Development of Sustainable Ulva Lactuca Genus Algae and Hemp Based Composites for Agrotextiles Application
Year 2023,
Volume: 5 Issue: 2, 24 - 39, 01.09.2023
Naz Kadınkız
,
Muhammet Uzun
Abstract
As the global population grows, there is an increasing demand for food, requiring sustainable farming methods to increase agricultural productivity. Soil covers and mulches used in agriculture are mostly made of synthetic materials derived from petrochemicals, which pose various problems such as soil contamination and long-term insolubility. This study aims to use Ulva Lactuca algae as a sustainable raw material for soil covers, as it contains vitamins and minerals that the soil needs. As seawater acidity increases, the population of this algae is also increasing, creating the opportunity to use it in agriculture. The product is expected to retain moisture and reduce water consumption and high temperatures. In addition, hurds obtained from industrial hemp waste are used due to their high-water retention potential. The study combined Ulva lactuca algae from the Marmara region and hemp strings from Narlı and Vezir seeds to create various composites with different structures. Basic tests were conducted to determine the mechanical and physical properties of the products. The goal is to increase soil organic matter by using these materials as fertilizer after their use as soil covers.
References
- M. Liu, M. Johnston and H. Snaith, "Efficient planar heterojunction perovskite solar cells by vapour deposition," Nature, pp. 501, 395, 2013.
- A. Sankauskaitė, V. Rubežienė, D. Kubilienė, A. Abraitienė, J. Baltušnikaitė-Guzaitienė and K. Dubinskaitė, "Investigation of Thermal Behavior of 3D PET Knits with Different Bioceramic Additives," Polymers 2020, 12(6), 2020.
- L. Stygienė, S. Varnaitė-Žuravliova, A. Abraitienė, S. Krauledas, J. Baltušnikaitė-Guzaitienė and I. Padleckienė, "Investigation of thermoregulation properties of various ceramic-containing knitted fabric structures," Volume: 50 issue: 5 pp., pp. page(s): 716-739 10.1177/1528083719842793., 2019.
- H. Yaich, H. Garna, S. Besbes, M. Paquot, C. Blecker and H. Attia, "Chemical composition and functional properties of Ulva lactuca seaweed collected in Tunisia," Food chemistry, pp. 128(4), 895-901, 2011.
- I. Zaghbib and M. Hassouna, "Functional Properties and Biological Potentials of the Tunisian Green Seaweed Ulva lactuca," American Academic Scientific Research Journal for Engineering Technology, and Sciences, pp. 85(1), 89-99., 2022.
- S. Lomartire and A. M. Gonçalves, "An Overview of potential seaweed-derived bioactive compounds for pharmaceutical applications," Marine Drugs, pp. 20(2), 141, 2022.
- A. Hossain, T. J. Krupnik, J. Timsina, M. G. Mahboob, A. K. Chaki, M. Farooq and M. Hasanuzzaman, "In Environment, climate, plant and vegetation growth," in Agricultural land degradation: processes and problems undermining future food security., Springer, Cham., 2020, pp. pp. 17-61.
- C. Rosenzweig and D. Hillel, "Soils and global climate change: Challenges and opportunities," Soil science, pp. 165(1), 47-56., 2000.
- S. Savci, "An agricultural pollutant: chemical fertilizer.," International Journal of Environmental Science and Development, pp. 3(1), 73., 2012.
- M. A. Ayub, M. Usman, T. Faiz, M. Umair, M. Rizwan, S. Ali and M. Zia ur Rehman, "Restoration of degraded soil for sustainable agriculture," in Soil health restoration and management, Singapore, Springer, 2020, pp. pp. 31-81.
F. E. Allison, Soil organic matter and its role in crop production, Elsevier., 1973.
- P. Schjønning, J. L. Jensen, S. Bruun, L. S. Jensen, B. T. Christensen, L. J. Munkholm and L. Knudsen, "The role of soil organic matter for maintaining crop yields: Evidence for a renewed conceptual basis," Advances in agronomy, pp. 150, 35-79., 2018.
- A. Bauer and A. L. Black, "Quantification of the effect of soil organic matter content on soil productivity," Soil Science Society of America Journal, pp. 58(1), 185-193, 1994.
- S. A. Wood, D. Tirfessa and F. Baudron, "Soil organic matter underlies crop nutritional quality and productivity in smallholder agriculture," Agriculture, Ecosystems & Environment, pp. 266, 100-108, 2018.
- W. Wei, Y. Yan, J. Cao, P. Christie, F. Zhang and M. Fan, "Effects of combined application of organic amendments and fertilizers on crop yield and soil organic matter: An integrated analysis of long-term experiments," Agriculture, Ecosystems & Environment, 225,, pp. 86-92., 2016.
- Y. Wang, Y. Zhu, S. Zhang and Y. Wang, "What could promote farmers to replace chemical fertilizers with organic fertilizers?," Journal of Cleaner Production, pp. 199, 882-890., 2018.
- C. Brock, A. Fließbach, H. R. Oberholzer, F. Schulz, K. Wiesinger, F. Reinicke and G. Leithold, "Relation between soil organic matter and yield levels of nonlegume crops in organic and conventional farming systems," Journal of Plant Nutrition and Soil Science, 174(4),, pp. 568-575., 2011.
- H. Luan, W. Gao, S. Huang, J. Tang, M. Z. Li, H. and X. Chen, "Partial substitution of chemical fertilizer with organic amendments affects soil organic carbon composition and stability in a greenhouse vegetable production system," Soil and Tillage Research, pp. 191, 185-196, 2019.
- S. Kasirajan and M. Ngouajio, "Polyethylene and biodegradable mulches for agricultural applications: a review," Agron. Sustain. Dev. 32, pp. 501–529. doi: 10.1007/s13593-011-0068-3, 2012.
- L. Zhang, R. Qin, H. Wei, K. Zhang, C. Yu, F. M. Li and F. Zhang, "Optimum plastic mulching application to reduce greenhouse gas emissions without compromising on crop yield and farmers' income," Science of the Total Environment, pp. 809, 151998, 2022.
- H. Zhang, C. Miles, S. Ghimire, C. Benedict, I. Zasada, H. Liu and L. DeVetter, "Plastic mulches improved plant growth and suppressed weeds in late summer-planted floricane-fruiting raspberry," HortScience 55, p. 565–572, 2020.
- M. Lalitha, V. Thilagam, N. Kasthuri Balakrishnan and M. Mansour, "Effect of plastic mulch on soil properties and crop growth—a review," Agric. Rev., 31, pp. pp. 145-149, 2010.
- Z. Steinmetz, C. Wollmann, M. Schaefer, C. Buchmann, J. David, J. Tröger and G. E. Schaumann, "Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation?.," Science of the total environment, pp. 550, 690-705., 2016.
- I. Kyrikou and D. Briassoulis, "Biodegradation of agricultural plastic films: a critical review," J. Polym. Environ., 15, pp. pp. 125-150, 2007.
- R. Qi, D. L. Jones, L. Z. Q. Liu and C. Yan, "Behavior of microplastics and plastic film residues in the soil environment: A critical review.," Science of the Total Environment, pp. 703, 134722., 2020.
- Y. Chang-Rong, L. En-Ke, S. Fan, Q. Liu, S. Liu and H. Wen-Qing, "Review of agricultural plastic mulching and its residual pollution and prevention measures in China," JARE 31, p. 95, 2014.
- M. Menossi, M. Cisneros, V. A. Alvarez and C. Casalongué, "Current and emerging biodegradable mulch films based on polysaccharide bio-composites. A review.," Agronomy for Sustainable Development, pp. 41(4), 1-27., 2021.
- D. Barragán, A. Pelacho and L. and Martin-Closas, "Degradation of agricultural biodegradable plastics in the soil under laboratory conditions," Soil Res. 54, p. 216–224. doi: 10.1071/SR15034, 2016.
- H. Y. Sintim, S. Bandopadhyay, M. E. English, A. I. Bary, J. M. DeBruyn, S. M. Schaeffer and M. Flury, "Impacts of biodegradable plastic mulches on soil health," Agriculture, Ecosystems & Environment, pp. 273, 36-49, 2019.
- G. Bonanomi, M. Chiurazzi, S. Caporaso, G. Del Sorbo, G. Moschetti and S. Felice, "Soil solarization with biodegradable materials and its impact on soil microbial communities," Soil Biol. Biochem. 40, p. 1989–1998. doi: 10.1016/j.soilbio.2008.02., 2008.
- C. Miles, L. DeVetter, S. Ghimire and D. Hayes, "Suitability of biodegradable plastic mulches for organic and sustainable agricultural production systems," HortScience 52, p. 10–15, 2017.
- D. Sekhouna, F. Kies, I. Elegbede, S. Matemilola, J. Zorriehzahra and E. K. Hussein, "Use of two green algae Ulva lactuca and Ulva intestinalis as bio-fertilizers," Sustainability, Agri, Food and Environmental Research, p. 9(4), 2021.
- J. Al-Alam, D. Salim, Z. Fajloun, M. Millet and A. & Chbani, "The Potential Use of Aqueous Extract of Ulva lactuca seaweed for the Control of the Post-Harvest Citrus Green Mold, in vivo and in vitro conditions," Arabian Journal of Medicinal & Aromatic Plants, pp. 8(1), 155-170, 2022.
- R. A. Hamouda, M. H. Hussein, N. E. A. El-Naggar, M. A. Karim-Eldeen, K. H. Alamer, M. A. Saleh and R. M. A. El-Azeem, "Promoting Effect of Soluble Polysaccharides Extracted from Ulva spp. on Zea mays L.," Growth. Molecules, pp. 27(4), 1394, 2022.
- M. Guidara, H. Yaich, I. B. Amor, J. Fakhfakh, J. Gargouri, S. Lassoued and H. Garna, "Effect of extraction procedures on the chemical structure, antitumor and anticoagulant properties of ulvan from Ulva lactuca of Tunisia coast," Carbohydrate Polymers, pp. 253, 117283., 2021.
Agrotekstil Uygulamaları için Sürdürülebilir Ulva Lactuca Cinsi Yosun ve Kenevir Bazlı Kompozitlerin Geliştirilmesi
Year 2023,
Volume: 5 Issue: 2, 24 - 39, 01.09.2023
Naz Kadınkız
,
Muhammet Uzun
Abstract
Küresel nüfus büyüdükçe, tarımsal verimliliği artırmak için sürdürülebilir tarım yöntemleri gerektiren gıdaya olan talep artmaktadır. Tarımda kullanılan toprak örtüleri ve malçlar çoğunlukla petrokimyasallardan elde edilen ve toprak kirliliği ve uzun süreli çözünmezlik gibi çeşitli sorunlar oluşturan sentetik malzemelerden yapılır. Bu çalışma, toprağın ihtiyaç duyduğu vitamin ve mineralleri içerdiği için Ulva Lactuca alglerinin toprak örtüleri için sürdürülebilir bir hammadde olarak kullanılmasını amaçlamaktadır. Deniz suyunun asitliği arttıkça bu alglerin popülasyonu da artarak tarımda kullanma fırsatı yaratmaktadır. Ürünün nemi tutması, su tüketimini ve yüksek sıcaklıkları azaltması beklenir. Ayrıca endüstriyel kenevir atıklarından elde edilen hurdalar, yüksek su tutma potansiyelleri nedeniyle kullanılmaktadır. Çalışma, Marmara bölgesinden Ulva lactuca algleri ile Narlı ve Vezir tohumlarından elde edilen kenevir tellerini birleştirerek farklı yapılara sahip çeşitli kompozitler oluşturdu. Ürünlerin mekanik ve fiziksel özelliklerini belirlemek için temel testler yapıldı. Amaç, toprak örtüsü olarak kullanıldıktan sonra bu malzemeleri gübre olarak kullanarak toprak organik maddesini arttırmaktır.
References
- M. Liu, M. Johnston and H. Snaith, "Efficient planar heterojunction perovskite solar cells by vapour deposition," Nature, pp. 501, 395, 2013.
- A. Sankauskaitė, V. Rubežienė, D. Kubilienė, A. Abraitienė, J. Baltušnikaitė-Guzaitienė and K. Dubinskaitė, "Investigation of Thermal Behavior of 3D PET Knits with Different Bioceramic Additives," Polymers 2020, 12(6), 2020.
- L. Stygienė, S. Varnaitė-Žuravliova, A. Abraitienė, S. Krauledas, J. Baltušnikaitė-Guzaitienė and I. Padleckienė, "Investigation of thermoregulation properties of various ceramic-containing knitted fabric structures," Volume: 50 issue: 5 pp., pp. page(s): 716-739 10.1177/1528083719842793., 2019.
- H. Yaich, H. Garna, S. Besbes, M. Paquot, C. Blecker and H. Attia, "Chemical composition and functional properties of Ulva lactuca seaweed collected in Tunisia," Food chemistry, pp. 128(4), 895-901, 2011.
- I. Zaghbib and M. Hassouna, "Functional Properties and Biological Potentials of the Tunisian Green Seaweed Ulva lactuca," American Academic Scientific Research Journal for Engineering Technology, and Sciences, pp. 85(1), 89-99., 2022.
- S. Lomartire and A. M. Gonçalves, "An Overview of potential seaweed-derived bioactive compounds for pharmaceutical applications," Marine Drugs, pp. 20(2), 141, 2022.
- A. Hossain, T. J. Krupnik, J. Timsina, M. G. Mahboob, A. K. Chaki, M. Farooq and M. Hasanuzzaman, "In Environment, climate, plant and vegetation growth," in Agricultural land degradation: processes and problems undermining future food security., Springer, Cham., 2020, pp. pp. 17-61.
- C. Rosenzweig and D. Hillel, "Soils and global climate change: Challenges and opportunities," Soil science, pp. 165(1), 47-56., 2000.
- S. Savci, "An agricultural pollutant: chemical fertilizer.," International Journal of Environmental Science and Development, pp. 3(1), 73., 2012.
- M. A. Ayub, M. Usman, T. Faiz, M. Umair, M. Rizwan, S. Ali and M. Zia ur Rehman, "Restoration of degraded soil for sustainable agriculture," in Soil health restoration and management, Singapore, Springer, 2020, pp. pp. 31-81.
F. E. Allison, Soil organic matter and its role in crop production, Elsevier., 1973.
- P. Schjønning, J. L. Jensen, S. Bruun, L. S. Jensen, B. T. Christensen, L. J. Munkholm and L. Knudsen, "The role of soil organic matter for maintaining crop yields: Evidence for a renewed conceptual basis," Advances in agronomy, pp. 150, 35-79., 2018.
- A. Bauer and A. L. Black, "Quantification of the effect of soil organic matter content on soil productivity," Soil Science Society of America Journal, pp. 58(1), 185-193, 1994.
- S. A. Wood, D. Tirfessa and F. Baudron, "Soil organic matter underlies crop nutritional quality and productivity in smallholder agriculture," Agriculture, Ecosystems & Environment, pp. 266, 100-108, 2018.
- W. Wei, Y. Yan, J. Cao, P. Christie, F. Zhang and M. Fan, "Effects of combined application of organic amendments and fertilizers on crop yield and soil organic matter: An integrated analysis of long-term experiments," Agriculture, Ecosystems & Environment, 225,, pp. 86-92., 2016.
- Y. Wang, Y. Zhu, S. Zhang and Y. Wang, "What could promote farmers to replace chemical fertilizers with organic fertilizers?," Journal of Cleaner Production, pp. 199, 882-890., 2018.
- C. Brock, A. Fließbach, H. R. Oberholzer, F. Schulz, K. Wiesinger, F. Reinicke and G. Leithold, "Relation between soil organic matter and yield levels of nonlegume crops in organic and conventional farming systems," Journal of Plant Nutrition and Soil Science, 174(4),, pp. 568-575., 2011.
- H. Luan, W. Gao, S. Huang, J. Tang, M. Z. Li, H. and X. Chen, "Partial substitution of chemical fertilizer with organic amendments affects soil organic carbon composition and stability in a greenhouse vegetable production system," Soil and Tillage Research, pp. 191, 185-196, 2019.
- S. Kasirajan and M. Ngouajio, "Polyethylene and biodegradable mulches for agricultural applications: a review," Agron. Sustain. Dev. 32, pp. 501–529. doi: 10.1007/s13593-011-0068-3, 2012.
- L. Zhang, R. Qin, H. Wei, K. Zhang, C. Yu, F. M. Li and F. Zhang, "Optimum plastic mulching application to reduce greenhouse gas emissions without compromising on crop yield and farmers' income," Science of the Total Environment, pp. 809, 151998, 2022.
- H. Zhang, C. Miles, S. Ghimire, C. Benedict, I. Zasada, H. Liu and L. DeVetter, "Plastic mulches improved plant growth and suppressed weeds in late summer-planted floricane-fruiting raspberry," HortScience 55, p. 565–572, 2020.
- M. Lalitha, V. Thilagam, N. Kasthuri Balakrishnan and M. Mansour, "Effect of plastic mulch on soil properties and crop growth—a review," Agric. Rev., 31, pp. pp. 145-149, 2010.
- Z. Steinmetz, C. Wollmann, M. Schaefer, C. Buchmann, J. David, J. Tröger and G. E. Schaumann, "Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation?.," Science of the total environment, pp. 550, 690-705., 2016.
- I. Kyrikou and D. Briassoulis, "Biodegradation of agricultural plastic films: a critical review," J. Polym. Environ., 15, pp. pp. 125-150, 2007.
- R. Qi, D. L. Jones, L. Z. Q. Liu and C. Yan, "Behavior of microplastics and plastic film residues in the soil environment: A critical review.," Science of the Total Environment, pp. 703, 134722., 2020.
- Y. Chang-Rong, L. En-Ke, S. Fan, Q. Liu, S. Liu and H. Wen-Qing, "Review of agricultural plastic mulching and its residual pollution and prevention measures in China," JARE 31, p. 95, 2014.
- M. Menossi, M. Cisneros, V. A. Alvarez and C. Casalongué, "Current and emerging biodegradable mulch films based on polysaccharide bio-composites. A review.," Agronomy for Sustainable Development, pp. 41(4), 1-27., 2021.
- D. Barragán, A. Pelacho and L. and Martin-Closas, "Degradation of agricultural biodegradable plastics in the soil under laboratory conditions," Soil Res. 54, p. 216–224. doi: 10.1071/SR15034, 2016.
- H. Y. Sintim, S. Bandopadhyay, M. E. English, A. I. Bary, J. M. DeBruyn, S. M. Schaeffer and M. Flury, "Impacts of biodegradable plastic mulches on soil health," Agriculture, Ecosystems & Environment, pp. 273, 36-49, 2019.
- G. Bonanomi, M. Chiurazzi, S. Caporaso, G. Del Sorbo, G. Moschetti and S. Felice, "Soil solarization with biodegradable materials and its impact on soil microbial communities," Soil Biol. Biochem. 40, p. 1989–1998. doi: 10.1016/j.soilbio.2008.02., 2008.
- C. Miles, L. DeVetter, S. Ghimire and D. Hayes, "Suitability of biodegradable plastic mulches for organic and sustainable agricultural production systems," HortScience 52, p. 10–15, 2017.
- D. Sekhouna, F. Kies, I. Elegbede, S. Matemilola, J. Zorriehzahra and E. K. Hussein, "Use of two green algae Ulva lactuca and Ulva intestinalis as bio-fertilizers," Sustainability, Agri, Food and Environmental Research, p. 9(4), 2021.
- J. Al-Alam, D. Salim, Z. Fajloun, M. Millet and A. & Chbani, "The Potential Use of Aqueous Extract of Ulva lactuca seaweed for the Control of the Post-Harvest Citrus Green Mold, in vivo and in vitro conditions," Arabian Journal of Medicinal & Aromatic Plants, pp. 8(1), 155-170, 2022.
- R. A. Hamouda, M. H. Hussein, N. E. A. El-Naggar, M. A. Karim-Eldeen, K. H. Alamer, M. A. Saleh and R. M. A. El-Azeem, "Promoting Effect of Soluble Polysaccharides Extracted from Ulva spp. on Zea mays L.," Growth. Molecules, pp. 27(4), 1394, 2022.
- M. Guidara, H. Yaich, I. B. Amor, J. Fakhfakh, J. Gargouri, S. Lassoued and H. Garna, "Effect of extraction procedures on the chemical structure, antitumor and anticoagulant properties of ulvan from Ulva lactuca of Tunisia coast," Carbohydrate Polymers, pp. 253, 117283., 2021.