and Tenreiro, C. (2013), “Variance reduction of Monte Carlo simulation in nuclear engineering”. In Theory and Applications of Monte Carlo Simulations”. Intech Open.
  • [10] Bulut, S., and M. Ç. Güleçyüz. (2005),”The HN method for slab albedo problem for linearly anisotropic scattering”, Kerntechnik 70.5-6, 301-308.
  • [11] Karataşlı, Muhammet, Tahsin Özer, and Ahmet Varinlioğlu. (2015),” Second Type Chebyshev Polynomial Approximation to Linearly Anisotropic Neutron Transport Equation in Slab Geometry”, Suleyman Demirel University Journal of Science 10.2.
  • [12] Güleçyüz, M. Ç., A. Kaşkaş, and C. Tezcan. (1999),” Slab albedo problem for anisotropic scattering using singular eigenfunction solution of the CN equations”, Journal of Quantitative Spectroscopy and Radiative Transfer, 61.3, 329-338.
  • [13] Grandjean, P., and C. E. Siewert. (1979), “The FN method in neutron-transport theory. Part II: applications and numerical results”, Nuclear Science and Engineering 69.2, 161-168.
  • [14] Stacey, Weston M. (2007), Nuclear reactor physics. Vol. 2. Weinheim: wiley-vch.
  • [15] Prinja A.K., Larsen E.W. (2010), General Principles of Neutron Transport. In: Cacuci D.G. (eds) Handbook of Nuclear Engineering. Springer, Boston, MA.
  • [16] Schwenk-Ferrero, (1986), Aleksandra.”GANTRAS: A system of codes for the solution of the multigroup transport equation with a rigorous treatment of anisotropic neutron scattering. Plane and spherical geometry, gscs.
  • [17] INÖNÜ, Erdal. (1970),”Orthogonality of a set of polynomials encountered in neutron‐transport and radiative‐transfer theories”. Journal of Mathematical Physics, 11.2, 568-577.
  • [18] MIKA, Janusz R. (1961),”Neutron transport with anisotropic scattering”, Nuclear science and engineering, 11.4: 415-427.
  • [19] Coveyou, R. R. (1965), “A monte carlo technique for selecting neutron scattering angles from anisotropic distributions”, Nuclear science and engineering, 260-262.
  • [20] Lux, Iván. (1982), “Semicontinuous selection of scattering angles from low-order Pn scattering densities”, Nuclear science and Engineering 82.3,332-337.
  • [21] Lux, I. (1991), and K. Koblinger. Monte Carlo Particle Transport Methods: Neutron and Photon Calculations, CRC Boca Raton.
  • [22] Bielajew, Alex F. (2001), “Fundamentals of the Monte Carlo method for neutral and charged particle transport”, The University of Michigan.
  • [23] Singkarat, Somsorn. (1990), “Study of the multiple scattering effect in TEBENE using the Monte Carlo method”. No. CTH-RF--69. Chalmers Univ. of Tech.
There are 23 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Bahram Rashidian Maleki 0000-0001-6312-2919

Project Number -
Publication Date March 31, 2021
Submission Date November 13, 2020
Acceptance Date December 24, 2020
Published in Issue Year 2021 Volume: 3 Issue: 1

Cite

APA Rashidian Maleki, B. (2021). A non-analog Monte Carlo simulation method for slab albedo problem with linear-anisotropic scattering. ALKÜ Fen Bilimleri Dergisi, 3(1), 1-13. https://doi.org/10.46740/alku.825400
AMA Rashidian Maleki B. A non-analog Monte Carlo simulation method for slab albedo problem with linear-anisotropic scattering. ALKÜ Fen Bilimleri Dergisi. March 2021;3(1):1-13. doi:10.46740/alku.825400
Chicago Rashidian Maleki, Bahram. “A Non-Analog Monte Carlo Simulation Method for Slab Albedo Problem With Linear-Anisotropic Scattering”. ALKÜ Fen Bilimleri Dergisi 3, no. 1 (March 2021): 1-13. https://doi.org/10.46740/alku.825400.
EndNote Rashidian Maleki B (March 1, 2021) A non-analog Monte Carlo simulation method for slab albedo problem with linear-anisotropic scattering. ALKÜ Fen Bilimleri Dergisi 3 1 1–13.
IEEE B. Rashidian Maleki, “A non-analog Monte Carlo simulation method for slab albedo problem with linear-anisotropic scattering”, ALKÜ Fen Bilimleri Dergisi, vol. 3, no. 1, pp. 1–13, 2021, doi: 10.46740/alku.825400.
ISNAD Rashidian Maleki, Bahram. “A Non-Analog Monte Carlo Simulation Method for Slab Albedo Problem With Linear-Anisotropic Scattering”. ALKÜ Fen Bilimleri Dergisi 3/1 (March 2021), 1-13. https://doi.org/10.46740/alku.825400.
JAMA Rashidian Maleki B. A non-analog Monte Carlo simulation method for slab albedo problem with linear-anisotropic scattering. ALKÜ Fen Bilimleri Dergisi. 2021;3:1–13.
MLA Rashidian Maleki, Bahram. “A Non-Analog Monte Carlo Simulation Method for Slab Albedo Problem With Linear-Anisotropic Scattering”. ALKÜ Fen Bilimleri Dergisi, vol. 3, no. 1, 2021, pp. 1-13, doi:10.46740/alku.825400.
Vancouver Rashidian Maleki B. A non-analog Monte Carlo simulation method for slab albedo problem with linear-anisotropic scattering. ALKÜ Fen Bilimleri Dergisi. 2021;3(1):1-13.