Research Article
BibTex RIS Cite

Reducing Variation of Risk Estimation by Using Importance Sampling

Year 2019, Volume: 7 Issue: 2, 173 - 184, 31.12.2019
https://doi.org/10.17093/alphanumeric.605584

Abstract

In today's world, risk measurement and risk management are of great importance for various economic reasons. Especially in the crisis periods, the tail risk becomes very important in risk estimation. Many methods have been developed for accurate measurement of risk. The easiest of these methods is the Value at Risk (VaR) method. However, standard VaR methods are not very effective in tail risks. This study aims to demonstrate the usage of delta normal method, historical simulation method, Monte Carlo simulation, and importance sampling to calculate the value at risk and to show which method is more effective by applying them to the S&P index between 1993 and 2003.

References

  • Bassamboo, A., Juneja, S. & Zeevi, A. (2005). Portfolio Credit Risk with Extremal Dependence. Ssrn, 56(3), 593–606.
  • Brereton, T., Kroese, D. & Chan, J. (2012). Monte Carlo methods for portfolio credit risk, ANU Working Papers in Economics and Econometrics. Access Domain: https://ideas.repec.org/p/acb/cbeeco/2012-579.html
  • Danielsson, J. (2011). Financial Risk Forecasting: The Theory and Practice of Forecasting Market Risk, with Implementation in R and Matlab, Wiley&Sons Inc:UK
  • De Vooys, F. (2012). Importance Sampling for Credit Risk Monte Carlo simulations using the Cross Entropy Approach, Nederland Open University Computer Science, Master Thesis. Access Domain: https://dspace.ou.nl/bitstream/1820/4285/1/INF_20120417_Vooys.pdf
  • Glasserman, P. (2003). Monte Carlo Methods in Financial Engineering. Springer-Verlag New York.
  • Glasserman, P. & Li, J. (2005). Importance Sampling for Portfolio Credit Risk. Management Science, 51(11), 1643–1656.
  • Glasserman, P., Heidelberger, P. & Shahabuddin. P. (1999a). Asymptotically optimal importance sampling and stratification for pricing path-dependent options. Mathematical Finance, 9,117–152.
  • Glasserman, P., Heidelberger, P. & Shahabuddin. P. (1999b). Importance sampling in the HeathJarrow-Morton framework. Technical report, IBM Research Report RC 21367, Yorktown Heights,NY.
  • Gupta, J. & Chaudhry, S. (2019). Mind the Tail, or Risk to Fail, Journal of Business Research, 99, 167-185.
  • Jorion, P. (2003). Financial Risk Manager Handbook. John Wiley&Sons Inc: New Jersey
  • Kahn, H. (1950a). Random sampling (Monte Carlo) techniques in neutron attenuation problems, I. Nucleonics, 6(5), 27–37.
  • Kahn, H. (1950b). Random sampling (Monte Carlo) techniques in neutron attenuation problems, II. Nucleonics, 6(6), 60–65.
  • Kahn, H. & Marshall, A. (1953). Methods of reducing sample size in Monte Carlo computations. Journal of the Operations Research Society of America, 1(5), 263–278.
  • Kalkbrener, M., Lotter, H. & Overbeck, L. (2004) Sensible and efficient allocation for credit portfolios, Risk, 17, S19-S24
  • Keasler, T.R. (2001). The Underwriter's Early Lock-Up Release: Empirical Evidence. Journal of Economics and Finance, 25(2), 214-228.
  • Keçeci, N.F. & Demirtaş, Y.E. (2018). Risk-Based DEA Efficiency and SSD Efficiency of OECD Members Stock Indices. Alphanumeric Journal, 6 (1), 25-36. DOI: 10.17093/alphanumeric. 345483
  • Liu, G. (2010). Importance sampling for risk contributions of credit portfolios. Proceedings - Winter Simulation Conference, 2771–2781.
  • Morokoff, W. J. (2004). Proceedings of the 2004 Winter Simulation Conference R .G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds.
  • Müller, A. (2016). Improved Variance Reduced Monte-Carlo Simulation of in-the-Money Options. Journal of Mathematical Finance, 6(3), 361–367.
  • Neftci, S. N. (2000). Value at Risk Calculations, Extreme Events, and Tail Estimation, Journal of Derivatives, 7, 23-38.
  • Rubinstein, M.(2002). Markowitz's "Portfolio Selection": A Fifty-Year Retrospective . The Journal of Finance, 57(3), 1041-1045.
  • Van den Goorbergh, R.W.J. & Vlaar P.J.G. (1999). Value-at-Risk Analysis of Stock Returns:Historical Simulation, Variance Techniques or Tail Index Estimation?. Research Memorandum WO&E nr 579, 1-38.
Year 2019, Volume: 7 Issue: 2, 173 - 184, 31.12.2019
https://doi.org/10.17093/alphanumeric.605584

Abstract

References

  • Bassamboo, A., Juneja, S. & Zeevi, A. (2005). Portfolio Credit Risk with Extremal Dependence. Ssrn, 56(3), 593–606.
  • Brereton, T., Kroese, D. & Chan, J. (2012). Monte Carlo methods for portfolio credit risk, ANU Working Papers in Economics and Econometrics. Access Domain: https://ideas.repec.org/p/acb/cbeeco/2012-579.html
  • Danielsson, J. (2011). Financial Risk Forecasting: The Theory and Practice of Forecasting Market Risk, with Implementation in R and Matlab, Wiley&Sons Inc:UK
  • De Vooys, F. (2012). Importance Sampling for Credit Risk Monte Carlo simulations using the Cross Entropy Approach, Nederland Open University Computer Science, Master Thesis. Access Domain: https://dspace.ou.nl/bitstream/1820/4285/1/INF_20120417_Vooys.pdf
  • Glasserman, P. (2003). Monte Carlo Methods in Financial Engineering. Springer-Verlag New York.
  • Glasserman, P. & Li, J. (2005). Importance Sampling for Portfolio Credit Risk. Management Science, 51(11), 1643–1656.
  • Glasserman, P., Heidelberger, P. & Shahabuddin. P. (1999a). Asymptotically optimal importance sampling and stratification for pricing path-dependent options. Mathematical Finance, 9,117–152.
  • Glasserman, P., Heidelberger, P. & Shahabuddin. P. (1999b). Importance sampling in the HeathJarrow-Morton framework. Technical report, IBM Research Report RC 21367, Yorktown Heights,NY.
  • Gupta, J. & Chaudhry, S. (2019). Mind the Tail, or Risk to Fail, Journal of Business Research, 99, 167-185.
  • Jorion, P. (2003). Financial Risk Manager Handbook. John Wiley&Sons Inc: New Jersey
  • Kahn, H. (1950a). Random sampling (Monte Carlo) techniques in neutron attenuation problems, I. Nucleonics, 6(5), 27–37.
  • Kahn, H. (1950b). Random sampling (Monte Carlo) techniques in neutron attenuation problems, II. Nucleonics, 6(6), 60–65.
  • Kahn, H. & Marshall, A. (1953). Methods of reducing sample size in Monte Carlo computations. Journal of the Operations Research Society of America, 1(5), 263–278.
  • Kalkbrener, M., Lotter, H. & Overbeck, L. (2004) Sensible and efficient allocation for credit portfolios, Risk, 17, S19-S24
  • Keasler, T.R. (2001). The Underwriter's Early Lock-Up Release: Empirical Evidence. Journal of Economics and Finance, 25(2), 214-228.
  • Keçeci, N.F. & Demirtaş, Y.E. (2018). Risk-Based DEA Efficiency and SSD Efficiency of OECD Members Stock Indices. Alphanumeric Journal, 6 (1), 25-36. DOI: 10.17093/alphanumeric. 345483
  • Liu, G. (2010). Importance sampling for risk contributions of credit portfolios. Proceedings - Winter Simulation Conference, 2771–2781.
  • Morokoff, W. J. (2004). Proceedings of the 2004 Winter Simulation Conference R .G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds.
  • Müller, A. (2016). Improved Variance Reduced Monte-Carlo Simulation of in-the-Money Options. Journal of Mathematical Finance, 6(3), 361–367.
  • Neftci, S. N. (2000). Value at Risk Calculations, Extreme Events, and Tail Estimation, Journal of Derivatives, 7, 23-38.
  • Rubinstein, M.(2002). Markowitz's "Portfolio Selection": A Fifty-Year Retrospective . The Journal of Finance, 57(3), 1041-1045.
  • Van den Goorbergh, R.W.J. & Vlaar P.J.G. (1999). Value-at-Risk Analysis of Stock Returns:Historical Simulation, Variance Techniques or Tail Index Estimation?. Research Memorandum WO&E nr 579, 1-38.
There are 22 citations in total.

Details

Primary Language English
Subjects Operation
Journal Section Articles
Authors

Hatem Çoban This is me 0000-0001-6613-6371

İpek Deveci Kocakoç 0000-0001-9155-8269

Şemsettin Erken This is me 0000-0002-8936-5633

Mehmet Akif Aksoy This is me 0000-0002-5795-2999

Publication Date December 31, 2019
Submission Date August 15, 2019
Published in Issue Year 2019 Volume: 7 Issue: 2

Cite

APA Çoban, H., Deveci Kocakoç, İ., Erken, Ş., Aksoy, M. A. (2019). Reducing Variation of Risk Estimation by Using Importance Sampling. Alphanumeric Journal, 7(2), 173-184. https://doi.org/10.17093/alphanumeric.605584

Alphanumeric Journal is hosted on DergiPark, a web based online submission and peer review system powered by TUBİTAK ULAKBIM.

Alphanumeric Journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License