Research Article
BibTex RIS Cite

Farklı Reynolds (Re) Sayılarında Çapraz Akışlı Bir Isı Değiştirici Üzerine Nümerik Bir Çalışma

Year 2023, Volume: 5 Issue: 3, 118 - 130, 27.12.2023
https://doi.org/10.46740/alku.1368103

Abstract

Isı değiştiriciler mühendislik ve endüstriyel uygulamalarda oldukça popülerdir. Isı değiştiriciler üzerindeki ısı transferi performansının araştırılmasına yönelik sayısal çalışmalar son yıllarda Hesaplamalı Akışkanlar Dinamiği (HAD) yöntemiyle yayın şekilde gerçekleştirilmektedir. Bu çalışmada farklı Reynolds (Re) sayıları ile çapraz akışlı sıcak su içeren dairesel bir boru incelenmiştir. Türbülanslı bir akışta, dairesel boru için Re sayısı 3165 ile 4643 arasında değişmektedir. Hava 303 K, su ise 333 K sıcaklıktadır. Akış karakteristikleri ve termal performans açısından Duvardaki kayma gerilmesi, Yüzey sürtünme katsayısı (Cf), Nusselt sayısı (Nu), Isı transferi kaysayısı (h) ve yüzey sıcaklığı Re sayısındaki artışa göre incelenmiştir. Sonuçlar, Re sayısının belirtilen aralıkta kayma gerilmesi ve Cf değerlerinde önemli bir değişiklik olmadığını göstermektedir. Ancak ısıl performans değerlendirildiğinde, Re sayısının artmasıyla dairesel borunun yüzey sıcaklığı, ısı transfer katsayısı ve Nu sayısı değerleri de artmaktadır. Burada, Re sayısının belirtilen aralığı için artışta yaklaşık % 2 olup, akış koşullarıyla artırılabileceği gösterilmektedir. Re numarası 4643'te maksimum Nu sayısı 4482.37 olarak hesaplamıştır. Sonuç olarak Re numarası, bir ısı değiştiricinin ısı transfer performansının kontrolünde oldukça etkilidir.

References

  • [1] S. S. Paul, S. J. Ormiston, and M. F. Tachie, “Experimental and numerical investigation of turbulent cross-flow in a staggered tube bundle,” Int. J. Heat Fluid Flow, vol. 29, no. 2, pp. 387–414, 2008, doi: 10.1016/j.ijheatfluidflow.2007.10.001.
  • [2] J. M. Park, O. J. Kim, S. J. Kim, and Y. C. Shin, “Heat transfer characteristics of circular and elliptic cylinders in cross flow,” Adv. Mech. Eng., vol. 7, no. 11, pp. 1–8, 2015, doi: 10.1177/1687814015619553.
  • [3] S. Toolthaisong and N. Kasayapanand, “Effect of attack angles on air side thermal and pressure drop of the cross flow heat exchangers with staggered tube arrangement,” Energy Procedia, vol. 34, pp. 417–429, 2013, doi: 10.1016/j.egypro.2013.06.770.
  • [4] S. Liu and M. Sakr, “A comprehensive review on passive heat transfer enhancements in pipe exchangers,” Renew. Sustain. Energy Rev., vol. 19, pp. 64–81, 2013, doi: 10.1016/j.rser.2012.11.021.
  • [5] S. A. E. Sayed Ahmed, O. M. Mesalhy, and M. A. Abdelatief, “Flow and heat transfer enhancement in tube heat exchangers,” Heat Mass Transf. und Stoffuebertragung, vol. 51, no. 11, pp. 1607–1630, 2015, doi: 10.1007/s00231-015-1669-1.
  • [6] Y. Lai, M. Lu, and Q. Wang, “A large eddy simulation of plate-fin and tube heat exchangers with small diameter tubes,” Heat Transf. Eng., vol. 35, no. 11–12, pp. 1137–1143, 2014, doi: 10.1080/01457632.2013.863555.
  • [7] H. M. S. Bahaidarah, N. K. Anand, and H. C. Chen, “A numerical study of fluid flow and heat transfer over a bank of flat tubes,” Numer. Heat Transf. Part A Appl., vol. 48, no. 4, pp. 359–385, 2005, doi: 10.1080/10407780590957134.
  • [8] A. Žukauskas, “Heat Transfer from Tubes in Crossflow,” 1972, pp. 93–160.
  • [9] T. Kim, “Effect of longitudinal pitch on convective heat transfer in crossflow over in-line tube banks,” Ann. Nucl. Energy, vol. 57, pp. 209–215, 2013, doi: 10.1016/j.anucene.2013.01.060.
  • [10] A. P. R. Bruce Roy Munson, T H Okiishi, Wade W Huebsch, Fundamentals of fluid mechanics. Hoboken, NJ: J. Wiley & Sons, 2013.
  • [11] M. Etli, G. Canbolat, O. Karahan, and M. Koru, “Numerical investigation of patient-specific thoracic aortic aneurysms and comparison with normal subject via computational fluid dynamics (CFD),” Med. Biol. Eng. Comput., vol. 59, no. 1, pp. 71–84, 2021, doi: 10.1007/s11517-020-02287-6.
  • [12] R. Rzehak and S. Kriebitzsch, “Multiphase CFD-simulation of bubbly pipe flow: A code comparison,” Int. J. Multiph. Flow, vol. 68, pp. 135–152, 2015, doi: 10.1016/j.ijmultiphaseflow.2014.09.005.
  • [13] G. Canbolat, M. Etli, O. Karahan, M. Koru, and E. Korkmaz, “Investigation of vascular flow in a thoracic aorta in terms of flow models and blood rheology via Computational Fluid Dynamics (CFD),” J. Mech. Med. Biol., Aug. 2023, doi: 10.1142/S021951942350094X.
  • [14] F. Darıcık, G. Canbolat, and M. Koru, “Investigation of a fiber reinforced polymer composite tube by two way coupling fluid-structure interaction,” Coupled Syst. Mech., vol. 11, no. 4, pp. 315–333, 2022, doi: 10.12989/csm.2022.11.4.315.
  • [15] G. Canbolat, A. Yıldızeli, H. A. Köse, and S. Çadırcı, “Düz Bir Plaka Üzerindeki Hidrodinamik ve Isıl Sınır Tabaka Akışının Sayısal Olarak İncelenmesi ve Geçiş Kontrolü,” Int. J. Adv. Eng. Pure Sci., vol. 32, no. 4, pp. 390–397, 2020. doi: 10.7240/jeps.636786.
  • [16] M. Elkarii, R. Boukharfane, S. Benjelloun, and C. Bouallou, “A CFD-based surrogate model for predicting slurry pipe flow pressure drops,” Part. Sci. Technol., vol. 41, no. 3, pp. 432–442, 2023. doi: 10.1080/02726351.2022.2110341.
  • [17] G. Canbolat, A. Yıldızeli, H. A. Köse, and S. Çadırcı, “Numerical Investigation of Transitional Flow over a Flat Plate under Constant Heat Fluxes,” Acad. Perspect. Procedia, vol. 1, no. 1, pp. 187–195, Nov. 2018. doi: 10.33793/acperpro.01.01.39.
  • [18] J. Yunus A and M. Cimbala., Fluid Mechanics Fundamentals and Applications. Boston: HillHigher Education, 2006.
  • [19] ANSYS, “Ansys Fluent Theory Guide,” PA 15317, 2013.
  • [20] W. H. GIEDT, “Effect of Turbulence Level of Incident Air Stream on Local Heat Transfer and Skin Friction on a Cylinder,” J. Aeronaut. Sci., vol. 18, no. 11, pp. 725–730, Nov. 1951, doi: 10.2514/8.2092.
  • [21] S. T. McClain, B. K. Hodge, and J. P. Bons, “Predicting Skin Friction and Heat Transfer for Turbulent Flow Over Real Gas Turbine Surface Roughness Using the Discrete Element Method,” J. Turbomach., vol. 126, no. 2, pp. 259–267, Apr. 2004, doi: 10.1115/1.1740779.
  • [22] A. Mirabdolah Lavasani, H. Bayat, and T. Maarefdoost, “Experimental study of convective heat transfer from in-line cam shaped tube bank in crossflow,” Appl. Therm. Eng., vol. 65, no. 1–2, pp. 85–93, 2014, doi: 10.1016/j.applthermaleng.2013.12.078.
  • [23] C. K. Mangrulkar, A. S. Dhoble, S. G. Chakrabarty, and U. S. Wankhede, “Experimental and CFD prediction of heat transfer and friction factor characteristics in cross flow tube bank with integral splitter plate,” Int. J. Heat Mass Transf., vol. 104, pp. 964–978, 2017. doi: 10.1016/j.ijheatmasstransfer.2016.09.013.
  • [24] A. Sohankar, M. Khodadadi, and E. Rangraz, “Control of fluid flow and heat transfer around a square cylinder by uniform suction and blowing at low Reynolds numbers,” Comput. Fluids, vol. 109, pp. 155–167, 2015. doi: 10.1016/j.compfluid.2014.12.020.
  • [25] A. Lemouedda, A. Schmid, E. Franz, M. Breuer, and A. Delgado, “Numerical investigations for the optimization of serrated finned-tube heat exchangers,” Appl. Therm. Eng., vol. 31, no. 8–9, pp. 1393–1401, 2011. doi: 10.1016/j.applthermaleng.2010.12.035.
  • [26] Y. Wang, L. C. Wang, Z. M. Lin, Y. H. Yao, and L. B. Wang, “The condition requiring conjugate numerical method in study of heat transfer characteristics of tube bank fin heat exchanger,” Int. J. Heat Mass Transf., vol. 55, no. 9–10, pp. 2353–2364, 2012. doi: 10.1016/j.ijheatmasstransfer.2012.01.029.
  • [27] C. K. Mangrulkar, A. S. Dhoble, S. Chamoli, A. Gupta, and V. B. Gawande, “Recent advancement in heat transfer and fluid flow characteristics in cross flow heat exchangers,” Renew. Sustain. Energy Rev., vol. 113, no. November 2018, p. 109220, 2019. doi: 10.1016/j.rser.2019.06.027.
  • [28] L. Zhao, X. Gu, L. Gao, and Z. Yang, “Numerical study on airside thermal-hydraulic performance of rectangular finned elliptical tube heat exchanger with large row number in turbulent flow regime,” Int. J. Heat Mass Transf., vol. 114, pp. 1314–1330, 2017. doi: 10.1016/j.ijheatmasstransfer.2017.06.049.
  • [29] F. Duan, K. W. Song, H. R. Li, L. M. Chang, Y. H. Zhang, and L. B. Wang, “Numerical study of laminar flow and heat transfer characteristics in the fin side of the intermittent wavy finned flat tube heat exchanger,” Appl. Therm. Eng., vol. 103, pp. 112–127, 2016. doi: 10.1016/j.applthermaleng.2016.04.081.

A Numerical Study on Cross Flow Heat Exchanger with Different Reynolds (Re) Numbers

Year 2023, Volume: 5 Issue: 3, 118 - 130, 27.12.2023
https://doi.org/10.46740/alku.1368103

Abstract

Heat exchangers are highly popular in engineering and industrial applications. Numerical studies on heat exchangers to investigate the performance of heat transfer have been carried out widely by Computational Fluid Dynamics (CFD) in recent years. In this study, a circular pipe with hot water in cross flow is investigated in different Reynolds (Re) numbers. Flow is turbulent flow and the Re number varies from 3165 to 4643 in the circular pipe. The air is at a temperature of 303 K and the water is at 333 K. Variation of flow characteristics and thermal performance is observed according to an increase in Re numbers such as Wall Shear Stress (WSS), Skin Friction Coefficient (Cf), Nusselt Number (Nu), heat transfer coefficient (h) and surface temperature of the circular pipe. Results show that there are no significant changes for the WSS and Cf values in the specified range of the Re number. However, when the thermal performance is evaluated, the temperature of the surface of the circular pipe, heat transfer coefficient, and Nu number values are increased by an increase in the Re number. Here, the increase is approximately 2% for the specified range of Re number, and it is shown that it can be increased by the flow conditions. The maximum Nu number is 4482.37 at the Re number of 4643. As a result, the Re number is highly effective in controlling the heat transfer performance of a heat exchanger

References

  • [1] S. S. Paul, S. J. Ormiston, and M. F. Tachie, “Experimental and numerical investigation of turbulent cross-flow in a staggered tube bundle,” Int. J. Heat Fluid Flow, vol. 29, no. 2, pp. 387–414, 2008, doi: 10.1016/j.ijheatfluidflow.2007.10.001.
  • [2] J. M. Park, O. J. Kim, S. J. Kim, and Y. C. Shin, “Heat transfer characteristics of circular and elliptic cylinders in cross flow,” Adv. Mech. Eng., vol. 7, no. 11, pp. 1–8, 2015, doi: 10.1177/1687814015619553.
  • [3] S. Toolthaisong and N. Kasayapanand, “Effect of attack angles on air side thermal and pressure drop of the cross flow heat exchangers with staggered tube arrangement,” Energy Procedia, vol. 34, pp. 417–429, 2013, doi: 10.1016/j.egypro.2013.06.770.
  • [4] S. Liu and M. Sakr, “A comprehensive review on passive heat transfer enhancements in pipe exchangers,” Renew. Sustain. Energy Rev., vol. 19, pp. 64–81, 2013, doi: 10.1016/j.rser.2012.11.021.
  • [5] S. A. E. Sayed Ahmed, O. M. Mesalhy, and M. A. Abdelatief, “Flow and heat transfer enhancement in tube heat exchangers,” Heat Mass Transf. und Stoffuebertragung, vol. 51, no. 11, pp. 1607–1630, 2015, doi: 10.1007/s00231-015-1669-1.
  • [6] Y. Lai, M. Lu, and Q. Wang, “A large eddy simulation of plate-fin and tube heat exchangers with small diameter tubes,” Heat Transf. Eng., vol. 35, no. 11–12, pp. 1137–1143, 2014, doi: 10.1080/01457632.2013.863555.
  • [7] H. M. S. Bahaidarah, N. K. Anand, and H. C. Chen, “A numerical study of fluid flow and heat transfer over a bank of flat tubes,” Numer. Heat Transf. Part A Appl., vol. 48, no. 4, pp. 359–385, 2005, doi: 10.1080/10407780590957134.
  • [8] A. Žukauskas, “Heat Transfer from Tubes in Crossflow,” 1972, pp. 93–160.
  • [9] T. Kim, “Effect of longitudinal pitch on convective heat transfer in crossflow over in-line tube banks,” Ann. Nucl. Energy, vol. 57, pp. 209–215, 2013, doi: 10.1016/j.anucene.2013.01.060.
  • [10] A. P. R. Bruce Roy Munson, T H Okiishi, Wade W Huebsch, Fundamentals of fluid mechanics. Hoboken, NJ: J. Wiley & Sons, 2013.
  • [11] M. Etli, G. Canbolat, O. Karahan, and M. Koru, “Numerical investigation of patient-specific thoracic aortic aneurysms and comparison with normal subject via computational fluid dynamics (CFD),” Med. Biol. Eng. Comput., vol. 59, no. 1, pp. 71–84, 2021, doi: 10.1007/s11517-020-02287-6.
  • [12] R. Rzehak and S. Kriebitzsch, “Multiphase CFD-simulation of bubbly pipe flow: A code comparison,” Int. J. Multiph. Flow, vol. 68, pp. 135–152, 2015, doi: 10.1016/j.ijmultiphaseflow.2014.09.005.
  • [13] G. Canbolat, M. Etli, O. Karahan, M. Koru, and E. Korkmaz, “Investigation of vascular flow in a thoracic aorta in terms of flow models and blood rheology via Computational Fluid Dynamics (CFD),” J. Mech. Med. Biol., Aug. 2023, doi: 10.1142/S021951942350094X.
  • [14] F. Darıcık, G. Canbolat, and M. Koru, “Investigation of a fiber reinforced polymer composite tube by two way coupling fluid-structure interaction,” Coupled Syst. Mech., vol. 11, no. 4, pp. 315–333, 2022, doi: 10.12989/csm.2022.11.4.315.
  • [15] G. Canbolat, A. Yıldızeli, H. A. Köse, and S. Çadırcı, “Düz Bir Plaka Üzerindeki Hidrodinamik ve Isıl Sınır Tabaka Akışının Sayısal Olarak İncelenmesi ve Geçiş Kontrolü,” Int. J. Adv. Eng. Pure Sci., vol. 32, no. 4, pp. 390–397, 2020. doi: 10.7240/jeps.636786.
  • [16] M. Elkarii, R. Boukharfane, S. Benjelloun, and C. Bouallou, “A CFD-based surrogate model for predicting slurry pipe flow pressure drops,” Part. Sci. Technol., vol. 41, no. 3, pp. 432–442, 2023. doi: 10.1080/02726351.2022.2110341.
  • [17] G. Canbolat, A. Yıldızeli, H. A. Köse, and S. Çadırcı, “Numerical Investigation of Transitional Flow over a Flat Plate under Constant Heat Fluxes,” Acad. Perspect. Procedia, vol. 1, no. 1, pp. 187–195, Nov. 2018. doi: 10.33793/acperpro.01.01.39.
  • [18] J. Yunus A and M. Cimbala., Fluid Mechanics Fundamentals and Applications. Boston: HillHigher Education, 2006.
  • [19] ANSYS, “Ansys Fluent Theory Guide,” PA 15317, 2013.
  • [20] W. H. GIEDT, “Effect of Turbulence Level of Incident Air Stream on Local Heat Transfer and Skin Friction on a Cylinder,” J. Aeronaut. Sci., vol. 18, no. 11, pp. 725–730, Nov. 1951, doi: 10.2514/8.2092.
  • [21] S. T. McClain, B. K. Hodge, and J. P. Bons, “Predicting Skin Friction and Heat Transfer for Turbulent Flow Over Real Gas Turbine Surface Roughness Using the Discrete Element Method,” J. Turbomach., vol. 126, no. 2, pp. 259–267, Apr. 2004, doi: 10.1115/1.1740779.
  • [22] A. Mirabdolah Lavasani, H. Bayat, and T. Maarefdoost, “Experimental study of convective heat transfer from in-line cam shaped tube bank in crossflow,” Appl. Therm. Eng., vol. 65, no. 1–2, pp. 85–93, 2014, doi: 10.1016/j.applthermaleng.2013.12.078.
  • [23] C. K. Mangrulkar, A. S. Dhoble, S. G. Chakrabarty, and U. S. Wankhede, “Experimental and CFD prediction of heat transfer and friction factor characteristics in cross flow tube bank with integral splitter plate,” Int. J. Heat Mass Transf., vol. 104, pp. 964–978, 2017. doi: 10.1016/j.ijheatmasstransfer.2016.09.013.
  • [24] A. Sohankar, M. Khodadadi, and E. Rangraz, “Control of fluid flow and heat transfer around a square cylinder by uniform suction and blowing at low Reynolds numbers,” Comput. Fluids, vol. 109, pp. 155–167, 2015. doi: 10.1016/j.compfluid.2014.12.020.
  • [25] A. Lemouedda, A. Schmid, E. Franz, M. Breuer, and A. Delgado, “Numerical investigations for the optimization of serrated finned-tube heat exchangers,” Appl. Therm. Eng., vol. 31, no. 8–9, pp. 1393–1401, 2011. doi: 10.1016/j.applthermaleng.2010.12.035.
  • [26] Y. Wang, L. C. Wang, Z. M. Lin, Y. H. Yao, and L. B. Wang, “The condition requiring conjugate numerical method in study of heat transfer characteristics of tube bank fin heat exchanger,” Int. J. Heat Mass Transf., vol. 55, no. 9–10, pp. 2353–2364, 2012. doi: 10.1016/j.ijheatmasstransfer.2012.01.029.
  • [27] C. K. Mangrulkar, A. S. Dhoble, S. Chamoli, A. Gupta, and V. B. Gawande, “Recent advancement in heat transfer and fluid flow characteristics in cross flow heat exchangers,” Renew. Sustain. Energy Rev., vol. 113, no. November 2018, p. 109220, 2019. doi: 10.1016/j.rser.2019.06.027.
  • [28] L. Zhao, X. Gu, L. Gao, and Z. Yang, “Numerical study on airside thermal-hydraulic performance of rectangular finned elliptical tube heat exchanger with large row number in turbulent flow regime,” Int. J. Heat Mass Transf., vol. 114, pp. 1314–1330, 2017. doi: 10.1016/j.ijheatmasstransfer.2017.06.049.
  • [29] F. Duan, K. W. Song, H. R. Li, L. M. Chang, Y. H. Zhang, and L. B. Wang, “Numerical study of laminar flow and heat transfer characteristics in the fin side of the intermittent wavy finned flat tube heat exchanger,” Appl. Therm. Eng., vol. 103, pp. 112–127, 2016. doi: 10.1016/j.applthermaleng.2016.04.081.
There are 29 citations in total.

Details

Primary Language English
Subjects Numerical Methods in Mechanical Engineering, Mechanical Engineering (Other)
Journal Section Makaleler
Authors

Gökhan Canbolat 0000-0001-6491-095X

Early Pub Date December 25, 2023
Publication Date December 27, 2023
Submission Date September 28, 2023
Acceptance Date October 4, 2023
Published in Issue Year 2023 Volume: 5 Issue: 3

Cite

APA Canbolat, G. (2023). A Numerical Study on Cross Flow Heat Exchanger with Different Reynolds (Re) Numbers. ALKÜ Fen Bilimleri Dergisi, 5(3), 118-130. https://doi.org/10.46740/alku.1368103
AMA Canbolat G. A Numerical Study on Cross Flow Heat Exchanger with Different Reynolds (Re) Numbers. ALKÜ Fen Bilimleri Dergisi. December 2023;5(3):118-130. doi:10.46740/alku.1368103
Chicago Canbolat, Gökhan. “A Numerical Study on Cross Flow Heat Exchanger With Different Reynolds (Re) Numbers”. ALKÜ Fen Bilimleri Dergisi 5, no. 3 (December 2023): 118-30. https://doi.org/10.46740/alku.1368103.
EndNote Canbolat G (December 1, 2023) A Numerical Study on Cross Flow Heat Exchanger with Different Reynolds (Re) Numbers. ALKÜ Fen Bilimleri Dergisi 5 3 118–130.
IEEE G. Canbolat, “A Numerical Study on Cross Flow Heat Exchanger with Different Reynolds (Re) Numbers”, ALKÜ Fen Bilimleri Dergisi, vol. 5, no. 3, pp. 118–130, 2023, doi: 10.46740/alku.1368103.
ISNAD Canbolat, Gökhan. “A Numerical Study on Cross Flow Heat Exchanger With Different Reynolds (Re) Numbers”. ALKÜ Fen Bilimleri Dergisi 5/3 (December 2023), 118-130. https://doi.org/10.46740/alku.1368103.
JAMA Canbolat G. A Numerical Study on Cross Flow Heat Exchanger with Different Reynolds (Re) Numbers. ALKÜ Fen Bilimleri Dergisi. 2023;5:118–130.
MLA Canbolat, Gökhan. “A Numerical Study on Cross Flow Heat Exchanger With Different Reynolds (Re) Numbers”. ALKÜ Fen Bilimleri Dergisi, vol. 5, no. 3, 2023, pp. 118-30, doi:10.46740/alku.1368103.
Vancouver Canbolat G. A Numerical Study on Cross Flow Heat Exchanger with Different Reynolds (Re) Numbers. ALKÜ Fen Bilimleri Dergisi. 2023;5(3):118-30.