Review
BibTex RIS Cite

Mycorrhizae and Their Use in Viticulture

Year 2024, Volume: 34 Issue: 1, 97 - 107, 30.06.2024
https://doi.org/10.18615/anadolu.1442118

Abstract

Biostimulants play a significant role in influencing both plant growth and sustainability. This compilation categorizes the impacts of mycorrhizae on various aspects such as soil structure, grapevine roots, nutrient absorption by grapevines, grapevine diseases, pests, and overall grapevine development. It attempts to elucidate the advantages of employing mycorrhizae in viticulture. Numerous studies indicate the positive outcomes of mycorrhizal use in global viticulture. Additionally, within the framework of sustainable agriculture in Turkey, there are ongoing scientific inquiries into the utilization of mycorrhizae in viticulture. Therefore, it is advisable, particularly for newly established vineyards, to apply mycorrhizae prior to planting. This practice ensures consistent nourishment for mycorrhizal-inoculated grapevines throughout their lifecycle, fostering balanced growth. Moreover, by embracing sustainable viticulture practices, a harmonized equilibrium in grapevine yield and quality can be achieved. This article delves into the impact of mycorrhizal utilization on plants, using grapevines as a prime example.

References

  • Aazami, M.A., M. Maleki., F. Rasouli., and G. Gohari. 2023. Protective effects of chitosan based salicylic acid nanocomposite (CS-SA NCs) in grape (Vitis vinifera cv. Sultana) under salinity stress. Sci Rep. 13: 883. doi:10.1038/s41598-023-27618-z
  • Abdelhameid, N. M. 2020. Effect of mycorrhizal inoculation and potassium fertilization on grain yield and nutrient uptake of sweet sorghum cultivated under water stress in calcareous soil. Egypt J Soil Sci. 60: 17-29. doi:10.21608/ejss.2019.17512.1312
  • Agnolucci, M., L. Avio., A. Pepe., A. Turrini., C. Cristani., P. Bonini., V. Cirino., F. Colosimo., M. Ruzzi., and M. Giovannetti. 2019. Bacteria associated with a commercial mycorrhizal inoculum: Community composition and multifunctional activity as assessed by Illumina sequencing and culture-dependent tools. Front Plant Sci. 9: 1956. doi:10.3389/fpls.2018.01956
  • Aguilera, P., N. Ortiz., N. Becerra., A. Turrini., F. Gaínza-Cortés., P. Silva-Flores., A. Aguilar-Paredes., J.K. Romero., E. Jorquera-Fontena., Md. L. L. Mora., and F. Borie. 2022. Application of arbuscular mycorrhizal fungi in vineyards: Water and biotic stress under a climate change scenario: New challenge for Chilean grapevine. Crop Front Microbiol. 13: 826571. doi:10.3389/fmicb.2022.826571
  • Aguín, O,. P. Mansilla., A. Vilariño., and M. J. Sainz. 2004. Effects of mycorrhizal inoculation on root morphology and nursery production of three grapevine rootstocks. Amer J Enol Vitic. 55: 108-111. doi:10.5344/ajev.2004.55.1.108
  • Anzanello, R., P. V. D. Souza., and B. de Casamali. 2011. Use of arbuscular mycorrhizal AMF fungi in micropropagated grape rootstocks. Bragantia-Revista de Ciências Agron. 70 (2): 409-415.
  • Arioli, T., S. W. Mattner., G. Hepworth., D. McClintock., and R. McClintock. 2021. Effect of seaweed extract application on wine grape yield in Australia. J Appl Phycol. 33: 1883-1891. doi:10.1007/s10811-021-02423-1
  • Aslanpour, M., H. D. Baneh., A. Tehranifar., and M. Shoor. 2019. Effect of mycorrhizal fungi on macronutrients and micronutrients in the white seedless grape roots under the drought conditions. ITJEMAST 10: 3. doi:10.14456/ ITJEMAST.2019.39
  • Azcón-Aguilar, C., and J. M. Barea. 1997. Arbuscular mycorrhizas and biological control of soil-borne plant pathogens - An overview of the mechanisms involved. Mycorrhiza 6 (6): 457-464. doi:10.1007/s005720050147
  • Bağçevli, A. 2010. Bazı simbiyotik mikroorganizma karışımı uygulamalarının farklı asma anacı çeliklerinde köklenme ve bitki gelişimi üzerine etkileri. Yüksek Lisans Tezi. Selçuk Üniv. Fen Bil. Ens. Bahçe Bitkileri Anabilim Dalı Konya.
  • Bais, H. P., T. L. Weir., L. G. Perry., S. Gilroy., and J. M. Vivanco. 2006. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol. 57: 233-266. doi:10.1146/annurev.arplant.57.032905.105159
  • Baumgartner, K. 2003. Encouraging beneficial AM fungi in vineyard soil. Practical Winery and Vineyard, Jan/Feb 2003.
  • Baumgartner, K. 2006. The role of beneficial mycorrhizal fungi in grapevine nutrition. ASEV Technical Update 2006. 1 (1): 3.
  • Bavaresco, L., and C. Fogher. 1992. Effect of root infection with Pseudomonas fluorescens and Glomus mosseae in improving Fe-efficiency of grapevine ungrafted rootstocks. Vitis 31: 163-168.
  • Bavaresco, L., G. Canavera., M. G. Parisi., and L. Lucini. 2023. Role of foliar biostimulants (of plant origin) on grapevine adaptation to climate change. BIO Web Conf. 56: 01002. doi:10.1051/bioconf/20235601002
  • Bavaresco, L., M. Gatti., M. Zamboni., and C. Fogher. 2010. Role of artificial mycorrhization on iron uptake in calcareous soil, on stilbene root synthesis and in other physiological processes in grapevine. Proceedings of 33rd World Congress of Vine and Wine. Tbilisi, 20-25 Giugno 2010, OIV, Tbilisi 2010: 101-107.
  • Bayram, A. 2000. Bazı mikoriza türlerinin Amerikan Asma fidanlarının kök ve sürgün gelişimi üzerine etkileri. Yüksek Lisans Tezi. KSÜ Fen Bil. Ens. Bahçe Bitkileri Anabilim Dalı Kahramanmaraş.
  • Belal, B., M. El-kenawy., S. El-Mogy., and A. Mostafa Omar. 2023. Influence of arbuscular mycorrhizal fungi, seaweed extract and nano-zinc oxide particles on vegetative growth, yield and clusters quality of ‘Early Sweet’ grapevines. Egypt J Hort. 50 (1): 1-16. doi:10.21608/ejoh.2022.167481.1217
  • Berdeja, M.P., Q. Ye., T. L. Bauerle., and J. E. Vanden Heuvel. 2023. Commercial bioinoculants increase root length colonization and improve petiole nutrient concentration of field-grown grapevines. HortTechnology 33 (1): 48-58. doi:10.21273/HORTTECH05110-22
  • Berg, G., and K. Smalla. 2009. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol. 68: 1-13. doi:10.1111/j.1574-6941.2009.00654.x
  • Biasi, R., E. Brunori., S. Vanino., A. Bernardini., A. Catalani., R. Farina., A. Bruno., and G. Chilosi. 2023. Soil-Plant interaction mediated by indigenous AMF in grafted and own-rooted grapevines under field conditions. Agriculture 13 (5): 1051. doi:10.3390/agriculture13051051
  • Bicici, M. 2011. Bitki hastalık etmenleri ile biyolojik mücadelenin başarısını artırmada mikorizanın rolü. Türkiye Biyolojik Mücadele Dergisi 2 (2): 139-174.
  • Blackwell, M., and J. W. Spatafora. 2004. Fungi and their allles. 7-21. Biodiversity of Fungi: Inventory and Monitoring Methods. In (Eds: Mueller, G.M., Bills, G.F., Foster, M.S). Elsevier Academic Press. 1st Edition. USA. doi:10.1016/B978-0-12-509551-8.X5000-4
  • Bona, E., N. Massa., G. Novello., L. Boatti., P. Cesaro., V. Todeschini., V. Magnelli., M. Manfredi., E. Marengo., F. Mignone., G. Berta., G. Lingua., and E. Gamalero. 2019. Metaproteomic characterization of the Vitis vinifera rhizosphere. FEMS Microbiol Ecol. 95 (1). doi:10.1093/femsec/fiy204.
  • Bouffaud, M. L., E. Bernaud., A. Colombet., D. Tuinen., D. Van Wipf., and D. Redecker. 2016. Regional-scale analysis of arbuscular mycorrhizal fungi: the case of Burgundy Vineyards. Journal International des Sciences de la Vigne et du Vin 50 (1): 1-8.
  • Bozkurt, A. 2018. Bazı Amerikan Asma Anaçlarında kuraklık stresi üzerine mikorizal fungusların etkileri. Yüksek Lisans Tezi. Bozok Üniv. Fen Bil. Ens. Bahçe Bitkileri Anabilim Dalı Yozgat.
  • Brown, P., and S. Saa. 2015. Biostimulants in agriculture. Front Plant Sci. 6: 671. doi:10.3389/fpls.2015.00671 Burke, D. J., and S. R. Carrino-Kyker. 2021. The influence of mycorrhizal fungi on rhizosphere bacterial communities in forests (Chapter 14). In: Forest Microbiology: Volume 1: Tree Microbiome: Phyllosphere, Endosphere and Rhizosphere. 1st Edition. (Eds: Asiegbu, F.O., Kovalchuk, A.) 257-275. Academic Press. USA. doi:10.1016/B978-0-12-822542-4.00017-6
  • Calvet, C., A. Camprubí., V. Estaún., J. Luque., F. De Herralde., C. Biel., R. Savé., and F. Garcia Figueres. 2007. Aplicación de la simbiosis micorriza arbuscular al cultivo de la vid. Vitic Enol Profesional 110: 1-7.
  • Camprubí, A., V. Estaún., A. Nogales., F. Garcia-Figueres., M. Pitet., and C. Calvet. 2008. Response of the grapevine rootstock Richter 110 to inoculation with native and selected arbuscular mycorrhizal fungi and growth performance in a replant vineyard. Mycorrhiza 18: 211-216.
  • Carpio, M. J., M. S. Andrades., E. Herrero-Hernández., J. M. Marín-Benito., M. J. Sánchez-Martín., and M. S. Rodríguez-Cruz. 2023. Changes in vineyard soil parameters after repeated application of organic-inorganic amendments based on spent mushroom substrate. Envir Res. 221: 115339. doi:10.1016/j.envres.2023.115339
  • Cataldo, E., M. Fucile., and G. B. Mattii. 2022. Biostimulants in viticulture: A sustainable approach against biotic and abiotic stresses. Plants 11: 162. doi:10.3390/plants11020162
  • Chen, M., M. Arato., L. Borghi., E. Nouri, and D. Reinhardt. 2018. Beneficial services of arbuscular mycorrhizal fungi–from ecology to application. Front Plant Sci. 9: 1270. doi:10.3389/fpls.2018.01270
  • Cheng, X., and K. Baumgartner. 2005. Overlap of grapevine and cover-crop roots enhances ınteractions among grapevines, cover crops, and Arbuscular Mycorrhizal Fungi. Soil Env Vine Mineral Nut. Symp. June 29-30, San Diego, CA. 171-174.
  • Cornejo, P., J. Pérez‐Tienda., S. Meier., A. Valderas., F. Borie., C. Azcón‐Aguilar., and N. Ferrol. 2013. Copper compartmentalization in spores as a survival strategy of arbuscular mycorrhizal fungi in Cu‐polluted environments. Soil Biol Biochem. 57: 925-928. doi:10.1016/j.soilbio.2012.10.031
  • Çetin, E.S., Z. Güven., ve M. Ucar. 2014. The roles of Arbuscular Mycorrhizal Fungi on some growth parameters and biochemical compounds on some Vitis rootstock. Tarım Bil Araş Derg. 7 (1): 39-44.
  • Daniel, S. 2007. Management of soil structure and mycorrhizal populations in vineyards using cover crops. Final Report, Research Organisation: Cooperative Research Centre for Viticulture, Project Number: CRV 02/03.
  • Darriaut, R., V. Lailheugue., I. Masneuf-Pomarède., E. Marguerit., G. Martins., S. Compant., P. Ballestra., S. Upton., N. Ollat., and V. Lauvergeat. 2022. Grapevine rootstock and soil microbiome interactions: Keys for a resilient viticulture. Hortic Res. 9: uhac019. doi:10.1093/hr/uhac019
  • Doğmuş Lehtijärvi, T. 2007. Mikoriza aşılama ve etkileri. 6. Bölüm. 3-11. Fidan Standardizasyonu, Standart Fidan Yetiştirmenin Biyolojik ve Teknik Esasları. (Ed: Yahyaoğlu, Z. ve Genç M.).Süleyman Demirel Üniversitesi Yayınları, Yayın No. 75, Isparta.
  • Druille, M., M. Omacini., R. A. Golluscio., and M. N. Cabello. 2013. Arbuscular mycorrhizal fungi are directly and ındirectly affected by glyphosate application. Appl Soil Ecol. 72: 143-149. doi:10.1016/j.apsoil.2013.06.011
  • Eftekhari, M., M. Alizadeh., K. Mashayekhi., H. Asghari., and B. Kamkar. 2010. Integration of arbuscular mycorrhizal fungi to grapevine (Vitis vinifera L.) in nursery stage. J Adv Lab Res Biol. 1 (2): 102-111.
  • El-Mohamedy, R. S. R., E. H. Ziedan., and A. M. Abdalla. 2010. Biological soil treatment with Trichoderma harzianum to control root rot disease of grapevine (Vitis vinifera L.) in newly reclaimed lands in Nobaria province. Archives of Phytopathol and Plant Protection 43 (1): 73-87. doi:10.1080/03235400701722004
  • Erdoğan, E. 2010. 5BB Asma anacı üzerine aşılı Kalecik Karası üzüm çeşidinde kokteyl mikoriza uygulamalarının vegetatif gelişme ve ürün kalitesine etkileri. Yüksek Lisans Tezi. Selçuk Üniv. Fen Bil. Ens. Bahçe Bitkileri Anabilim Dalı Konya.
  • Eroğlu, D. 2014. Bazı üzüm çeşitlerinin aşılı tüplü fidan üretimlerinde farklı biyolojik preparat uygulamalarının etkileri. Yüksek Lisans Tezi. ADÜ Fen Bil. Ens. Bahçe Bitkileri Anabilim Dalı Aydın.
  • Fors, R. O., E. Sorci-Uhmann., E. S. Santos., P. Silva-Flores., M. M. Abreu., W. Viegas., and A. Nogales. 2023. Influence of soil type, land use, and rootstock genotype on root-associated arbuscular mycorrhizal fungi communities and their impact on grapevine growth and nutrition. Agriculture 13 (11): 2163. doi:10.3390/agriculture13112163
  • Fracetto, G. G. M., E. M. Freitas., C. W. A. Nascimento., D. J. Silva., E. V. Medeiros., F. J. C. Fracetto., F. B. V. Silva., L. H. N. Buzó., and W. R. Silva. 2023. Phosphorus fractions and microbiological indicators in vineyards soils of a tropical semiarid setting in Brazil. Bragantia 82: e20220232. doi:10.1590/1678-4499.20220232
  • Gupta, M. M. 2020. Arbuscular mycorrhizal fungi: The potential soil health indicators. 183-195 p. In: Giri B, Varma A, Eds. Soil health. Soil biology, 59. Cham: Springer International Publishing. USA. doi:10.1007/978-3-030-44364-1_11
  • Habran, A., M. Commisso., P. Helwi., G. Hilbert., and S. Negri. 2016. Roostocks/scion/nitrogen interactions affect secondary metabolism in the grape berry. Front Plant Sci. 7: 1134. doi:10.3389/fpls.2016.01134
  • Haelewaters, D., Y. Gafforov., and L. W. Zhou. 2022. Editorial: Biodiversity and conservation of fungi and fungus-like organisms. Front Fungal Biol. 3: 973249. doi:10.3389/ffunb.2022.973249.
  • Hage-Ahmed, K., K. Rosner., and S. Steinkellner. 2019. Arbuscular mycorrhizal fungi and their response to pesticides. Pest Manag Sci. 75 (3): 583-590. doi:10.1002/ps.5220
  • Hamilton, C. E., J. D. Bever., J. Labbé., X. Yang., and H. Yin. 2016. Mitigating climate change through managing constructed-microbial communities in agriculture Agric Ecosyst Environ. 216: 304-308. doi:10.1016/j.agee.2015.10.006
  • Hao, Z., W. Xie., and B. Chen. 2019. Arbuscular mycorrhizal symbiosis affects plant immunity to viral infection and accumulation. Viruses 11 (6): 534. doi:10.3390/v11060534.
  • Hildebrandt, U., M. Regvar., and H. Bothe. 2007. Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68 (1): 139-46. doi:10.1016/j.phytochem.2006.09.023.
  • Huang N. X., A. Enkegaard., L. S. Osborne., P. M. J. Ramakers., G. J. Messelink., J. Pijnakker., and G. Murphy. 2011. The banker plant method in biological control. Crit Rev Plant Sci. 30: 259-278. doi:10.1080/07352689.2011.572055
  • Kadam, S. B., A. A. Pable., and V. T. Barvkar. 2020. Mycorrhiza induced resistance (MIR): a defence developed through synergistic engagement of phytohormones, metabolites and rhizosphere. Funct Plant Biol. 47: 880-890. doi:10.1071/FP20035
  • Kara, Z., ve A. Bağçevli. 2012. Bazı simbiyotik mikroorganizma karışımı uygulamalarının farklı asma anacı çeliklerinde bitki gelişimi üzerine etkileri. Selçuk Tarım ve Gıda Bil Derg. 26 (3): 20-28.
  • Kara, Z., ve Ş. Özdemir. 2009. Bazı asma anaçları ve üzüm çeşitleri çeliklerine kokteyl mikoriza (biovam) uygulamalarının fidanın vejetatif gelişmesine etkileri. Türkiye VII. Bağcılık ve Teknolojileri Sempozyumu (5-9 Ekim) Manisa. Cilt 1: 181-189.
  • Karaca, S. 2021. Ağrı Ovası tarım topraklarındaki organik madde miktarının diğer toprak özellikleri ve coğrafi koşullarla ilişkisi. Ağrı İbrahim Çeçen Üniversitesi Sosyal Bilimler Enst Derg. 7 (1): 233-258. doi:10.31463/aicusbed.837509
  • Karagiannidis, N., N. Nikolaou., and A. Mattheou. 1995. Influence of three VA-mycorrhiza species on the growth and nutrient uptake of three grapevine rootstocks and one table grape cultivar. Vitis 34 (2): 85-89.
  • Karayaka, M. 2021. Topraksız kültürde farklı mikoriza türleri ve besin çözeltisi dozlarının Early Cardinal üzüm çeşidinde verime ve kalite üzerine etkisi. Yüksek Lisans Tezi. ÇÜ Fen Bil. Ens. Bahçe Bitkileri Anabilim Dalı Adana.
  • Karimi, B., J. Y. Cahurel., L. Gontier., L. Charlier., M. Chovelon., H. Mahé., and L. Ranjard. 2020. A meta-analysis of the ecotoxicological impact of viticultural practices on soil biodiversity. Environ Chem Lett. 18: 1947-1966. doi:10.1007/s10311-020-01050-5
  • Karimi, B., V. Masson., C. Guilland., E. Leroy., S. Pellegrinelli., E. Giboulot., P. A. Maron., L. Ranjard. 2021. Ecotoxicity of copper input and accumulation for soil biodiversity in vineyards. Environ Chem Lett. 19: 2013-2030. doi:10.1007/s10311-020-01155-x
  • Kaur, S., and V. Suseela. 2020. Unraveling arbuscular mycorrhiza-induced changes in plant primary and secondary metabolome. Metabolites 10 (8): 335. doi:10.3390/metabo10080335
  • Kavak, O. 2006. Aşılı köklü tüplü asma fidanı üretiminde fidan kalite özelliklerine mycorrhiza ve humik asit uygulamalarının etkileri. Yüksek Lisans Tezi. Selçuk Üniv. Fen Bil. Ens. Bahçe Bitkileri Anabilim Dalı Konya.
  • Khalil, H. A. 2013. Influence of vesicular-arbuscular mycorrhizal fungi (Glomus spp.) on the response of grapevines rootstocks to salt stress. Asian J Crop Sci. 5 (4): 393-404. doi:10.3923/ajcs.2013.393-404
  • Khan, A. G. 2005. Producing mycorrhizal inoculum for phytoremediation. 23. In: Willey, N. (eds) Phytoremediation. Methods in Biotechnology, Humana Press. UK. doi:10.1007/978-1-59745-098-0_7
  • Kılıç, D. 2014. Kokteyl mikoriza uygulamalarının aşılı asma fidanı üretiminde fidan randıman ve kalitesi üzerine etkileri. Doktora Tezi. GOP Üniv. Fen Bil. Ens. Bahçe Bitkileri Anabilim Dalı Tokat.
  • Kızgın, B. 2022. Farklı organik gübre uygulamalarının Boğazkere (Vitis vinifera L.) üzüm çeşidinin verim ve bazı kalite özellikleri üzerine etkisi. Yüksek Lisans Tezi. Dicle Üniv. Fen Bil. Ens. Bahçe Bitkileri Anabilim Dalı Diyarbakır.
  • Korkutal, İ., E. Bahar, ve T. Teksöz Özakın. 2019. Aşılı asma fidanlarına farklı yöntemlerle uygulanan mikorizaların, söküm dönemi fidan performansına etkileri (Vitis vinifera L.). ADU Ziraat Fak Derg. 16 (2): 143-152. doi:10.25308/aduziraat.537481
  • Korkutal, İ., E. Bahar., ve T. Teksöz Özakın. 2020. Aşılı asma (Vitis vinifera L.) fidanlarına farklı yöntemlerle uygulanan mikorizaların fidan tutma ve gelişme özellikleri üzerine etkileri. Mediterranean Agric Sci. 33 (2): 149-157. doi:10.29136/mediterranean.496268
  • Kurt, A. 2022. Bazı biyostimülant uygulamalarının Öküzgözü üzüm çeşidinde verim ve kalite üzerine etkileri. Yüksek Lisans Tezi. Isparta Uyg. Bil. Üniv. Lisansüstü Eğitim Ens. Bahçe Bitkileri Anabilim Dalı Isparta.
  • Leles, N. R., W. Genta., V. V. Marques., D. J. Tessmann., and S. R. Roberto. (2022). Manejo da podridão da uva madura em videira ‘Niagara Rosada’. Semina: Ciências Agrárias 43 (5): 2189-2204. doi:10.5433/1679-0359.2022v43n5p2189
  • Li, H. Y., G. D. Yang., H. R. Shu., Y. T. Yang., B. X. Ye., I. Nishida., C. C. Zheng. 2006. Colonization by the arbuscular mycorrhizal fungus Glomus versiforme induces a defense response against the root-knot nematode Meloidogyne incognita in the grapevine (Vitis amurensis Rupr.), which includes transcriptional activation of the class III chitinase gene VCH3. Plant Cell Physiol. 47 (1): 154-163. doi:10.1093/pcp/pci231
  • Li, X., W. Miao., C. Gong., H. Jiang., W. Ma., and S. Zhu. 2013. Effects of prometryn and acetochlor on arbuscular mycorrhizal fungi and symbiotic system. Lett Appl Microbiol. 57 (2): 122-8. doi:10.1111/lam.12084
  • Likar, M., and M. Regvar. 2017. Arbuscular mycorrhizal fungi and dark septate endophytes in grapevine: the potential for sustainable viticulture? In: Varma, A., Prasad, R., Tuteja, N. (eds) Mycorrhiza - Function, Diversity, State of the Art. Springer, Cham. USA. doi:10.1007/978-3-319-53064-2_13
  • Linderman, R. G., and E. A. Davis. 2001.Comparative response of selected grapevine rootstocks and cultivars to inoculation with different mycorrhizal fungi. Amer J Enol Vitic. 52: 8-11. doi:10.5344/ajev.2001.52.1.8
  • Ling, N., T. Wang., and Y. Kuzyakov. 2022. Rhizosphere bacteriome structure and functions. Nature Com. 13: 836. doi:10.1038/s41467-022-28448-9
  • Mahmoudi, N., M. F. Caeiro., M. Mahdhi., R. Tenreiro., F. Ulm., M. Mars., C. Cruz., and T. Dias. 2021. Arbuscular mycorrhizal traits are good indicators of soil multifunctionality in drylands. Geoderma 397: 115099. doi:10.1016/j.geoderma.2021.115099
  • Marasco, R., H. Alturkey., M. Fusi., M. Brandi., I. Ghiglieno., L. Valenti., and D. Daffonchio. 2022. Rootstock-scion combination contributes to shape diversity and composition of microbial communities associated with grapevine root system. Environ Microbiol. 24 (8): 3791-3808. doi:10.1111/1462-2920.16042.
  • Martin, F. M., and M. G. A. Van der Heijden. 2024. The mycorrhizal symbiosis: research frontiers in genomics, ecology, and agricultural application. New Phytol. doi:10.1111/nph.19541
  • Meyer, A. H., A. Botha., A. J. Valentine., E. Acher., and P. J. E. Louw. 2005. The occurrence and infectivity of arbuscular mycorrhizal fungi in inoculated and uninoculated rhizosphere soils of two-year-old commercial grapevines. South Afr J Enol Vitic. 26: 90-94.
  • Motosugi, H., Y. Yamamoto., T. Naruo., H. Kitabayashi., and T. Ishii. 2002. Comparison of the growth and leaf mineral concentrations between three grapevine rootstocks and their corresponding tetraploids inoculated with an arbuscular mycorrhizal fungus Gigaspora margarita. Vitis 41 (1): 21-25. doi:10.5073/vitis.2002.41.21-25
  • Moukarzel, R., H. J. Ridgway., L. Waller., A. Guerin-Laguette., N. Cripps-Guazzone., E. E. Jones. 2023. Soil arbuscular mycorrhizal fungal communities differentially affect growth and nutrient uptake by grapevine rootstocks. Microb Ecol. 86: 1035-1049. doi:10.1007/s00248-022-02160-z
  • Nasslahsen, B., Y. Prin., H. Ferhout., A. Smouni., and R. Duponnois. 2022. Mycorrhizae helper bacteria for managing the mycorrhizal soil infectivity. Front Soil Sci. 2: 979246. doi:10.3389/fsoil.2022.979246
  • Niem, J.M., R. Billones-Baaijens., B. Stodart., and S. Savocchia. 2020. Diversity profiling of grapevine microbial endosphere and antagonistic potential of endophytic pseudomonas against grapevine trunk diseases. Front Microbiol. 11: 477. doi:10.3389/fmicb.2020.00477
  • Nogales, A., A. Camrubí., V. Estaún., and C. Calvet. 2008. Mycorrhizal inoculation of grapevines in replant soils: improved field application and plant performance. http://www.recercat.net/bitstream/handle/2072/13365/Nogaleset:1-5.
  • Ochoa-Hueso, R., E. Cantos-Villar., B. Puertas., J. F. Aguiar del Rio., I. Belda., M. Delgado-Baquerizo., et al. 2024. Nature-based strategies to regenerate the functioning and biodiversity of vineyards. J Sustain Agric Environ. 3: e12088. doi:10.1002/sae2.12088
  • Özer, A., 2011. Tohum ve çelikten elde edilen genç asmalarda mikorizal preparasyon uygulamalarının etkileri. Yüksek Lisans Tezi. Selçuk Üniv. Fen Bil. Ens. Bahçe Bitkileri Anabilim Dalı Konya.
  • Özkara, R. 2016. Biopestisit ve biostimülant uygulamalarının tüplü asma fidan randımanı, kalitesi ve dikim sonrası fidanların gelişimine etkileri. Yüksek Lisans Tezi. GOP Üniv. Fen Bil. Ens. Bahçe Bitkileri Anabilim Dalı Tokat.
  • Parniske, M. 2008. Arbuscular Mycorrhiza: The mother of plant root endosymbioses. Nat Rev Microbiol. 6: 763-775.
  • Popescu, G. C. 2016. Arbuscular mycorrhizal fungi - An essential tool to sustainable vineyard development: A Review. Curr Trends in Nat Sci. 5 (10): 107-116.
  • Pozo, M. J., and C. Azcón-Aguilar. 2007. Unraveling mycorrhiza-induced resistance. Curr Op Plant Biol. 10 (4): 393-398. doi:10.1016/j.pbi.2007.05.004
  • Repetto, O., L. Miotti., D. Belotto., and M. Borgo. 2008. Arbuscular micorizal fungi in Italian vineyards first observations. Atti 31 Congresso Mondiale della Vigna e del Vino, 15-20 Giugno, Verona.
  • Rivera-Becerril, F., D. Van Tuinen., O. Chatagnier., N. Rouard., J. Béguet., C. Kuszala., G. Soulas., V. Gianinazzi-Pearson., and F. Martin-Laurent. 2017. Impact of a pesticide cocktail (fenhexamid, folpel, deltamethrin) on the abundance of Glomeromycota in two agricultural soils. Sci of the Total Env. 577: 84-93.
  • Rouphael, Y., and G. Colla. 2020. Biostimulants in agriculture. Frontiers in Plant Science, 11: 40. doi:10.3389/fpls.2020.00040
  • Sandal Erzurumlu, G., ve E. E. Kara. 2014. Mikoriza konusunda Türkiye’de yapılan çalışmalar. Türk Bilimsel Derlemeler Derg. 7 (2): 55-65.
  • Schabl, P., C. Gabler., E. Kührer., and W. Wenzel. 2020. Effects of silicon amendments on grapevine, soil and wine. Plant Soil Env. 66 (8): 403-414. doi:10.17221/40/2020-PSE.
  • Schreiner, R. P. 2005. Mycorrhizas and mineral acquisition in grape vines. 49-60. In: Soil Environment and Vine Mineral Nutrition, Eds: L. P. Christensen and D. R. Smart, (Davis CA: Amer Soc of Enol and Vitic). USA.
  • Schreiner, R. P. 2007. Effects of native and nonnative arbuscular mycorrhizal fungi on growth and nutrient uptake of Pinot noir (Vitis vinifera L.) in two soils with contrasting levels of phosphorus Appl Soil Ecol. 36, 205-215. doi:10.1016/j.apsoil.2007.03.002
  • Smith, S. E., and D. Read. 2008. The symbionts forming arbuscular mycorrhizas. pp 13-41. Editor(s): Smith, S.E., Read, D. Mycorrhizal Symbiosis (Third Edition), Academic Press, USA. doi:10.1016/B978-012370526-6.50003-9.
  • Sulistiono, W., S. Tjokrodiningrat., H. Bayu Aji., B. Brahmantiyo., Z. Abdullatif., G. Gusmaini., M. Syakir., T. Alam., M. Musyadik., and S. Sudarto. 2024. Interactive effect of arbuscular mycorrhizal fungi (AMF) and transplanting media improves early growth, physiological traits, and soil nutrient status of coconut ‘Bido’ under tropical monsoon climate. Chilean J Agric Res. 84(1), 97-109. doi:10.4067/S0718-58392024000100097
  • Tahat, M. M., K. M. Alananbeh., Y.A. Othman., D.I. Leskovar. (2020). Soil health and sustainable agriculture. Sustainability 12: 4859. doi:10.3390/su12124859
  • Trouvelot, S., L. Bonneau., D. Redecker., D. Van Tuinen., M. Adrian., and D. Wipf. 2015. Arbuscular mycorrhiza symbiosis in viticulture: a review. Agron Sustain Dev. 35: 1449-1467. doi:10.1007/s13593-015-0329-7
  • Tvetskov, I. J., T. Dvhambazova., V. Kondakova., and R. Batchrova. 2017. Mycorrhizal fungi Glomus spp. and Trichoderma spp. in viticulture (Review). Bulgarian J Agric Sci. 20 (4): 849-855.
  • Van Geel, M., E. Verbruggen., M. De Beenhouwer., G. Van Rennes., B. Lievens., and O. Honnay. 2017. High soil phosphorus levels overrule the potential benefits of organic farming on arbuscular mycorrhizal diversity in northern vineyards. Agric Ecosystems Envir. 248: 144-152. doi:10.1016/j.agee.2017.07.017
  • Van Loon, L. C. 2007. Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol. 119: 243-254. doi:10.1007/s10658-007-9165-1
  • Van Rooyen, M., A. Valentine., E. Archer. 2004. Arbuscular mycorrhizal colonisation modifies the water relations of young transplanted grapevines (Vitis). S Afr J Enol Vitic. 25 (2): 37-42. doi:10.21548/25-2-2137
  • Vincze, É-B., A. Becze., É. Laslo., and G. Mara. 2024. Beneficial soil microbiomes and their potential role in plant growth and soil fertility. Agriculture 14 (1): 152. doi:10.3390/agriculture14010152
  • Visconti, F., R. López., and M. Á. Olego. 2024. The health of vineyard soils: Towards a sustainable viticulture. Horticulturae 10 (2): 154. doi:10.3390/horticulturae10020154
  • Weng, W., J. Yan., M. Zhou., X. Yao., A. Gao., C. Ma., J. Cheng., and J. Ruan. 2022. Roles of arbuscular mycorrhizal fungi as a biocontrol agent in the control of plant diseases. Microorganisms 10 (7): 1266. doi:10.3390/microorganisms10071266.
  • White, R. E. 2020. The value of soil knowledge in understanding wine terroir. Front Environ Sci., 8, 1-6. doi:10.3389/fenvs.2020.00012
  • Yang, J., J. W. Kloepper., and C. M. Ryu. 2009. Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1-4. doi:10.1016/j.tplants.2008.10.004
  • Zaller, J. G., C. Cantelmo., G. Dos. Santos., S. Muther., E. Gruber., P. Pallua., and F. Faber. 2018. Herbicides in vineyards reduce grapevine root mycorrhization and alter soil microorganisms and the nutrient composition in grapevine roots, leaves, xylem sap and grape juice. Environ Sci Pollut Res. 25 (23): 23215-23226. doi:10.1007/s11356-018-2422-3
  • Zanathy, G., A. Donko., G. Lukacsy., P. Bodor., and G. D. Bisztray. 2011. The importance of the mycorrhizal fungi in the viticulture. Kertgazdaság-Horticulture 43 (1): 34-46.
  • Zhuang, X., J. Chen., H. Shim., and Z. Bai. 2007. New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int. 33: 406-413. doi:10.1016/j.envint.2006.12.005

Mikorizalar ve Bağcılıkta Kullanımı

Year 2024, Volume: 34 Issue: 1, 97 - 107, 30.06.2024
https://doi.org/10.18615/anadolu.1442118

Abstract

Bitki gelişimi ve yaşamını sürdürmede biyostimülantlar önemli bir yer tutmaktadırlar. Bu derlemede mikorizaların; toprak yapısına, asma köklerine, asmanın bitki besin elementi alımına, asma hastalık ve zararlılarına ve asma gelişimi üzerine etkileri sınıflanmış ve bağcılıkta mikoriza kullanımının yararları açıklanmaya çalışılmıştır. Dünya bağcılığında mikoriza kullanımının yararlı olduğunu gösteren çalışmalar bulunmaktadır. Öte yandan Türkiye’de sürdürülebilir tarım kapsamında, bağcılıkta mikoriza kullanımı konusunda yapılan bilimsel araştırmalar mevcuttur. Bu nedenle, özellikle yeni kurulacak bağlara, dikim öncesi mikoriza uygulanabilir. Bu şekilde mikoriza aşılanan asmanın yaşamı boyunca yeterli beslenmesi sonucu, dengeli gelişimi sağlanabilir. Aynı zamanda sürdürülebilir bağcılık yapılmış olacağından, asmaların verim ve kalitesi dengelenebilir. Bu makalede mikoriza kullanımının bitkilere etkileri; asma örneği üzerinden ortaya konmuştur.

Ethical Statement

Turnitin raporu benzerlik oranı %14 olan Derleme bir yayındır.

References

  • Aazami, M.A., M. Maleki., F. Rasouli., and G. Gohari. 2023. Protective effects of chitosan based salicylic acid nanocomposite (CS-SA NCs) in grape (Vitis vinifera cv. Sultana) under salinity stress. Sci Rep. 13: 883. doi:10.1038/s41598-023-27618-z
  • Abdelhameid, N. M. 2020. Effect of mycorrhizal inoculation and potassium fertilization on grain yield and nutrient uptake of sweet sorghum cultivated under water stress in calcareous soil. Egypt J Soil Sci. 60: 17-29. doi:10.21608/ejss.2019.17512.1312
  • Agnolucci, M., L. Avio., A. Pepe., A. Turrini., C. Cristani., P. Bonini., V. Cirino., F. Colosimo., M. Ruzzi., and M. Giovannetti. 2019. Bacteria associated with a commercial mycorrhizal inoculum: Community composition and multifunctional activity as assessed by Illumina sequencing and culture-dependent tools. Front Plant Sci. 9: 1956. doi:10.3389/fpls.2018.01956
  • Aguilera, P., N. Ortiz., N. Becerra., A. Turrini., F. Gaínza-Cortés., P. Silva-Flores., A. Aguilar-Paredes., J.K. Romero., E. Jorquera-Fontena., Md. L. L. Mora., and F. Borie. 2022. Application of arbuscular mycorrhizal fungi in vineyards: Water and biotic stress under a climate change scenario: New challenge for Chilean grapevine. Crop Front Microbiol. 13: 826571. doi:10.3389/fmicb.2022.826571
  • Aguín, O,. P. Mansilla., A. Vilariño., and M. J. Sainz. 2004. Effects of mycorrhizal inoculation on root morphology and nursery production of three grapevine rootstocks. Amer J Enol Vitic. 55: 108-111. doi:10.5344/ajev.2004.55.1.108
  • Anzanello, R., P. V. D. Souza., and B. de Casamali. 2011. Use of arbuscular mycorrhizal AMF fungi in micropropagated grape rootstocks. Bragantia-Revista de Ciências Agron. 70 (2): 409-415.
  • Arioli, T., S. W. Mattner., G. Hepworth., D. McClintock., and R. McClintock. 2021. Effect of seaweed extract application on wine grape yield in Australia. J Appl Phycol. 33: 1883-1891. doi:10.1007/s10811-021-02423-1
  • Aslanpour, M., H. D. Baneh., A. Tehranifar., and M. Shoor. 2019. Effect of mycorrhizal fungi on macronutrients and micronutrients in the white seedless grape roots under the drought conditions. ITJEMAST 10: 3. doi:10.14456/ ITJEMAST.2019.39
  • Azcón-Aguilar, C., and J. M. Barea. 1997. Arbuscular mycorrhizas and biological control of soil-borne plant pathogens - An overview of the mechanisms involved. Mycorrhiza 6 (6): 457-464. doi:10.1007/s005720050147
  • Bağçevli, A. 2010. Bazı simbiyotik mikroorganizma karışımı uygulamalarının farklı asma anacı çeliklerinde köklenme ve bitki gelişimi üzerine etkileri. Yüksek Lisans Tezi. Selçuk Üniv. Fen Bil. Ens. Bahçe Bitkileri Anabilim Dalı Konya.
  • Bais, H. P., T. L. Weir., L. G. Perry., S. Gilroy., and J. M. Vivanco. 2006. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol. 57: 233-266. doi:10.1146/annurev.arplant.57.032905.105159
  • Baumgartner, K. 2003. Encouraging beneficial AM fungi in vineyard soil. Practical Winery and Vineyard, Jan/Feb 2003.
  • Baumgartner, K. 2006. The role of beneficial mycorrhizal fungi in grapevine nutrition. ASEV Technical Update 2006. 1 (1): 3.
  • Bavaresco, L., and C. Fogher. 1992. Effect of root infection with Pseudomonas fluorescens and Glomus mosseae in improving Fe-efficiency of grapevine ungrafted rootstocks. Vitis 31: 163-168.
  • Bavaresco, L., G. Canavera., M. G. Parisi., and L. Lucini. 2023. Role of foliar biostimulants (of plant origin) on grapevine adaptation to climate change. BIO Web Conf. 56: 01002. doi:10.1051/bioconf/20235601002
  • Bavaresco, L., M. Gatti., M. Zamboni., and C. Fogher. 2010. Role of artificial mycorrhization on iron uptake in calcareous soil, on stilbene root synthesis and in other physiological processes in grapevine. Proceedings of 33rd World Congress of Vine and Wine. Tbilisi, 20-25 Giugno 2010, OIV, Tbilisi 2010: 101-107.
  • Bayram, A. 2000. Bazı mikoriza türlerinin Amerikan Asma fidanlarının kök ve sürgün gelişimi üzerine etkileri. Yüksek Lisans Tezi. KSÜ Fen Bil. Ens. Bahçe Bitkileri Anabilim Dalı Kahramanmaraş.
  • Belal, B., M. El-kenawy., S. El-Mogy., and A. Mostafa Omar. 2023. Influence of arbuscular mycorrhizal fungi, seaweed extract and nano-zinc oxide particles on vegetative growth, yield and clusters quality of ‘Early Sweet’ grapevines. Egypt J Hort. 50 (1): 1-16. doi:10.21608/ejoh.2022.167481.1217
  • Berdeja, M.P., Q. Ye., T. L. Bauerle., and J. E. Vanden Heuvel. 2023. Commercial bioinoculants increase root length colonization and improve petiole nutrient concentration of field-grown grapevines. HortTechnology 33 (1): 48-58. doi:10.21273/HORTTECH05110-22
  • Berg, G., and K. Smalla. 2009. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol. 68: 1-13. doi:10.1111/j.1574-6941.2009.00654.x
  • Biasi, R., E. Brunori., S. Vanino., A. Bernardini., A. Catalani., R. Farina., A. Bruno., and G. Chilosi. 2023. Soil-Plant interaction mediated by indigenous AMF in grafted and own-rooted grapevines under field conditions. Agriculture 13 (5): 1051. doi:10.3390/agriculture13051051
  • Bicici, M. 2011. Bitki hastalık etmenleri ile biyolojik mücadelenin başarısını artırmada mikorizanın rolü. Türkiye Biyolojik Mücadele Dergisi 2 (2): 139-174.
  • Blackwell, M., and J. W. Spatafora. 2004. Fungi and their allles. 7-21. Biodiversity of Fungi: Inventory and Monitoring Methods. In (Eds: Mueller, G.M., Bills, G.F., Foster, M.S). Elsevier Academic Press. 1st Edition. USA. doi:10.1016/B978-0-12-509551-8.X5000-4
  • Bona, E., N. Massa., G. Novello., L. Boatti., P. Cesaro., V. Todeschini., V. Magnelli., M. Manfredi., E. Marengo., F. Mignone., G. Berta., G. Lingua., and E. Gamalero. 2019. Metaproteomic characterization of the Vitis vinifera rhizosphere. FEMS Microbiol Ecol. 95 (1). doi:10.1093/femsec/fiy204.
  • Bouffaud, M. L., E. Bernaud., A. Colombet., D. Tuinen., D. Van Wipf., and D. Redecker. 2016. Regional-scale analysis of arbuscular mycorrhizal fungi: the case of Burgundy Vineyards. Journal International des Sciences de la Vigne et du Vin 50 (1): 1-8.
  • Bozkurt, A. 2018. Bazı Amerikan Asma Anaçlarında kuraklık stresi üzerine mikorizal fungusların etkileri. Yüksek Lisans Tezi. Bozok Üniv. Fen Bil. Ens. Bahçe Bitkileri Anabilim Dalı Yozgat.
  • Brown, P., and S. Saa. 2015. Biostimulants in agriculture. Front Plant Sci. 6: 671. doi:10.3389/fpls.2015.00671 Burke, D. J., and S. R. Carrino-Kyker. 2021. The influence of mycorrhizal fungi on rhizosphere bacterial communities in forests (Chapter 14). In: Forest Microbiology: Volume 1: Tree Microbiome: Phyllosphere, Endosphere and Rhizosphere. 1st Edition. (Eds: Asiegbu, F.O., Kovalchuk, A.) 257-275. Academic Press. USA. doi:10.1016/B978-0-12-822542-4.00017-6
  • Calvet, C., A. Camprubí., V. Estaún., J. Luque., F. De Herralde., C. Biel., R. Savé., and F. Garcia Figueres. 2007. Aplicación de la simbiosis micorriza arbuscular al cultivo de la vid. Vitic Enol Profesional 110: 1-7.
  • Camprubí, A., V. Estaún., A. Nogales., F. Garcia-Figueres., M. Pitet., and C. Calvet. 2008. Response of the grapevine rootstock Richter 110 to inoculation with native and selected arbuscular mycorrhizal fungi and growth performance in a replant vineyard. Mycorrhiza 18: 211-216.
  • Carpio, M. J., M. S. Andrades., E. Herrero-Hernández., J. M. Marín-Benito., M. J. Sánchez-Martín., and M. S. Rodríguez-Cruz. 2023. Changes in vineyard soil parameters after repeated application of organic-inorganic amendments based on spent mushroom substrate. Envir Res. 221: 115339. doi:10.1016/j.envres.2023.115339
  • Cataldo, E., M. Fucile., and G. B. Mattii. 2022. Biostimulants in viticulture: A sustainable approach against biotic and abiotic stresses. Plants 11: 162. doi:10.3390/plants11020162
  • Chen, M., M. Arato., L. Borghi., E. Nouri, and D. Reinhardt. 2018. Beneficial services of arbuscular mycorrhizal fungi–from ecology to application. Front Plant Sci. 9: 1270. doi:10.3389/fpls.2018.01270
  • Cheng, X., and K. Baumgartner. 2005. Overlap of grapevine and cover-crop roots enhances ınteractions among grapevines, cover crops, and Arbuscular Mycorrhizal Fungi. Soil Env Vine Mineral Nut. Symp. June 29-30, San Diego, CA. 171-174.
  • Cornejo, P., J. Pérez‐Tienda., S. Meier., A. Valderas., F. Borie., C. Azcón‐Aguilar., and N. Ferrol. 2013. Copper compartmentalization in spores as a survival strategy of arbuscular mycorrhizal fungi in Cu‐polluted environments. Soil Biol Biochem. 57: 925-928. doi:10.1016/j.soilbio.2012.10.031
  • Çetin, E.S., Z. Güven., ve M. Ucar. 2014. The roles of Arbuscular Mycorrhizal Fungi on some growth parameters and biochemical compounds on some Vitis rootstock. Tarım Bil Araş Derg. 7 (1): 39-44.
  • Daniel, S. 2007. Management of soil structure and mycorrhizal populations in vineyards using cover crops. Final Report, Research Organisation: Cooperative Research Centre for Viticulture, Project Number: CRV 02/03.
  • Darriaut, R., V. Lailheugue., I. Masneuf-Pomarède., E. Marguerit., G. Martins., S. Compant., P. Ballestra., S. Upton., N. Ollat., and V. Lauvergeat. 2022. Grapevine rootstock and soil microbiome interactions: Keys for a resilient viticulture. Hortic Res. 9: uhac019. doi:10.1093/hr/uhac019
  • Doğmuş Lehtijärvi, T. 2007. Mikoriza aşılama ve etkileri. 6. Bölüm. 3-11. Fidan Standardizasyonu, Standart Fidan Yetiştirmenin Biyolojik ve Teknik Esasları. (Ed: Yahyaoğlu, Z. ve Genç M.).Süleyman Demirel Üniversitesi Yayınları, Yayın No. 75, Isparta.
  • Druille, M., M. Omacini., R. A. Golluscio., and M. N. Cabello. 2013. Arbuscular mycorrhizal fungi are directly and ındirectly affected by glyphosate application. Appl Soil Ecol. 72: 143-149. doi:10.1016/j.apsoil.2013.06.011
  • Eftekhari, M., M. Alizadeh., K. Mashayekhi., H. Asghari., and B. Kamkar. 2010. Integration of arbuscular mycorrhizal fungi to grapevine (Vitis vinifera L.) in nursery stage. J Adv Lab Res Biol. 1 (2): 102-111.
  • El-Mohamedy, R. S. R., E. H. Ziedan., and A. M. Abdalla. 2010. Biological soil treatment with Trichoderma harzianum to control root rot disease of grapevine (Vitis vinifera L.) in newly reclaimed lands in Nobaria province. Archives of Phytopathol and Plant Protection 43 (1): 73-87. doi:10.1080/03235400701722004
  • Erdoğan, E. 2010. 5BB Asma anacı üzerine aşılı Kalecik Karası üzüm çeşidinde kokteyl mikoriza uygulamalarının vegetatif gelişme ve ürün kalitesine etkileri. Yüksek Lisans Tezi. Selçuk Üniv. Fen Bil. Ens. Bahçe Bitkileri Anabilim Dalı Konya.
  • Eroğlu, D. 2014. Bazı üzüm çeşitlerinin aşılı tüplü fidan üretimlerinde farklı biyolojik preparat uygulamalarının etkileri. Yüksek Lisans Tezi. ADÜ Fen Bil. Ens. Bahçe Bitkileri Anabilim Dalı Aydın.
  • Fors, R. O., E. Sorci-Uhmann., E. S. Santos., P. Silva-Flores., M. M. Abreu., W. Viegas., and A. Nogales. 2023. Influence of soil type, land use, and rootstock genotype on root-associated arbuscular mycorrhizal fungi communities and their impact on grapevine growth and nutrition. Agriculture 13 (11): 2163. doi:10.3390/agriculture13112163
  • Fracetto, G. G. M., E. M. Freitas., C. W. A. Nascimento., D. J. Silva., E. V. Medeiros., F. J. C. Fracetto., F. B. V. Silva., L. H. N. Buzó., and W. R. Silva. 2023. Phosphorus fractions and microbiological indicators in vineyards soils of a tropical semiarid setting in Brazil. Bragantia 82: e20220232. doi:10.1590/1678-4499.20220232
  • Gupta, M. M. 2020. Arbuscular mycorrhizal fungi: The potential soil health indicators. 183-195 p. In: Giri B, Varma A, Eds. Soil health. Soil biology, 59. Cham: Springer International Publishing. USA. doi:10.1007/978-3-030-44364-1_11
  • Habran, A., M. Commisso., P. Helwi., G. Hilbert., and S. Negri. 2016. Roostocks/scion/nitrogen interactions affect secondary metabolism in the grape berry. Front Plant Sci. 7: 1134. doi:10.3389/fpls.2016.01134
  • Haelewaters, D., Y. Gafforov., and L. W. Zhou. 2022. Editorial: Biodiversity and conservation of fungi and fungus-like organisms. Front Fungal Biol. 3: 973249. doi:10.3389/ffunb.2022.973249.
  • Hage-Ahmed, K., K. Rosner., and S. Steinkellner. 2019. Arbuscular mycorrhizal fungi and their response to pesticides. Pest Manag Sci. 75 (3): 583-590. doi:10.1002/ps.5220
  • Hamilton, C. E., J. D. Bever., J. Labbé., X. Yang., and H. Yin. 2016. Mitigating climate change through managing constructed-microbial communities in agriculture Agric Ecosyst Environ. 216: 304-308. doi:10.1016/j.agee.2015.10.006
  • Hao, Z., W. Xie., and B. Chen. 2019. Arbuscular mycorrhizal symbiosis affects plant immunity to viral infection and accumulation. Viruses 11 (6): 534. doi:10.3390/v11060534.
  • Hildebrandt, U., M. Regvar., and H. Bothe. 2007. Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68 (1): 139-46. doi:10.1016/j.phytochem.2006.09.023.
  • Huang N. X., A. Enkegaard., L. S. Osborne., P. M. J. Ramakers., G. J. Messelink., J. Pijnakker., and G. Murphy. 2011. The banker plant method in biological control. Crit Rev Plant Sci. 30: 259-278. doi:10.1080/07352689.2011.572055
  • Kadam, S. B., A. A. Pable., and V. T. Barvkar. 2020. Mycorrhiza induced resistance (MIR): a defence developed through synergistic engagement of phytohormones, metabolites and rhizosphere. Funct Plant Biol. 47: 880-890. doi:10.1071/FP20035
  • Kara, Z., ve A. Bağçevli. 2012. Bazı simbiyotik mikroorganizma karışımı uygulamalarının farklı asma anacı çeliklerinde bitki gelişimi üzerine etkileri. Selçuk Tarım ve Gıda Bil Derg. 26 (3): 20-28.
  • Kara, Z., ve Ş. Özdemir. 2009. Bazı asma anaçları ve üzüm çeşitleri çeliklerine kokteyl mikoriza (biovam) uygulamalarının fidanın vejetatif gelişmesine etkileri. Türkiye VII. Bağcılık ve Teknolojileri Sempozyumu (5-9 Ekim) Manisa. Cilt 1: 181-189.
  • Karaca, S. 2021. Ağrı Ovası tarım topraklarındaki organik madde miktarının diğer toprak özellikleri ve coğrafi koşullarla ilişkisi. Ağrı İbrahim Çeçen Üniversitesi Sosyal Bilimler Enst Derg. 7 (1): 233-258. doi:10.31463/aicusbed.837509
  • Karagiannidis, N., N. Nikolaou., and A. Mattheou. 1995. Influence of three VA-mycorrhiza species on the growth and nutrient uptake of three grapevine rootstocks and one table grape cultivar. Vitis 34 (2): 85-89.
  • Karayaka, M. 2021. Topraksız kültürde farklı mikoriza türleri ve besin çözeltisi dozlarının Early Cardinal üzüm çeşidinde verime ve kalite üzerine etkisi. Yüksek Lisans Tezi. ÇÜ Fen Bil. Ens. Bahçe Bitkileri Anabilim Dalı Adana.
  • Karimi, B., J. Y. Cahurel., L. Gontier., L. Charlier., M. Chovelon., H. Mahé., and L. Ranjard. 2020. A meta-analysis of the ecotoxicological impact of viticultural practices on soil biodiversity. Environ Chem Lett. 18: 1947-1966. doi:10.1007/s10311-020-01050-5
  • Karimi, B., V. Masson., C. Guilland., E. Leroy., S. Pellegrinelli., E. Giboulot., P. A. Maron., L. Ranjard. 2021. Ecotoxicity of copper input and accumulation for soil biodiversity in vineyards. Environ Chem Lett. 19: 2013-2030. doi:10.1007/s10311-020-01155-x
  • Kaur, S., and V. Suseela. 2020. Unraveling arbuscular mycorrhiza-induced changes in plant primary and secondary metabolome. Metabolites 10 (8): 335. doi:10.3390/metabo10080335
  • Kavak, O. 2006. Aşılı köklü tüplü asma fidanı üretiminde fidan kalite özelliklerine mycorrhiza ve humik asit uygulamalarının etkileri. Yüksek Lisans Tezi. Selçuk Üniv. Fen Bil. Ens. Bahçe Bitkileri Anabilim Dalı Konya.
  • Khalil, H. A. 2013. Influence of vesicular-arbuscular mycorrhizal fungi (Glomus spp.) on the response of grapevines rootstocks to salt stress. Asian J Crop Sci. 5 (4): 393-404. doi:10.3923/ajcs.2013.393-404
  • Khan, A. G. 2005. Producing mycorrhizal inoculum for phytoremediation. 23. In: Willey, N. (eds) Phytoremediation. Methods in Biotechnology, Humana Press. UK. doi:10.1007/978-1-59745-098-0_7
  • Kılıç, D. 2014. Kokteyl mikoriza uygulamalarının aşılı asma fidanı üretiminde fidan randıman ve kalitesi üzerine etkileri. Doktora Tezi. GOP Üniv. Fen Bil. Ens. Bahçe Bitkileri Anabilim Dalı Tokat.
  • Kızgın, B. 2022. Farklı organik gübre uygulamalarının Boğazkere (Vitis vinifera L.) üzüm çeşidinin verim ve bazı kalite özellikleri üzerine etkisi. Yüksek Lisans Tezi. Dicle Üniv. Fen Bil. Ens. Bahçe Bitkileri Anabilim Dalı Diyarbakır.
  • Korkutal, İ., E. Bahar, ve T. Teksöz Özakın. 2019. Aşılı asma fidanlarına farklı yöntemlerle uygulanan mikorizaların, söküm dönemi fidan performansına etkileri (Vitis vinifera L.). ADU Ziraat Fak Derg. 16 (2): 143-152. doi:10.25308/aduziraat.537481
  • Korkutal, İ., E. Bahar., ve T. Teksöz Özakın. 2020. Aşılı asma (Vitis vinifera L.) fidanlarına farklı yöntemlerle uygulanan mikorizaların fidan tutma ve gelişme özellikleri üzerine etkileri. Mediterranean Agric Sci. 33 (2): 149-157. doi:10.29136/mediterranean.496268
  • Kurt, A. 2022. Bazı biyostimülant uygulamalarının Öküzgözü üzüm çeşidinde verim ve kalite üzerine etkileri. Yüksek Lisans Tezi. Isparta Uyg. Bil. Üniv. Lisansüstü Eğitim Ens. Bahçe Bitkileri Anabilim Dalı Isparta.
  • Leles, N. R., W. Genta., V. V. Marques., D. J. Tessmann., and S. R. Roberto. (2022). Manejo da podridão da uva madura em videira ‘Niagara Rosada’. Semina: Ciências Agrárias 43 (5): 2189-2204. doi:10.5433/1679-0359.2022v43n5p2189
  • Li, H. Y., G. D. Yang., H. R. Shu., Y. T. Yang., B. X. Ye., I. Nishida., C. C. Zheng. 2006. Colonization by the arbuscular mycorrhizal fungus Glomus versiforme induces a defense response against the root-knot nematode Meloidogyne incognita in the grapevine (Vitis amurensis Rupr.), which includes transcriptional activation of the class III chitinase gene VCH3. Plant Cell Physiol. 47 (1): 154-163. doi:10.1093/pcp/pci231
  • Li, X., W. Miao., C. Gong., H. Jiang., W. Ma., and S. Zhu. 2013. Effects of prometryn and acetochlor on arbuscular mycorrhizal fungi and symbiotic system. Lett Appl Microbiol. 57 (2): 122-8. doi:10.1111/lam.12084
  • Likar, M., and M. Regvar. 2017. Arbuscular mycorrhizal fungi and dark septate endophytes in grapevine: the potential for sustainable viticulture? In: Varma, A., Prasad, R., Tuteja, N. (eds) Mycorrhiza - Function, Diversity, State of the Art. Springer, Cham. USA. doi:10.1007/978-3-319-53064-2_13
  • Linderman, R. G., and E. A. Davis. 2001.Comparative response of selected grapevine rootstocks and cultivars to inoculation with different mycorrhizal fungi. Amer J Enol Vitic. 52: 8-11. doi:10.5344/ajev.2001.52.1.8
  • Ling, N., T. Wang., and Y. Kuzyakov. 2022. Rhizosphere bacteriome structure and functions. Nature Com. 13: 836. doi:10.1038/s41467-022-28448-9
  • Mahmoudi, N., M. F. Caeiro., M. Mahdhi., R. Tenreiro., F. Ulm., M. Mars., C. Cruz., and T. Dias. 2021. Arbuscular mycorrhizal traits are good indicators of soil multifunctionality in drylands. Geoderma 397: 115099. doi:10.1016/j.geoderma.2021.115099
  • Marasco, R., H. Alturkey., M. Fusi., M. Brandi., I. Ghiglieno., L. Valenti., and D. Daffonchio. 2022. Rootstock-scion combination contributes to shape diversity and composition of microbial communities associated with grapevine root system. Environ Microbiol. 24 (8): 3791-3808. doi:10.1111/1462-2920.16042.
  • Martin, F. M., and M. G. A. Van der Heijden. 2024. The mycorrhizal symbiosis: research frontiers in genomics, ecology, and agricultural application. New Phytol. doi:10.1111/nph.19541
  • Meyer, A. H., A. Botha., A. J. Valentine., E. Acher., and P. J. E. Louw. 2005. The occurrence and infectivity of arbuscular mycorrhizal fungi in inoculated and uninoculated rhizosphere soils of two-year-old commercial grapevines. South Afr J Enol Vitic. 26: 90-94.
  • Motosugi, H., Y. Yamamoto., T. Naruo., H. Kitabayashi., and T. Ishii. 2002. Comparison of the growth and leaf mineral concentrations between three grapevine rootstocks and their corresponding tetraploids inoculated with an arbuscular mycorrhizal fungus Gigaspora margarita. Vitis 41 (1): 21-25. doi:10.5073/vitis.2002.41.21-25
  • Moukarzel, R., H. J. Ridgway., L. Waller., A. Guerin-Laguette., N. Cripps-Guazzone., E. E. Jones. 2023. Soil arbuscular mycorrhizal fungal communities differentially affect growth and nutrient uptake by grapevine rootstocks. Microb Ecol. 86: 1035-1049. doi:10.1007/s00248-022-02160-z
  • Nasslahsen, B., Y. Prin., H. Ferhout., A. Smouni., and R. Duponnois. 2022. Mycorrhizae helper bacteria for managing the mycorrhizal soil infectivity. Front Soil Sci. 2: 979246. doi:10.3389/fsoil.2022.979246
  • Niem, J.M., R. Billones-Baaijens., B. Stodart., and S. Savocchia. 2020. Diversity profiling of grapevine microbial endosphere and antagonistic potential of endophytic pseudomonas against grapevine trunk diseases. Front Microbiol. 11: 477. doi:10.3389/fmicb.2020.00477
  • Nogales, A., A. Camrubí., V. Estaún., and C. Calvet. 2008. Mycorrhizal inoculation of grapevines in replant soils: improved field application and plant performance. http://www.recercat.net/bitstream/handle/2072/13365/Nogaleset:1-5.
  • Ochoa-Hueso, R., E. Cantos-Villar., B. Puertas., J. F. Aguiar del Rio., I. Belda., M. Delgado-Baquerizo., et al. 2024. Nature-based strategies to regenerate the functioning and biodiversity of vineyards. J Sustain Agric Environ. 3: e12088. doi:10.1002/sae2.12088
  • Özer, A., 2011. Tohum ve çelikten elde edilen genç asmalarda mikorizal preparasyon uygulamalarının etkileri. Yüksek Lisans Tezi. Selçuk Üniv. Fen Bil. Ens. Bahçe Bitkileri Anabilim Dalı Konya.
  • Özkara, R. 2016. Biopestisit ve biostimülant uygulamalarının tüplü asma fidan randımanı, kalitesi ve dikim sonrası fidanların gelişimine etkileri. Yüksek Lisans Tezi. GOP Üniv. Fen Bil. Ens. Bahçe Bitkileri Anabilim Dalı Tokat.
  • Parniske, M. 2008. Arbuscular Mycorrhiza: The mother of plant root endosymbioses. Nat Rev Microbiol. 6: 763-775.
  • Popescu, G. C. 2016. Arbuscular mycorrhizal fungi - An essential tool to sustainable vineyard development: A Review. Curr Trends in Nat Sci. 5 (10): 107-116.
  • Pozo, M. J., and C. Azcón-Aguilar. 2007. Unraveling mycorrhiza-induced resistance. Curr Op Plant Biol. 10 (4): 393-398. doi:10.1016/j.pbi.2007.05.004
  • Repetto, O., L. Miotti., D. Belotto., and M. Borgo. 2008. Arbuscular micorizal fungi in Italian vineyards first observations. Atti 31 Congresso Mondiale della Vigna e del Vino, 15-20 Giugno, Verona.
  • Rivera-Becerril, F., D. Van Tuinen., O. Chatagnier., N. Rouard., J. Béguet., C. Kuszala., G. Soulas., V. Gianinazzi-Pearson., and F. Martin-Laurent. 2017. Impact of a pesticide cocktail (fenhexamid, folpel, deltamethrin) on the abundance of Glomeromycota in two agricultural soils. Sci of the Total Env. 577: 84-93.
  • Rouphael, Y., and G. Colla. 2020. Biostimulants in agriculture. Frontiers in Plant Science, 11: 40. doi:10.3389/fpls.2020.00040
  • Sandal Erzurumlu, G., ve E. E. Kara. 2014. Mikoriza konusunda Türkiye’de yapılan çalışmalar. Türk Bilimsel Derlemeler Derg. 7 (2): 55-65.
  • Schabl, P., C. Gabler., E. Kührer., and W. Wenzel. 2020. Effects of silicon amendments on grapevine, soil and wine. Plant Soil Env. 66 (8): 403-414. doi:10.17221/40/2020-PSE.
  • Schreiner, R. P. 2005. Mycorrhizas and mineral acquisition in grape vines. 49-60. In: Soil Environment and Vine Mineral Nutrition, Eds: L. P. Christensen and D. R. Smart, (Davis CA: Amer Soc of Enol and Vitic). USA.
  • Schreiner, R. P. 2007. Effects of native and nonnative arbuscular mycorrhizal fungi on growth and nutrient uptake of Pinot noir (Vitis vinifera L.) in two soils with contrasting levels of phosphorus Appl Soil Ecol. 36, 205-215. doi:10.1016/j.apsoil.2007.03.002
  • Smith, S. E., and D. Read. 2008. The symbionts forming arbuscular mycorrhizas. pp 13-41. Editor(s): Smith, S.E., Read, D. Mycorrhizal Symbiosis (Third Edition), Academic Press, USA. doi:10.1016/B978-012370526-6.50003-9.
  • Sulistiono, W., S. Tjokrodiningrat., H. Bayu Aji., B. Brahmantiyo., Z. Abdullatif., G. Gusmaini., M. Syakir., T. Alam., M. Musyadik., and S. Sudarto. 2024. Interactive effect of arbuscular mycorrhizal fungi (AMF) and transplanting media improves early growth, physiological traits, and soil nutrient status of coconut ‘Bido’ under tropical monsoon climate. Chilean J Agric Res. 84(1), 97-109. doi:10.4067/S0718-58392024000100097
  • Tahat, M. M., K. M. Alananbeh., Y.A. Othman., D.I. Leskovar. (2020). Soil health and sustainable agriculture. Sustainability 12: 4859. doi:10.3390/su12124859
  • Trouvelot, S., L. Bonneau., D. Redecker., D. Van Tuinen., M. Adrian., and D. Wipf. 2015. Arbuscular mycorrhiza symbiosis in viticulture: a review. Agron Sustain Dev. 35: 1449-1467. doi:10.1007/s13593-015-0329-7
  • Tvetskov, I. J., T. Dvhambazova., V. Kondakova., and R. Batchrova. 2017. Mycorrhizal fungi Glomus spp. and Trichoderma spp. in viticulture (Review). Bulgarian J Agric Sci. 20 (4): 849-855.
  • Van Geel, M., E. Verbruggen., M. De Beenhouwer., G. Van Rennes., B. Lievens., and O. Honnay. 2017. High soil phosphorus levels overrule the potential benefits of organic farming on arbuscular mycorrhizal diversity in northern vineyards. Agric Ecosystems Envir. 248: 144-152. doi:10.1016/j.agee.2017.07.017
  • Van Loon, L. C. 2007. Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol. 119: 243-254. doi:10.1007/s10658-007-9165-1
  • Van Rooyen, M., A. Valentine., E. Archer. 2004. Arbuscular mycorrhizal colonisation modifies the water relations of young transplanted grapevines (Vitis). S Afr J Enol Vitic. 25 (2): 37-42. doi:10.21548/25-2-2137
  • Vincze, É-B., A. Becze., É. Laslo., and G. Mara. 2024. Beneficial soil microbiomes and their potential role in plant growth and soil fertility. Agriculture 14 (1): 152. doi:10.3390/agriculture14010152
  • Visconti, F., R. López., and M. Á. Olego. 2024. The health of vineyard soils: Towards a sustainable viticulture. Horticulturae 10 (2): 154. doi:10.3390/horticulturae10020154
  • Weng, W., J. Yan., M. Zhou., X. Yao., A. Gao., C. Ma., J. Cheng., and J. Ruan. 2022. Roles of arbuscular mycorrhizal fungi as a biocontrol agent in the control of plant diseases. Microorganisms 10 (7): 1266. doi:10.3390/microorganisms10071266.
  • White, R. E. 2020. The value of soil knowledge in understanding wine terroir. Front Environ Sci., 8, 1-6. doi:10.3389/fenvs.2020.00012
  • Yang, J., J. W. Kloepper., and C. M. Ryu. 2009. Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1-4. doi:10.1016/j.tplants.2008.10.004
  • Zaller, J. G., C. Cantelmo., G. Dos. Santos., S. Muther., E. Gruber., P. Pallua., and F. Faber. 2018. Herbicides in vineyards reduce grapevine root mycorrhization and alter soil microorganisms and the nutrient composition in grapevine roots, leaves, xylem sap and grape juice. Environ Sci Pollut Res. 25 (23): 23215-23226. doi:10.1007/s11356-018-2422-3
  • Zanathy, G., A. Donko., G. Lukacsy., P. Bodor., and G. D. Bisztray. 2011. The importance of the mycorrhizal fungi in the viticulture. Kertgazdaság-Horticulture 43 (1): 34-46.
  • Zhuang, X., J. Chen., H. Shim., and Z. Bai. 2007. New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int. 33: 406-413. doi:10.1016/j.envint.2006.12.005
There are 114 citations in total.

Details

Primary Language Turkish
Subjects Oenology and Viticulture
Journal Section Makaleler
Authors

İlknur Korkutal 0000-0002-8016-9804

Elman Bahar 0000-0002-8842-7695

Publication Date June 30, 2024
Submission Date February 23, 2024
Acceptance Date May 17, 2024
Published in Issue Year 2024 Volume: 34 Issue: 1

Cite

APA Korkutal, İ., & Bahar, E. (2024). Mikorizalar ve Bağcılıkta Kullanımı. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi, 34(1), 97-107. https://doi.org/10.18615/anadolu.1442118
AMA Korkutal İ, Bahar E. Mikorizalar ve Bağcılıkta Kullanımı. ANADOLU. June 2024;34(1):97-107. doi:10.18615/anadolu.1442118
Chicago Korkutal, İlknur, and Elman Bahar. “Mikorizalar Ve Bağcılıkta Kullanımı”. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi 34, no. 1 (June 2024): 97-107. https://doi.org/10.18615/anadolu.1442118.
EndNote Korkutal İ, Bahar E (June 1, 2024) Mikorizalar ve Bağcılıkta Kullanımı. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi 34 1 97–107.
IEEE İ. Korkutal and E. Bahar, “Mikorizalar ve Bağcılıkta Kullanımı”, ANADOLU, vol. 34, no. 1, pp. 97–107, 2024, doi: 10.18615/anadolu.1442118.
ISNAD Korkutal, İlknur - Bahar, Elman. “Mikorizalar Ve Bağcılıkta Kullanımı”. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi 34/1 (June 2024), 97-107. https://doi.org/10.18615/anadolu.1442118.
JAMA Korkutal İ, Bahar E. Mikorizalar ve Bağcılıkta Kullanımı. ANADOLU. 2024;34:97–107.
MLA Korkutal, İlknur and Elman Bahar. “Mikorizalar Ve Bağcılıkta Kullanımı”. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi, vol. 34, no. 1, 2024, pp. 97-107, doi:10.18615/anadolu.1442118.
Vancouver Korkutal İ, Bahar E. Mikorizalar ve Bağcılıkta Kullanımı. ANADOLU. 2024;34(1):97-107.
29899ANADOLU Journal by Aegean Agricultural Research Institute is licensed under CC BY-NC-ND 4.0  

30009     30010       30011     30012   30013      30014        30015  30016