Research Article
BibTex RIS Cite

Matematik Öğretmen Adaylarının Matematiksel Yaratıcılık Düzeyleri ile Matematiksel Yaratıcılıklarına İlişkin Öz-Yeterlik Algı Düzeyleri Arasındaki İlişkinin İncelenmesi

Year 2023, Volume: 12 Issue: 2, 75 - 98, 31.12.2023
https://doi.org/10.17539/amauefd.1388796

Abstract

Bu araştırmada matematik öğretmen adaylarının matematiksel yaratıcılık beceri düzeyleri ile matematiksel yaratıcılıklarına ilişkin öz-yeterlik algı düzeylerinin belirlenmesi ve aralarındaki ilişkilerin incelenmesi amaçlanmıştır. Ayrıca öğretmen adaylarının matematiksel yaratıcılık ve yaratıcılığa ilişkin öz-yeterlik algı düzeyleri cinsiyet ve sınıf düzeyi değişkenleri açısından araştırılmıştır. Araştırma 204 ilköğretim matematik öğretmen adayının katılımıyla gerçekleştirilmiştir. Araştırmanın verileri Matematiksel Yaratıcılık Beceri Testi, Matematiksel Yaratıcılığa İlişkin Öz-Yeterlik Algı Ölçeği, Matematiksel Yaratıcılığa İlişkin Problem Odaklı Öz-Yeterlik Algı Ölçeği ile toplanmıştır. Araştırmada öğretmen adaylarının matematiksel yaratıcılık ve genel matematiksel yaratıcılığa ilişkin öz-yeterlik algı puanının “orta” düzeyde olduğu problem odaklı matematiksel yaratıcılığa ilişkin öz-yeterlik algı puanlarının “iyi” düzeyde olduğu tespit edilmiştir. Ayrıca araştırmanın sonuçları matematiksel yaratıcılık ve problem odaklı matematiksel yaratıcılığa ilişkin öz-yeterlik algı puanlarının cinsiyet ve sınıf düzeyi değişkenleri açısından farklılık göstermediği görülmüştür. Genel matematiksel yaratıcılığa ilişkin öz-yeterlik algı puanları erkeklerin lehine anlamlı farklılık gösterirken, sınıf düzeyi değişkeni açısından farklılık belirlenememiştir. Son olarak yaratıcılık puanları ile öz-yeterlik algı puanları arasında anlamlı ilişkiler olduğu belirlenmiştir.

References

  • Açıkgül, K., & Aksungur Altun, Ş. (2022). Developing a mathematical creativity self-efficacy perception scale for pre-service mathematics teachers. Research in Pedagogy, 12(1), 15-28. https://doi.org/10.5937/IstrPed2201015A
  • Akgül, S. (2014). Üstün yetenekli öğrencilerin matematik yaratıcılıklarını açıklamaya yönelik bir model geliştirilmesi [Doktora Tezi, İstanbul Üniversitesi]. Ulusal Tez Merkezi.
  • Akkanat, Ç. (2012). İlköğretim 7. sınıf öğrencilerinin bilimsel yaratıcılık düzeylerinin incelenmesi [Yüksek Lisans Tezi, Gazi Osman Paşa Üniversitesi]. Ulusal Tez Merkezi.
  • Aksungur Altun, Ş. (2020). Matematiksel yaratıcılığa ilişkin problem odaklı öz-yeterlik algı ölçeği geliştirme çalışması [Yüksek Lisans Tezi, İnönü Üniversitesi]. Ulusal Tez Merkezi.
  • Aksungur Altun, Ş., & Açıkgül, K. (2022). Problem-Oriented Self-Efficacy Perception Scale for Mathematical Creativity: Validity and reliability studies. International Journal of Academic Research in Education, 8(1), 1-14. https://doi.org/10.17985/ijare.1201283
  • Aljughaiman, A., & Mowrer‐Reynolds, E. (2005). Teachers' conceptions of creativity and creative students. The Journal of Creative Behavior, 39(1), 17-34. https://doi.org/10.1002/j.2162-6057.2005.tb01247.x
  • Assmus, D., & Fritzlar, T. (2022). Mathematical creativity and mathematical giftedness in the primary school age range: an interview study on creating figural patterns. ZDM–Mathematics Education, 54, 113-131. https://doi.org/10.1007/s11858-022-01328-8
  • Bahar, A. K., & Maker, C. J. (2011). Exploring the relationship between mathematical creativity and mathematical achievement. Asia-Pacific Journal of Gifted and Talented Education, 3(1), 33-48.
  • Baran, G., Erdogan, S., & Çakmak, A. (2011). A study on the relationship between six year-old children’s creativity and mathematical ability. International Education Studies, 4(1), 135-148. https://doi.org/10.5539/ies.v4n1p105
  • Balka, D. S. (1974). The development of an instrument to measure creative ability in mathematics. [Doctoral Dissertations, University of Missouri-Columbia]. ProQuest Dissertations & Theses Global.
  • Beghetto, R. A. (2013). Killing ideas softly?: The promise and perils of creativity in the classroom. IAP Information Age Publishing.
  • Bicer, A., Lee, Y., Perihan, C., Capraro, M. M., & Capraro, R. M. (2020). Considering mathematical creative self-efficacy with problem posing as a measure of mathematical creativity. Educational Studies in Mathematics, 105(3), 457-485. https://doi.org/10.1007/s10649-020-09995-8
  • Bolden, D. S., Harries, T. V., & Newton, D. P. (2010). Pre-service primary teachers’ conceptions of creativity in mathematics. Educational Studies in Mathematics, 73(2), 143-157. https://doi.org/10.1007/s10649-009-9207-z
  • Cho, S. H., & Hwang, D. J. (2006). Math creative problem solving ability test for identification of the mathematically gifted. Research in Mathematical Education, 10(1), 55-70.
  • Craft, A. (2003). The limits to creativity in education: Dilemmas for the educator. British Journal of Educational Studies, 51(2), 113-127. https://doi.org/10.1111/1467-8527.t01-1-00229
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Erlbaum.
  • Çayırdağ, N. (2017). Creativity fostering teaching: Impact of creative self-efficacy and teacher efficacy. Educational Sciences: Theory & Practice, 17(6), 1959–1975. http://dx.doi.org/10.12738/estp.2017.6.0437
  • Dündar, S. (2015). Matematiksel yaratıcılığa yönelik matematik öğretmen adaylarının görüşlerinin incelenmesi. Ondokuz Mayıs Üniversitesi Eğitim Fakültesi Dergisi, 34(1), 18-34. https://dergipark.org.tr/tr/download/article-file/188071
  • Ervynck, G. (1991). Mathematical creativity. Advanced Mathematical Thinking, 11, 42-53. https://doi.org/10.1007/0-306-47203-1_3
  • Goldin, G. A. (2017). Mathematical creativity and giftedness: perspectives in response. ZDM–Mathematics Education, 49(1), 147-157. https://doi.org/10.1007/s11858-017-0837-9
  • Gömleksiz, M. N., Kan, A. Ü. ve Bozpolat, E. (2013). Öğretmen adaylarının bilgi okuryazarlığına ilişkin görüşleri. Karadeniz Uluslararası Bilimsel Dergi, 1(18), 71-87. https://dergipark.org.tr/tr/download/article-file/155278
  • Gruntowicz, B. (2020). Mathematical creativity and problem solving [Master Thesis, University of Montana]. https://scholarworks.umt.edu/cgi/viewcontent.cgi?article=12640&context=etd
  • Guilford, J. P. (1973). Characteristics of Creativity. Springfield, IL: Illinois State Office of the Superintendent of Public Instruction. Gifted Children Section. https://eric.ed.gov/?id=ED080171
  • Haase, J., Hoff, E. V., Hanel, P. H., & Innes-Ker, Å. (2018). A meta-analysis of the relation between creative self-efficacy and different creativity measurements. Creativity Research Journal, 30(1), 1-16. https://doi.org/10.1080/10400419.2018.1411436
  • Haavold, P.Ø., Sriraman, B (2022). Creativity in problem solving: integrating two different views of insight. ZDM-Mathematics Education, 54, 83–96. https://doi.org/10.1007/s11858-021-01304-8
  • Haylock, D. W. (1987). A framework for assessing mathematical creativity in school children. Educational Studies in Mathematics, 18(1), 59-74. https://doi.org/10.1007/BF00367914
  • Hoth, J., Kaiser, G., Busse, A., Doehrmann, M., Koenig, J., & Blömeke, S. (2017). Professional competences of teachers for fostering creativity and supporting high-achieving students. ZDM–Mathematics Education, 49(1), 107-120. https://doi.org/10.1007/s11858-016-0817-5
  • Jung, D. I. (2001). Transformational and transactional leadership and their effects on creativity in groups. Creativity Research Journal, 13(2), 185-195. https://doi.org/10.1207/S15326934CRJ1302_6
  • Kalemkuş, J. (2021). Fen bilimleri dersi öğretim programı kazanımlarının 21. yüzyıl becerileri açısından incelenmesi. Anadolu Journal of Educational Sciences International, 11(1), 63-87. https://doi.org/10.18039/ajesi.800552
  • Karakaş, T. (2016). Okul öncesi öğretmen adaylarının bilimsel yaratıcılıkları [Yüksek Lisans Tezi, Ahi Evran Üniversitesi]. Ulusal Tez Merkezi.
  • Karakuş, M. (2001). Eğitim ve yaratıcılık. Eğitim ve Bilim, 119, 1-5. http://egitimvebilim.ted.org.tr/index.php/EB/article/view/5220/1392
  • Kattou, M., Kontoyianni, K., Pitta-Pantazi, D., & Christou, C. (2013). Connecting mathematical creativity to mathematical ability. ZDM–Mathematics Education, 45(2), 167-181. https://doi.org/10.1007/s11858-012-0467-1
  • Kaufman, J. C., & Sternberg, R. J. (Ed.). (2010). The Cambridge handbook of creativity. Cambridge University Press.
  • Kerem, E. A., & Kamaraj, I. (2000). Okul öncesi eğitimi öğretmenlerinin yaratıcılık kavramına ilişkin görüşlerinin incelenmesi. Öneri Dergisi, 3(14), 117-127. https://doi.org/10.14783/maruoneri.734128
  • Kettler, T., Lamb, K. N., Willerson, A., & Mullet, D. R. (2018). Teachers’ perceptions of creativity in the classroom. Creativity Research Journal, 30(2), 164-171. https://doi.org/10.1080/10400419.2018.1446503
  • Kim, H., Cho, S., & Ahn, D. (2003). Development of mathematical creative problem solving ability test for identification of the gifted in math. Gifted Education International, 18(2), 164-174. https://doi.org/10.1177/026142940301800206
  • Kline, R. B. (2011). Principles and practice of structural equation modeling (3th ed.). Guilford publications.
  • Kurnaz, A. (2011). İlköğretim öğretmenlerinin yaratıcılık düzeyleri ve demokratik tutumları arasındaki ilişkinin değerlendirilmesi [Yüksek Lisans Tezi, Kahramanmaraş Sütçü İmam Üniversitesi]. Ulusal Tez Merkezi.
  • Kwon, O. N., Park, J. H., & Park, J. S. (2006). Cultivating divergent thinking in mathematics through an open-ended approach. Asia Pacific Education Review, 7(1), 51-61. https://doi.org/10.1007/BF03036784
  • Lee, K. S., & Seo, J. J. (2003). A development of the test for mathematical creative problem solving ability. Research in Mathematical Education, 7(3), 163-189.
  • Leikin, R. (2009). Exploring mathematical creativity using multiple solution tasks. R. Leikin, A. Berman and B. Koichu (eds.), Creativity in Mathematics and the Education of Gifted Students, 129-145. https://doi.org/10.1163/9789087909352_010
  • Leikin, R. (2013). Evaluating mathematical creativity: The interplay between multiplicity and insight1. Psychological Test and Assessment Modeling, 55(4), 385-400.
  • Leikin, R., & Kloss, Y. (2011). Mathematical creativity of 8th and 10th grade students. In Proceedings of the 7th Conference of the European Society for Research in Mathematics Education (pp. 1084-1093). Rzeszñw, Poland.
  • Leikin, R., & Lev, M. (2013). Mathematical creativity in generally gifted and mathematically excelling adolescents: What makes the difference?. ZDM–Mathematics Education, 45(2), 183-197. https://doi.org/10.1007/s11858-012-0460-8
  • Leikin, R., & Sriraman, B. (2022). Empirical research on creativity in mathematics (education): from the wastelands of psychology to the current state of the art. ZDM–Mathematics Education, 54, 1-17. https://doi.org/10.1007/s11858-022-01340-y
  • Leikin, R., Subotnik, R., Pitta-Pantazi, D., Singer, F. M., & Pelczer, I. (2013). Teachers’ views on creativity in mathematics education: an international survey. ZDM-Mathematics Education, 45(2), 309-324. https://doi.org/10.1007/s11858-012-0472-4
  • Levav-Waynberg, A., & Leikin, R. (2012). Using multiple solution tasks for the evaluation of students’ problem-solving performance in geometry. Canadian Journal of Science, Mathematics and Technology Education, 12(4), 311-333. https://doi.org/10.1080/14926156.2012.732191
  • Levenson, E. (2013). Tasks that may occasion mathematical creativity: Teachers’ choices. Journal of Mathematics Teacher Education, 16(4), 269-291. https://doi.org/10.1007/s10857-012-9229-9
  • Levenson, E. (2015). Exploring Ava’s developing sense for tasks that may occasion mathematical creativity. Journal of Mathematics Teacher Education, 18(1), 1-25. https://doi.org/10.1007/s10857-013-9262-3
  • Lu, X., Kaiser, G. (2022). Can mathematical modelling work as a creativity-demanding activity? An empirical study in China. ZDM–Mathematics Education, 54, 67–81. https://doi.org/10.1007/s11858-021-01316-4
  • Luria, S. R., Sriraman, B., & Kaufman, J. C. (2017). Enhancing equity in the classroom by teaching for mathematical creativity. ZDM–Mathematics Education, 49(7), 1033-1039. https://doi.org/10.1007/s11858-017-0892-2
  • Maass, K., Doorman, M., Jonker, V., & Wijers, M. (2019). Promoting active citizenship in mathematics teaching. ZDM–Mathematics Education, 51(6), 991-1003. https://doi.org/10.1007/s11858-019-01048-6
  • Mandracchia, M. (2015). The effects of a challenging math curriculum and teacher as a facilitator on mathematically promising English language learners [Doctoral dissertation, St. John's University]. ProQuest Dissertations & Theses Global.
  • Mann, E. L. (2009). The search for mathematical creativity: Identifying creative potential in middle school students. Creativity Research Journal, 21(4), 338-348. https://doi.org/10.1080/10400410903297402
  • Mathisen, G. E., & Bronnick, K. S. (2009). Creative self-efficacy: An intervention study. International Journal of Educational Research, 48(1), 21-29. https://doi.org/10.1016/j.ijer.2009.02.009
  • Mhlolo, M. K. (2017). Regular classroom teachers’ recognition and support of the creative potential of mildly gifted mathematics learners. ZDM–Mathematics Education, 49(1), 81-94. https://doi.org/10.1007/s11858-016-0824-6
  • Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook. Sage.
  • Nadjafikhah, M., Yaftian, N., & Bakhshalizadeh, S. (2012). Mathematical creativity: some definitions and characteristics. Procedia-Social and Behavioral Sciences, 31, 285-291. https://doi.org/10.1016/j.sbspro.2011.12.056
  • National Council of Teachers of Mathematics (NCTM). (2000). Principles and standards for school mathematics. Reston.
  • OECD. (2014). PISA 2012 results: Creative problem solving: Students’ skills in tackling real-life problems (Volume V). PISA, OECD Publishing. http://www.oecd.org/pisa/keyfindings/PISA-2012-results-volume-V.pdf
  • Özyurt, M. (2011). Özel okula devam eden ilköğretim sekizinci sınıf öğrencilerinin yaratıcılık düzeyleri ile SBS başarısı arasındaki ilişkinin incelenmesi [Yüksek Lisans Tezi, Gaziantep Üniversitesi]. Ulusal Tez Merkezi.
  • Partnership for 21st Century Skills (P21). (2008). 21st century skills, education & competitiveness: A resource and policy guide. https://files.eric.ed.gov/fulltext/ED519337.pdf
  • Pehlivan, N. (2019). Sınıf öğretmenlerinin yaratıcılık düzeyleri ile yaratıcılığı destekleme düzeyleri arasındaki ilişkinin incelenmesi [Yüksek Lisans Tezi, Sakarya Üniversitesi]. Ulusal Tez Merkezi.
  • Pham, L. H. (2014). Validation of predictive relationship of creative problem-solving attrubutes with math creativity [Doctoral Dissertations, St. John's University]. ProQuest Dissertations & Theses Global.
  • Piirto, J. (2011). Creativity for 21st century skills. In Creativity for 21st Century Skills (pp. 1-12). Sense Publishers.
  • Pitta-Pantazi, D., Christou, C., Demosthenous, E., Pittalis, M., & Chimoni, M. (2022). Nurturing mathematical creativity for the concept of arithmetic mean in a technologically enhanced ‘personalised mathematics and mathematics inquiry’learning environment. ZDM–Mathematics Education, 54(1), 51-66. https://doi.org/10.1007/s11858-021-01308-4
  • Pitta-Pantazi, D., Sophocleous, P., & Christou, C. (2013). Spatial visualizers, object visualizers and verbalizers: Their mathematical creative abilities. ZDM–Mathematics Education, 45(2), 199-213. https://doi.org/10.1007/s11858-012-0475-1
  • Plucker, J. A., Beghetto, R. A., & Dow, G. T. (2004). Why isn't creativity more important to educational psychologists? Potentials, pitfalls, and future directions in creativity research. Educational Psychologist, 39(2), 83-96. https://doi.org/10.1207/s15326985ep3902_1
  • Puente-Díaz, R. (2016). Creative self-efficacy: An exploration of its antecedents, consequences, and applied implications. The Journal of Psychology, 150(2), 175-195. https://doi.org/10.1080/00223980.2015.1051498
  • Royston, R., & Reiter‐Palmon, R. (2019). Creative self‐efficacy as mediator between creative mindsets and creative problem‐solving. The Journal of Creative Behavior, 53(4), 472-481. https://doi.org/10.1002/jocb.226
  • Sak, U., & Maker, C. J. (2006). Developmental variation in children's creative mathematical thinking as a function of schooling, age, and knowledge. Creativity Research Journal, 18(3), 279-291. https://doi.org/10.1207/s15326934crj1803_5
  • Schindler, M., & Lilienthal, A. J. (2022). Students’ collaborative creative process and its phases in mathematics: an explorative study using dual eye tracking and stimulated recall interviews. ZDM–Mathematics Education, 54, 163–178. https://doi.org/10.1007/s11858-022-01327-9
  • Schoevers, E. M., Kroesbergen, E. H., Moerbeek, M., & Leseman, P. P. (2022). The relation between creativity and students’ performance on different types of geometrical problems in elementary education. ZDM–Mathematics Education, 54(1), 133-147. https://doi.org/10.1007/s11858-021-01315-5
  • Sheffield, L. J. (2009). Developing mathematical creativity—Questions may be the answer. R. Leikin, A. Berman and B. Koichu (eds.), Creativity in Mathematics and the Education of Gifted Students 87-100. https://doi.org/10.1163/9789087909352_007
  • Silver, E. A. (1997). Fostering creativity through instruction rich in mathematical problem solving and problem posing. ZDM–Mathematics Education, 29(3), 75-80. https://doi.org/10.1007/s11858-997-0003-x
  • Singer, F. M., Voica, C., & Pelczer, I. (2017). Cognitive styles in posing geometry problems: Implications for assessment of mathematical creativity. ZDM–Mathematics Education, 49(1), 37-52. https://doi.org/10.1007/s11858-016-0820-x
  • Sriraman, B. (2004). The characteristics of mathematical creativity. The Mathematics Educator, 14(1), 19-34. https://openjournals.libs.uga.edu/tme/article/view/1868/1775
  • Sriraman, B. (2005). Are giftedness and creativity synonyms in mathematics?. Journal of Secondary Gifted Education, 17(1), 20-36. https://doi.org/10.4219/jsge-2005-389
  • Sriraman, B. (2009). The characteristics of mathematical creativity. ZDM–Mathematics Education, 41(1), 13-27. https://doi.org/10.1007/s11858-008-0114-z
  • Sriraman, B., Haavold, P., & Lee, K. (2013). Mathematical creativity and giftedness: a commentary on and review of theory, new operational views, and ways forward. ZDM–Mathematics Education, 45(2), 215-225. https://doi.org/10.1007/s11858-013-0494-6
  • Sternberg, R. J. (2017). School mathematics as a creative enterprise. ZDM–Mathematics Education, 49(7), 977-986. https://doi.org/10.1007/s11858-017-0884-2
  • Tabach, M., & Friedlander, A. (2013). School mathematics and creativity at the elementary and middle-grade levels: how are they related?. ZDM–Mathematics Education, 45(2), 227-238. https://doi.org/10.1007/s11858-012-0471-5
  • Tan, S. (2015). Assessing creative problem solving ability in mathematics: Revising the scoring system of the DISCOVER mathematics assessment [Doctoral dissertation, The University of Arizona]. ProQuest Dissertations & Theses Global.
  • Temizkalp, G. (2010). Öğretmen adaylarının yaratıcılık düzeyleri [Yüksek Lisans Tezi, Mehmet Akif Ersoy Üniversitesi]. Ulusal Tez Merkezi.
  • Tierney, P., & Farmer, S. M. (2002). Creative self-efficacy: Its potential antecedents and relationship to creative performance. Academy of Management Journal, 45(6), 1137-1148. https://doi.org/10.5465/3069429
  • Treffinger, D. J., Young, G. C., Selby, E. C., & Shepardson, C. (2002). Assessing creativity: A guide for educators. National Research Center on the Gifted and Talented. https://eric.ed.gov/?id=ED505548
  • Westby, E. L., & Dawson, V. L. (1995). Creativity: Asset or burden in the classroom?. Creativity research journal, 8(1), 1-10. https://doi.org/10.1207/s15326934crj0801_1
  • Zeytun, S. (2010). Okul öncesi öğretmenliği öğrencilerinin yaratıcılık ve problem çözme düzeyleri arasındaki ilişkinin incelenmesi [Yüksek Lisans Tezi, Dokuz Eylül Üniversitesi]. Ulusal Tez Merkezi.
Year 2023, Volume: 12 Issue: 2, 75 - 98, 31.12.2023
https://doi.org/10.17539/amauefd.1388796

Abstract

References

  • Açıkgül, K., & Aksungur Altun, Ş. (2022). Developing a mathematical creativity self-efficacy perception scale for pre-service mathematics teachers. Research in Pedagogy, 12(1), 15-28. https://doi.org/10.5937/IstrPed2201015A
  • Akgül, S. (2014). Üstün yetenekli öğrencilerin matematik yaratıcılıklarını açıklamaya yönelik bir model geliştirilmesi [Doktora Tezi, İstanbul Üniversitesi]. Ulusal Tez Merkezi.
  • Akkanat, Ç. (2012). İlköğretim 7. sınıf öğrencilerinin bilimsel yaratıcılık düzeylerinin incelenmesi [Yüksek Lisans Tezi, Gazi Osman Paşa Üniversitesi]. Ulusal Tez Merkezi.
  • Aksungur Altun, Ş. (2020). Matematiksel yaratıcılığa ilişkin problem odaklı öz-yeterlik algı ölçeği geliştirme çalışması [Yüksek Lisans Tezi, İnönü Üniversitesi]. Ulusal Tez Merkezi.
  • Aksungur Altun, Ş., & Açıkgül, K. (2022). Problem-Oriented Self-Efficacy Perception Scale for Mathematical Creativity: Validity and reliability studies. International Journal of Academic Research in Education, 8(1), 1-14. https://doi.org/10.17985/ijare.1201283
  • Aljughaiman, A., & Mowrer‐Reynolds, E. (2005). Teachers' conceptions of creativity and creative students. The Journal of Creative Behavior, 39(1), 17-34. https://doi.org/10.1002/j.2162-6057.2005.tb01247.x
  • Assmus, D., & Fritzlar, T. (2022). Mathematical creativity and mathematical giftedness in the primary school age range: an interview study on creating figural patterns. ZDM–Mathematics Education, 54, 113-131. https://doi.org/10.1007/s11858-022-01328-8
  • Bahar, A. K., & Maker, C. J. (2011). Exploring the relationship between mathematical creativity and mathematical achievement. Asia-Pacific Journal of Gifted and Talented Education, 3(1), 33-48.
  • Baran, G., Erdogan, S., & Çakmak, A. (2011). A study on the relationship between six year-old children’s creativity and mathematical ability. International Education Studies, 4(1), 135-148. https://doi.org/10.5539/ies.v4n1p105
  • Balka, D. S. (1974). The development of an instrument to measure creative ability in mathematics. [Doctoral Dissertations, University of Missouri-Columbia]. ProQuest Dissertations & Theses Global.
  • Beghetto, R. A. (2013). Killing ideas softly?: The promise and perils of creativity in the classroom. IAP Information Age Publishing.
  • Bicer, A., Lee, Y., Perihan, C., Capraro, M. M., & Capraro, R. M. (2020). Considering mathematical creative self-efficacy with problem posing as a measure of mathematical creativity. Educational Studies in Mathematics, 105(3), 457-485. https://doi.org/10.1007/s10649-020-09995-8
  • Bolden, D. S., Harries, T. V., & Newton, D. P. (2010). Pre-service primary teachers’ conceptions of creativity in mathematics. Educational Studies in Mathematics, 73(2), 143-157. https://doi.org/10.1007/s10649-009-9207-z
  • Cho, S. H., & Hwang, D. J. (2006). Math creative problem solving ability test for identification of the mathematically gifted. Research in Mathematical Education, 10(1), 55-70.
  • Craft, A. (2003). The limits to creativity in education: Dilemmas for the educator. British Journal of Educational Studies, 51(2), 113-127. https://doi.org/10.1111/1467-8527.t01-1-00229
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Erlbaum.
  • Çayırdağ, N. (2017). Creativity fostering teaching: Impact of creative self-efficacy and teacher efficacy. Educational Sciences: Theory & Practice, 17(6), 1959–1975. http://dx.doi.org/10.12738/estp.2017.6.0437
  • Dündar, S. (2015). Matematiksel yaratıcılığa yönelik matematik öğretmen adaylarının görüşlerinin incelenmesi. Ondokuz Mayıs Üniversitesi Eğitim Fakültesi Dergisi, 34(1), 18-34. https://dergipark.org.tr/tr/download/article-file/188071
  • Ervynck, G. (1991). Mathematical creativity. Advanced Mathematical Thinking, 11, 42-53. https://doi.org/10.1007/0-306-47203-1_3
  • Goldin, G. A. (2017). Mathematical creativity and giftedness: perspectives in response. ZDM–Mathematics Education, 49(1), 147-157. https://doi.org/10.1007/s11858-017-0837-9
  • Gömleksiz, M. N., Kan, A. Ü. ve Bozpolat, E. (2013). Öğretmen adaylarının bilgi okuryazarlığına ilişkin görüşleri. Karadeniz Uluslararası Bilimsel Dergi, 1(18), 71-87. https://dergipark.org.tr/tr/download/article-file/155278
  • Gruntowicz, B. (2020). Mathematical creativity and problem solving [Master Thesis, University of Montana]. https://scholarworks.umt.edu/cgi/viewcontent.cgi?article=12640&context=etd
  • Guilford, J. P. (1973). Characteristics of Creativity. Springfield, IL: Illinois State Office of the Superintendent of Public Instruction. Gifted Children Section. https://eric.ed.gov/?id=ED080171
  • Haase, J., Hoff, E. V., Hanel, P. H., & Innes-Ker, Å. (2018). A meta-analysis of the relation between creative self-efficacy and different creativity measurements. Creativity Research Journal, 30(1), 1-16. https://doi.org/10.1080/10400419.2018.1411436
  • Haavold, P.Ø., Sriraman, B (2022). Creativity in problem solving: integrating two different views of insight. ZDM-Mathematics Education, 54, 83–96. https://doi.org/10.1007/s11858-021-01304-8
  • Haylock, D. W. (1987). A framework for assessing mathematical creativity in school children. Educational Studies in Mathematics, 18(1), 59-74. https://doi.org/10.1007/BF00367914
  • Hoth, J., Kaiser, G., Busse, A., Doehrmann, M., Koenig, J., & Blömeke, S. (2017). Professional competences of teachers for fostering creativity and supporting high-achieving students. ZDM–Mathematics Education, 49(1), 107-120. https://doi.org/10.1007/s11858-016-0817-5
  • Jung, D. I. (2001). Transformational and transactional leadership and their effects on creativity in groups. Creativity Research Journal, 13(2), 185-195. https://doi.org/10.1207/S15326934CRJ1302_6
  • Kalemkuş, J. (2021). Fen bilimleri dersi öğretim programı kazanımlarının 21. yüzyıl becerileri açısından incelenmesi. Anadolu Journal of Educational Sciences International, 11(1), 63-87. https://doi.org/10.18039/ajesi.800552
  • Karakaş, T. (2016). Okul öncesi öğretmen adaylarının bilimsel yaratıcılıkları [Yüksek Lisans Tezi, Ahi Evran Üniversitesi]. Ulusal Tez Merkezi.
  • Karakuş, M. (2001). Eğitim ve yaratıcılık. Eğitim ve Bilim, 119, 1-5. http://egitimvebilim.ted.org.tr/index.php/EB/article/view/5220/1392
  • Kattou, M., Kontoyianni, K., Pitta-Pantazi, D., & Christou, C. (2013). Connecting mathematical creativity to mathematical ability. ZDM–Mathematics Education, 45(2), 167-181. https://doi.org/10.1007/s11858-012-0467-1
  • Kaufman, J. C., & Sternberg, R. J. (Ed.). (2010). The Cambridge handbook of creativity. Cambridge University Press.
  • Kerem, E. A., & Kamaraj, I. (2000). Okul öncesi eğitimi öğretmenlerinin yaratıcılık kavramına ilişkin görüşlerinin incelenmesi. Öneri Dergisi, 3(14), 117-127. https://doi.org/10.14783/maruoneri.734128
  • Kettler, T., Lamb, K. N., Willerson, A., & Mullet, D. R. (2018). Teachers’ perceptions of creativity in the classroom. Creativity Research Journal, 30(2), 164-171. https://doi.org/10.1080/10400419.2018.1446503
  • Kim, H., Cho, S., & Ahn, D. (2003). Development of mathematical creative problem solving ability test for identification of the gifted in math. Gifted Education International, 18(2), 164-174. https://doi.org/10.1177/026142940301800206
  • Kline, R. B. (2011). Principles and practice of structural equation modeling (3th ed.). Guilford publications.
  • Kurnaz, A. (2011). İlköğretim öğretmenlerinin yaratıcılık düzeyleri ve demokratik tutumları arasındaki ilişkinin değerlendirilmesi [Yüksek Lisans Tezi, Kahramanmaraş Sütçü İmam Üniversitesi]. Ulusal Tez Merkezi.
  • Kwon, O. N., Park, J. H., & Park, J. S. (2006). Cultivating divergent thinking in mathematics through an open-ended approach. Asia Pacific Education Review, 7(1), 51-61. https://doi.org/10.1007/BF03036784
  • Lee, K. S., & Seo, J. J. (2003). A development of the test for mathematical creative problem solving ability. Research in Mathematical Education, 7(3), 163-189.
  • Leikin, R. (2009). Exploring mathematical creativity using multiple solution tasks. R. Leikin, A. Berman and B. Koichu (eds.), Creativity in Mathematics and the Education of Gifted Students, 129-145. https://doi.org/10.1163/9789087909352_010
  • Leikin, R. (2013). Evaluating mathematical creativity: The interplay between multiplicity and insight1. Psychological Test and Assessment Modeling, 55(4), 385-400.
  • Leikin, R., & Kloss, Y. (2011). Mathematical creativity of 8th and 10th grade students. In Proceedings of the 7th Conference of the European Society for Research in Mathematics Education (pp. 1084-1093). Rzeszñw, Poland.
  • Leikin, R., & Lev, M. (2013). Mathematical creativity in generally gifted and mathematically excelling adolescents: What makes the difference?. ZDM–Mathematics Education, 45(2), 183-197. https://doi.org/10.1007/s11858-012-0460-8
  • Leikin, R., & Sriraman, B. (2022). Empirical research on creativity in mathematics (education): from the wastelands of psychology to the current state of the art. ZDM–Mathematics Education, 54, 1-17. https://doi.org/10.1007/s11858-022-01340-y
  • Leikin, R., Subotnik, R., Pitta-Pantazi, D., Singer, F. M., & Pelczer, I. (2013). Teachers’ views on creativity in mathematics education: an international survey. ZDM-Mathematics Education, 45(2), 309-324. https://doi.org/10.1007/s11858-012-0472-4
  • Levav-Waynberg, A., & Leikin, R. (2012). Using multiple solution tasks for the evaluation of students’ problem-solving performance in geometry. Canadian Journal of Science, Mathematics and Technology Education, 12(4), 311-333. https://doi.org/10.1080/14926156.2012.732191
  • Levenson, E. (2013). Tasks that may occasion mathematical creativity: Teachers’ choices. Journal of Mathematics Teacher Education, 16(4), 269-291. https://doi.org/10.1007/s10857-012-9229-9
  • Levenson, E. (2015). Exploring Ava’s developing sense for tasks that may occasion mathematical creativity. Journal of Mathematics Teacher Education, 18(1), 1-25. https://doi.org/10.1007/s10857-013-9262-3
  • Lu, X., Kaiser, G. (2022). Can mathematical modelling work as a creativity-demanding activity? An empirical study in China. ZDM–Mathematics Education, 54, 67–81. https://doi.org/10.1007/s11858-021-01316-4
  • Luria, S. R., Sriraman, B., & Kaufman, J. C. (2017). Enhancing equity in the classroom by teaching for mathematical creativity. ZDM–Mathematics Education, 49(7), 1033-1039. https://doi.org/10.1007/s11858-017-0892-2
  • Maass, K., Doorman, M., Jonker, V., & Wijers, M. (2019). Promoting active citizenship in mathematics teaching. ZDM–Mathematics Education, 51(6), 991-1003. https://doi.org/10.1007/s11858-019-01048-6
  • Mandracchia, M. (2015). The effects of a challenging math curriculum and teacher as a facilitator on mathematically promising English language learners [Doctoral dissertation, St. John's University]. ProQuest Dissertations & Theses Global.
  • Mann, E. L. (2009). The search for mathematical creativity: Identifying creative potential in middle school students. Creativity Research Journal, 21(4), 338-348. https://doi.org/10.1080/10400410903297402
  • Mathisen, G. E., & Bronnick, K. S. (2009). Creative self-efficacy: An intervention study. International Journal of Educational Research, 48(1), 21-29. https://doi.org/10.1016/j.ijer.2009.02.009
  • Mhlolo, M. K. (2017). Regular classroom teachers’ recognition and support of the creative potential of mildly gifted mathematics learners. ZDM–Mathematics Education, 49(1), 81-94. https://doi.org/10.1007/s11858-016-0824-6
  • Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook. Sage.
  • Nadjafikhah, M., Yaftian, N., & Bakhshalizadeh, S. (2012). Mathematical creativity: some definitions and characteristics. Procedia-Social and Behavioral Sciences, 31, 285-291. https://doi.org/10.1016/j.sbspro.2011.12.056
  • National Council of Teachers of Mathematics (NCTM). (2000). Principles and standards for school mathematics. Reston.
  • OECD. (2014). PISA 2012 results: Creative problem solving: Students’ skills in tackling real-life problems (Volume V). PISA, OECD Publishing. http://www.oecd.org/pisa/keyfindings/PISA-2012-results-volume-V.pdf
  • Özyurt, M. (2011). Özel okula devam eden ilköğretim sekizinci sınıf öğrencilerinin yaratıcılık düzeyleri ile SBS başarısı arasındaki ilişkinin incelenmesi [Yüksek Lisans Tezi, Gaziantep Üniversitesi]. Ulusal Tez Merkezi.
  • Partnership for 21st Century Skills (P21). (2008). 21st century skills, education & competitiveness: A resource and policy guide. https://files.eric.ed.gov/fulltext/ED519337.pdf
  • Pehlivan, N. (2019). Sınıf öğretmenlerinin yaratıcılık düzeyleri ile yaratıcılığı destekleme düzeyleri arasındaki ilişkinin incelenmesi [Yüksek Lisans Tezi, Sakarya Üniversitesi]. Ulusal Tez Merkezi.
  • Pham, L. H. (2014). Validation of predictive relationship of creative problem-solving attrubutes with math creativity [Doctoral Dissertations, St. John's University]. ProQuest Dissertations & Theses Global.
  • Piirto, J. (2011). Creativity for 21st century skills. In Creativity for 21st Century Skills (pp. 1-12). Sense Publishers.
  • Pitta-Pantazi, D., Christou, C., Demosthenous, E., Pittalis, M., & Chimoni, M. (2022). Nurturing mathematical creativity for the concept of arithmetic mean in a technologically enhanced ‘personalised mathematics and mathematics inquiry’learning environment. ZDM–Mathematics Education, 54(1), 51-66. https://doi.org/10.1007/s11858-021-01308-4
  • Pitta-Pantazi, D., Sophocleous, P., & Christou, C. (2013). Spatial visualizers, object visualizers and verbalizers: Their mathematical creative abilities. ZDM–Mathematics Education, 45(2), 199-213. https://doi.org/10.1007/s11858-012-0475-1
  • Plucker, J. A., Beghetto, R. A., & Dow, G. T. (2004). Why isn't creativity more important to educational psychologists? Potentials, pitfalls, and future directions in creativity research. Educational Psychologist, 39(2), 83-96. https://doi.org/10.1207/s15326985ep3902_1
  • Puente-Díaz, R. (2016). Creative self-efficacy: An exploration of its antecedents, consequences, and applied implications. The Journal of Psychology, 150(2), 175-195. https://doi.org/10.1080/00223980.2015.1051498
  • Royston, R., & Reiter‐Palmon, R. (2019). Creative self‐efficacy as mediator between creative mindsets and creative problem‐solving. The Journal of Creative Behavior, 53(4), 472-481. https://doi.org/10.1002/jocb.226
  • Sak, U., & Maker, C. J. (2006). Developmental variation in children's creative mathematical thinking as a function of schooling, age, and knowledge. Creativity Research Journal, 18(3), 279-291. https://doi.org/10.1207/s15326934crj1803_5
  • Schindler, M., & Lilienthal, A. J. (2022). Students’ collaborative creative process and its phases in mathematics: an explorative study using dual eye tracking and stimulated recall interviews. ZDM–Mathematics Education, 54, 163–178. https://doi.org/10.1007/s11858-022-01327-9
  • Schoevers, E. M., Kroesbergen, E. H., Moerbeek, M., & Leseman, P. P. (2022). The relation between creativity and students’ performance on different types of geometrical problems in elementary education. ZDM–Mathematics Education, 54(1), 133-147. https://doi.org/10.1007/s11858-021-01315-5
  • Sheffield, L. J. (2009). Developing mathematical creativity—Questions may be the answer. R. Leikin, A. Berman and B. Koichu (eds.), Creativity in Mathematics and the Education of Gifted Students 87-100. https://doi.org/10.1163/9789087909352_007
  • Silver, E. A. (1997). Fostering creativity through instruction rich in mathematical problem solving and problem posing. ZDM–Mathematics Education, 29(3), 75-80. https://doi.org/10.1007/s11858-997-0003-x
  • Singer, F. M., Voica, C., & Pelczer, I. (2017). Cognitive styles in posing geometry problems: Implications for assessment of mathematical creativity. ZDM–Mathematics Education, 49(1), 37-52. https://doi.org/10.1007/s11858-016-0820-x
  • Sriraman, B. (2004). The characteristics of mathematical creativity. The Mathematics Educator, 14(1), 19-34. https://openjournals.libs.uga.edu/tme/article/view/1868/1775
  • Sriraman, B. (2005). Are giftedness and creativity synonyms in mathematics?. Journal of Secondary Gifted Education, 17(1), 20-36. https://doi.org/10.4219/jsge-2005-389
  • Sriraman, B. (2009). The characteristics of mathematical creativity. ZDM–Mathematics Education, 41(1), 13-27. https://doi.org/10.1007/s11858-008-0114-z
  • Sriraman, B., Haavold, P., & Lee, K. (2013). Mathematical creativity and giftedness: a commentary on and review of theory, new operational views, and ways forward. ZDM–Mathematics Education, 45(2), 215-225. https://doi.org/10.1007/s11858-013-0494-6
  • Sternberg, R. J. (2017). School mathematics as a creative enterprise. ZDM–Mathematics Education, 49(7), 977-986. https://doi.org/10.1007/s11858-017-0884-2
  • Tabach, M., & Friedlander, A. (2013). School mathematics and creativity at the elementary and middle-grade levels: how are they related?. ZDM–Mathematics Education, 45(2), 227-238. https://doi.org/10.1007/s11858-012-0471-5
  • Tan, S. (2015). Assessing creative problem solving ability in mathematics: Revising the scoring system of the DISCOVER mathematics assessment [Doctoral dissertation, The University of Arizona]. ProQuest Dissertations & Theses Global.
  • Temizkalp, G. (2010). Öğretmen adaylarının yaratıcılık düzeyleri [Yüksek Lisans Tezi, Mehmet Akif Ersoy Üniversitesi]. Ulusal Tez Merkezi.
  • Tierney, P., & Farmer, S. M. (2002). Creative self-efficacy: Its potential antecedents and relationship to creative performance. Academy of Management Journal, 45(6), 1137-1148. https://doi.org/10.5465/3069429
  • Treffinger, D. J., Young, G. C., Selby, E. C., & Shepardson, C. (2002). Assessing creativity: A guide for educators. National Research Center on the Gifted and Talented. https://eric.ed.gov/?id=ED505548
  • Westby, E. L., & Dawson, V. L. (1995). Creativity: Asset or burden in the classroom?. Creativity research journal, 8(1), 1-10. https://doi.org/10.1207/s15326934crj0801_1
  • Zeytun, S. (2010). Okul öncesi öğretmenliği öğrencilerinin yaratıcılık ve problem çözme düzeyleri arasındaki ilişkinin incelenmesi [Yüksek Lisans Tezi, Dokuz Eylül Üniversitesi]. Ulusal Tez Merkezi.
There are 88 citations in total.

Details

Primary Language Turkish
Subjects Mathematics Education
Journal Section Makaleler
Authors

Kübra Açıkgül 0000-0003-2656-8916

Sevgi Bakan 0000-0002-4415-7144

Recep Aslaner 0000-0003-1037-6100

Publication Date December 31, 2023
Submission Date November 10, 2023
Acceptance Date December 22, 2023
Published in Issue Year 2023 Volume: 12 Issue: 2

Cite

APA Açıkgül, K., Bakan, S., & Aslaner, R. (2023). Matematik Öğretmen Adaylarının Matematiksel Yaratıcılık Düzeyleri ile Matematiksel Yaratıcılıklarına İlişkin Öz-Yeterlik Algı Düzeyleri Arasındaki İlişkinin İncelenmesi. Amasya Üniversitesi Eğitim Fakültesi Dergisi, 12(2), 75-98. https://doi.org/10.17539/amauefd.1388796
AMA Açıkgül K, Bakan S, Aslaner R. Matematik Öğretmen Adaylarının Matematiksel Yaratıcılık Düzeyleri ile Matematiksel Yaratıcılıklarına İlişkin Öz-Yeterlik Algı Düzeyleri Arasındaki İlişkinin İncelenmesi. Amasya Üniversitesi Eğitim Fakültesi Dergisi. December 2023;12(2):75-98. doi:10.17539/amauefd.1388796
Chicago Açıkgül, Kübra, Sevgi Bakan, and Recep Aslaner. “Matematik Öğretmen Adaylarının Matematiksel Yaratıcılık Düzeyleri Ile Matematiksel Yaratıcılıklarına İlişkin Öz-Yeterlik Algı Düzeyleri Arasındaki İlişkinin İncelenmesi”. Amasya Üniversitesi Eğitim Fakültesi Dergisi 12, no. 2 (December 2023): 75-98. https://doi.org/10.17539/amauefd.1388796.
EndNote Açıkgül K, Bakan S, Aslaner R (December 1, 2023) Matematik Öğretmen Adaylarının Matematiksel Yaratıcılık Düzeyleri ile Matematiksel Yaratıcılıklarına İlişkin Öz-Yeterlik Algı Düzeyleri Arasındaki İlişkinin İncelenmesi. Amasya Üniversitesi Eğitim Fakültesi Dergisi 12 2 75–98.
IEEE K. Açıkgül, S. Bakan, and R. Aslaner, “Matematik Öğretmen Adaylarının Matematiksel Yaratıcılık Düzeyleri ile Matematiksel Yaratıcılıklarına İlişkin Öz-Yeterlik Algı Düzeyleri Arasındaki İlişkinin İncelenmesi”, Amasya Üniversitesi Eğitim Fakültesi Dergisi, vol. 12, no. 2, pp. 75–98, 2023, doi: 10.17539/amauefd.1388796.
ISNAD Açıkgül, Kübra et al. “Matematik Öğretmen Adaylarının Matematiksel Yaratıcılık Düzeyleri Ile Matematiksel Yaratıcılıklarına İlişkin Öz-Yeterlik Algı Düzeyleri Arasındaki İlişkinin İncelenmesi”. Amasya Üniversitesi Eğitim Fakültesi Dergisi 12/2 (December 2023), 75-98. https://doi.org/10.17539/amauefd.1388796.
JAMA Açıkgül K, Bakan S, Aslaner R. Matematik Öğretmen Adaylarının Matematiksel Yaratıcılık Düzeyleri ile Matematiksel Yaratıcılıklarına İlişkin Öz-Yeterlik Algı Düzeyleri Arasındaki İlişkinin İncelenmesi. Amasya Üniversitesi Eğitim Fakültesi Dergisi. 2023;12:75–98.
MLA Açıkgül, Kübra et al. “Matematik Öğretmen Adaylarının Matematiksel Yaratıcılık Düzeyleri Ile Matematiksel Yaratıcılıklarına İlişkin Öz-Yeterlik Algı Düzeyleri Arasındaki İlişkinin İncelenmesi”. Amasya Üniversitesi Eğitim Fakültesi Dergisi, vol. 12, no. 2, 2023, pp. 75-98, doi:10.17539/amauefd.1388796.
Vancouver Açıkgül K, Bakan S, Aslaner R. Matematik Öğretmen Adaylarının Matematiksel Yaratıcılık Düzeyleri ile Matematiksel Yaratıcılıklarına İlişkin Öz-Yeterlik Algı Düzeyleri Arasındaki İlişkinin İncelenmesi. Amasya Üniversitesi Eğitim Fakültesi Dergisi. 2023;12(2):75-98.

Amasya Üniversitesi Eğitim Fakültesi Dergisi (Amasya Education Journal)