Research Article
BibTex RIS Cite

Pamukta (Gossypium hirsutum L.) Nep ve Lif Kalite Özellikleri Üzerine Modifiye Tekrarlamalı Seleksiyonun Etkisi

Year 2021, Volume: 31 Issue: 2, 137 - 142, 15.12.2021
https://doi.org/10.18615/anadolu.1029812

Abstract

Pamuk ıslahında yüksek çırçır randımanı, optimum lif kalite özellikleri ve düşük nep düzeyleri için tekrarlamalı seleksiyonun etkinliğini değerlendirmek amaçlanmıştır. Çalışma 2013 yılında Nazilli Pamuk Araştırma Enstitüsünde 24 melez kombinasyonun oluşturulması ile başlamıştır. Tekrarlamalı seleksiyon yöntemi uyarınca 45 populasyona ait 2017 yılında F1 (C1S0), 2018 yılında F2; (C1S1) ve 2019 yılında F3 (C1S2) bitkileri tekrarlamalı seleksiyonun ilk çemberi olarak değerlendirilmiştir. F1 generasyonundan F3 generasyonuna doğru elyaf neps sayısı ve büyüklüğünün azaldığı saptanmıştır. Çırçır randımanı, lif kalite özellikleri ve neps için genellikle yüksek düzeyde kalıtım derecesi ve genetik ilerleme tahminlenmiştir. Kendileme depresyonu sonuçları populasyonda sabit lif dayanıklılığı koşullarında çırçır randımanının arttığını buna karşın liflerin kabalaştığını ortaya koymuştur. Elyaf nep ve tohum kabuğu nep (TKN) sayısı özellikleri için elyaf nep ve tohum kabuğu nep (TKN) büyüklüğü özelliklerinden daha yüksek kendileme depresyonu görülmüştür. Çalışma sonuçlarımız pamuk ıslah programlarında tekrarlamalı seleksiyonun başarılı bir şekilde kullanılabileceğini göstermiştir.

References

  • Abou El-Yazied, M. A., Y. A. M. Soliman, and Y. M. El-Mansy. 2014. Effectiveness of recurrent selection for improvement of some economic character in Egyptian cotton. Egypt Journal Agricultural Research 92(1): 135-151.
  • Anonymous, 2021. USTER AFIS PRO 2 Application Report. A new single fiber testing system for the process control in spinning mills. Available at: https://www.uster.com.
  • Constable, G. A., D. J. Llewellyn, S. A. Walford, and J. D. Clement. 2015. Cotton breeding for fiber quality improvement. Chapter:10. In: D. M. Cruz and D. Dierig (Eds). Industrial Crops: Breeding for Bioenergy & Bio-products. Springer Science Business Media.
  • Dhivya, R., P. Amalabalu, R. Pushpa, and D. Kavitha. 2014. Variability, heritability and genetic advance in upland cotton (Gossypium hirsutum L.). African Journal of Plant Science 8(1): 1-5.
  • Falconer. D.S., and T.F. Mackay. 1996. Introduction to quantitative genetics. 4th Ed Benjamin Cummings UK.
  • Gokidi, Y., A. N. Bhanu, and M. N. Singh. 2016. Marker assisted recurrent selection: an overview. Advances in Life Sciences 5(17): 6493-6499.
  • Kumar, C. P. S., S. Raju, E. B. Rajan, A. Muraleedharan, and D.B. Suji. 2019. Studies on genetic variability, heritability and genetic advance in cotton (Gossypium hirsutum L.). Plant archives 19(1): 934-937.
  • Maich, R. H., Z. A. Gaido, G. A. Manera, and M.E. Dubois. 2000. Two cycles of recurrent selection for grain yield in bread wheat. Direct effect and correlated responses. Agriscientia 17: 35-39.
  • Meredith, W. R., and R. R. Bridge. 1973. Recurrent selection for lint percent within a cultivar of cotton (Gossypium hirsutum L.). Crop Science 13(6): 698-701.
  • Miller, P. A., and J. D. Rawlings. 1967. Selection for increased lint yield and correlated responses in Upland cotton, Gossypium hirsutum L. Crop Science 7: 637-640.
  • SAS Institute Inc. 2016. JMP Statistical Software, Version 13. Cary, USA.
  • Smith, J. D., and M. L. Kinman. 1965. The use of parent-offspring regression as estimation of heritability. Crop Science 5 6): 595-596.
  • Stansfield, W. D. 1986. Theory and Problems of Genetics. McGraw- Hill New York.
  • Toker, C., and I. Cagirgan. 1995. Application of the recurrent selection method in self-pollinated plants. Akd. Ü. Ziraat Fakültesi Dergisi 8: 264-270.
  • Unay, A., S. Balci, and V. M. Cinar. 2019. Gene action and combining ability for neps and seed coat neps in cotton (Gossypium hirsutum L.). Turkish Journal of Field Crops 24 2): 211-214.
  • Yi, C., W. Guo, and X. Zhu. 2004. Pyramiding breeding by marker assisted recurrent selection in upland cotton II. selection effects on resistance to Helicoverpa armigera. Science Agriculture Sin, 37: 801-807.
  • Zeng, L., and W. R. Jr. Meredith. 2009. Associations among lint yield, yield components, and fiber properties in an introgressed population of cotton. Crop Science 49: 1647–1654.
  • Zeng, L., and W. R. Jr. Meredith. 2010. Neppiness in an introgressed population of cotton: genotypic variation and genotypic correlation. Journal of Cotton Science 14: 17–25.
  • Zeng, L., and E. Bechere. 2012. Combining ability for neps, seed coat fragments, and motes in Upland cotton. Journal of Cotton Science 16: 17-26.
  • Zeng, L., E. Bechere, and C. D. Delhom. 2020. Potential for genetic improvement of neppiness traits in upland cotton. Crop Science 60: 1876-1883.

The Effects of Modified Recurrent Selection on Fiber Characteristics and Neps in Cotton (Gossypium hirsutum L.)

Year 2021, Volume: 31 Issue: 2, 137 - 142, 15.12.2021
https://doi.org/10.18615/anadolu.1029812

Abstract

The aim of this research was to evaluate the efficiency of the recurrent selection method for increasing ginning out-turn, optimizing fiber characters and neppiness in cotton breeding. This study started with the creation of 24 F1 combinations at Nazilli Cotton Research Institute in 2013. According to recurrent selection method, plants of 45 populations were evaluated for the first cycle of the recurrent selection procedure such that the F1: C1S0 was evaluated in 2017, the F2: C1S1 in 2018 and the F3: C1S2 in 2019. The fiber nep number and size decreased with each filial generation (from F1 to F3). Generally, high heritability coupled with genetic advance was estimated for ginning out-turn, fiber characters and neppiness. The results of inbreeding depression values indicated that ginning out-turn and fiber length in the population increased while the fibers became coarser under stable fiber strength. In addition, inbreeding depression for nep and SCN (Seed Coat Neps) number were higher than that of nep and SCN size. Our results showed that the recurrent selection method can be successfully applied in a cotton breeding program.

References

  • Abou El-Yazied, M. A., Y. A. M. Soliman, and Y. M. El-Mansy. 2014. Effectiveness of recurrent selection for improvement of some economic character in Egyptian cotton. Egypt Journal Agricultural Research 92(1): 135-151.
  • Anonymous, 2021. USTER AFIS PRO 2 Application Report. A new single fiber testing system for the process control in spinning mills. Available at: https://www.uster.com.
  • Constable, G. A., D. J. Llewellyn, S. A. Walford, and J. D. Clement. 2015. Cotton breeding for fiber quality improvement. Chapter:10. In: D. M. Cruz and D. Dierig (Eds). Industrial Crops: Breeding for Bioenergy & Bio-products. Springer Science Business Media.
  • Dhivya, R., P. Amalabalu, R. Pushpa, and D. Kavitha. 2014. Variability, heritability and genetic advance in upland cotton (Gossypium hirsutum L.). African Journal of Plant Science 8(1): 1-5.
  • Falconer. D.S., and T.F. Mackay. 1996. Introduction to quantitative genetics. 4th Ed Benjamin Cummings UK.
  • Gokidi, Y., A. N. Bhanu, and M. N. Singh. 2016. Marker assisted recurrent selection: an overview. Advances in Life Sciences 5(17): 6493-6499.
  • Kumar, C. P. S., S. Raju, E. B. Rajan, A. Muraleedharan, and D.B. Suji. 2019. Studies on genetic variability, heritability and genetic advance in cotton (Gossypium hirsutum L.). Plant archives 19(1): 934-937.
  • Maich, R. H., Z. A. Gaido, G. A. Manera, and M.E. Dubois. 2000. Two cycles of recurrent selection for grain yield in bread wheat. Direct effect and correlated responses. Agriscientia 17: 35-39.
  • Meredith, W. R., and R. R. Bridge. 1973. Recurrent selection for lint percent within a cultivar of cotton (Gossypium hirsutum L.). Crop Science 13(6): 698-701.
  • Miller, P. A., and J. D. Rawlings. 1967. Selection for increased lint yield and correlated responses in Upland cotton, Gossypium hirsutum L. Crop Science 7: 637-640.
  • SAS Institute Inc. 2016. JMP Statistical Software, Version 13. Cary, USA.
  • Smith, J. D., and M. L. Kinman. 1965. The use of parent-offspring regression as estimation of heritability. Crop Science 5 6): 595-596.
  • Stansfield, W. D. 1986. Theory and Problems of Genetics. McGraw- Hill New York.
  • Toker, C., and I. Cagirgan. 1995. Application of the recurrent selection method in self-pollinated plants. Akd. Ü. Ziraat Fakültesi Dergisi 8: 264-270.
  • Unay, A., S. Balci, and V. M. Cinar. 2019. Gene action and combining ability for neps and seed coat neps in cotton (Gossypium hirsutum L.). Turkish Journal of Field Crops 24 2): 211-214.
  • Yi, C., W. Guo, and X. Zhu. 2004. Pyramiding breeding by marker assisted recurrent selection in upland cotton II. selection effects on resistance to Helicoverpa armigera. Science Agriculture Sin, 37: 801-807.
  • Zeng, L., and W. R. Jr. Meredith. 2009. Associations among lint yield, yield components, and fiber properties in an introgressed population of cotton. Crop Science 49: 1647–1654.
  • Zeng, L., and W. R. Jr. Meredith. 2010. Neppiness in an introgressed population of cotton: genotypic variation and genotypic correlation. Journal of Cotton Science 14: 17–25.
  • Zeng, L., and E. Bechere. 2012. Combining ability for neps, seed coat fragments, and motes in Upland cotton. Journal of Cotton Science 16: 17-26.
  • Zeng, L., E. Bechere, and C. D. Delhom. 2020. Potential for genetic improvement of neppiness traits in upland cotton. Crop Science 60: 1876-1883.
There are 20 citations in total.

Details

Primary Language English
Subjects Agricultural, Veterinary and Food Sciences
Journal Section Makaleler
Authors

Serife Balcı This is me 0000-0001-8348-3674

Volkan Mehmet Cınar 0000-0001-5822-5649

Aydin Unay This is me 0000-0002-7278-4428

Publication Date December 15, 2021
Submission Date February 5, 2021
Published in Issue Year 2021 Volume: 31 Issue: 2

Cite

APA Balcı, S., Cınar, V. M., & Unay, A. (2021). The Effects of Modified Recurrent Selection on Fiber Characteristics and Neps in Cotton (Gossypium hirsutum L.). ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi, 31(2), 137-142. https://doi.org/10.18615/anadolu.1029812
AMA Balcı S, Cınar VM, Unay A. The Effects of Modified Recurrent Selection on Fiber Characteristics and Neps in Cotton (Gossypium hirsutum L.). ANADOLU. December 2021;31(2):137-142. doi:10.18615/anadolu.1029812
Chicago Balcı, Serife, Volkan Mehmet Cınar, and Aydin Unay. “The Effects of Modified Recurrent Selection on Fiber Characteristics and Neps in Cotton (Gossypium Hirsutum L.)”. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi 31, no. 2 (December 2021): 137-42. https://doi.org/10.18615/anadolu.1029812.
EndNote Balcı S, Cınar VM, Unay A (December 1, 2021) The Effects of Modified Recurrent Selection on Fiber Characteristics and Neps in Cotton (Gossypium hirsutum L.). ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi 31 2 137–142.
IEEE S. Balcı, V. M. Cınar, and A. Unay, “The Effects of Modified Recurrent Selection on Fiber Characteristics and Neps in Cotton (Gossypium hirsutum L.)”, ANADOLU, vol. 31, no. 2, pp. 137–142, 2021, doi: 10.18615/anadolu.1029812.
ISNAD Balcı, Serife et al. “The Effects of Modified Recurrent Selection on Fiber Characteristics and Neps in Cotton (Gossypium Hirsutum L.)”. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi 31/2 (December 2021), 137-142. https://doi.org/10.18615/anadolu.1029812.
JAMA Balcı S, Cınar VM, Unay A. The Effects of Modified Recurrent Selection on Fiber Characteristics and Neps in Cotton (Gossypium hirsutum L.). ANADOLU. 2021;31:137–142.
MLA Balcı, Serife et al. “The Effects of Modified Recurrent Selection on Fiber Characteristics and Neps in Cotton (Gossypium Hirsutum L.)”. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi, vol. 31, no. 2, 2021, pp. 137-42, doi:10.18615/anadolu.1029812.
Vancouver Balcı S, Cınar VM, Unay A. The Effects of Modified Recurrent Selection on Fiber Characteristics and Neps in Cotton (Gossypium hirsutum L.). ANADOLU. 2021;31(2):137-42.
29899ANADOLU Journal by Aegean Agricultural Research Institute is licensed under CC BY-NC-ND 4.0  

30009     30010       30011     30012   30013      30014        30015  30016