Research Article
BibTex RIS Cite

Investigation of the factor structure of the Turkish version of the State-Trait Anxiety Inventory

Year 2022, Volume: 27 Issue: 1, 22 - 31, 29.01.2022
https://doi.org/10.21673/anadoluklin.889735

Abstract

Aim: Confirmatory factor analysis (CFA) and Rasch Analysis are commonly used methods to examine the structure of the psychological scales. In this study, it is aimed to evaluate the factor structure Turkish version of the State-Trait Anxiety Inventory by using statistics based on the Rasch model and CFA.


Methods: The State-Trait Anxiety Inventory (STAI) was used for the analysis. Of the study group, 186 (46.5%) were male and 214 (53.5%) were female. Unidimensionality was investigated using a Rasch-based principal component analysis (PCA) of the residuals, chi-square tests, item fit statistics, and other statistics. CFA has also been applied to test the hypothesis of a one-factor solution.

Results: The item-trait interaction chi-square statistic was 342.344 for the state scale (p<0.001) and 381.247 for the trait scale (p<0.001). For the state scale, 16.00% of the t-tests for the PCA were
significant at the 5% level, while 19.50% were significant for the trait scale. The fit residuals of items 4, 8, and 18 on the state scale were over the +2.5 threshold, while the fit residuals of items 23, 24,
and 34 on the trait scale were above the +2.5 threshold. Similarly, the scale structure evaluated by CFA was conditioned to be inadequate goodness-of-fit.


Conclusion: This study found that neither the trait nor the state scale of the STAI met the unidimensionality assumption. Consequently, both the Rasch analysis and CFA have been verified as succeeding tools in assessing the scale sub-dimensions and determining whether the response items can be utilized for a total scale score.

Supporting Institution

No

Project Number

No

Thanks

No

References

  • Reckase M. Multidimensional item response theory: Statistics for Social and Behavioral Sciences. New York, US: Springer; 2009.
  • Brown TA. Confirmatory factor analysis for applied research. New York, US: Guilford Publications; 2014.
  • Brown TA, Moore MT. Confirmatory factor analysis. In: Hoyle RH, editor. Handbook of structural equation modeling. New York, US: Guilford Publications, 2012; p. 361-79.
  • Bryant FB, Yarnold PR. Principal-components analysis and exploratory and confirmatory factor analysis. In: Grimm LG, Yarnold PR, eds. Reading and Understanding Multivariate Statistics. Washington DC, US: American Psychological Association, 1995; p. 99-136.
  • Thompson B. Exploratory and confirmatory factor analysis: Understanding concepts and applications. Washington DC, US: American Psychological Association; 2004.
  • Harrington D. Confirmatory factor analysis. New York, US: Oxford University Press; 2009.
  • Medvedev ON, Landhuis CE. Exploring constructs of well-being, happiness and quality of life. PeerJ. 2018;1(6):e4903.
  • Siegert RJ, Jackson DM, Tennant A, Turner-Stokes L. Factor analysis and Rasch analysis of the Zarit Burden Interview for acquired brain injury carer research. J Rehabil Med. 2010;42(4):302-9.
  • Forkmann T, Gauggel S, Spangenberg L, Brähler E, Glaesmer H. Dimensional assessment of depressive severity in the elderly general population: psychometric evaluation of the PHQ-9 using Rasch Analysis. J Affect Disord. 2013;148(2):323-30.
  • Wardenaar KJ, van Veen T, Giltay EJ, den Hollander-Gijsman M, Penninx BW, Zitman FG. The structure and dimensionality of the Inventory of Depressive Symptomatology Self Report (IDS-SR) in patients with depressive disorders and healthy controls. J Affect Disord. 2010;125(1):146-54.
  • DeVellis RF. Classical test theory. Med Care. 2006;44(11):50-S9.
  • Spielberger CD. State‐Trait anxiety inventory. Wiley Online Library; 2010.
  • Oner N, Le Compte A. Durumluk-Surekli kaygı envanteri el kitabı. Istanbul: Boğaziçi Yayınları; 1985.
  • Franchignoni F, Mora G, Giordano A, Volanti P, Chiò A. Evidence of multidimensionality in the ALSFRS-R Scale: a critical appraisal on its measurement properties using Rasch analysis. J Neurol Neurosurg Psychiatry. 2013;84(12):1340-5.
  • Wilson M. Constructing measures: An item response modeling approach. Mahwah, J: Lawrence Erlbaum Associates; 2005.
  • Brodin U, Fors U, Laksov KB. The application of Item Response Theory on a teaching strategy profile questionnaire. BMC Med Educ. 2010;10(1):14.
  • Zheng X, Rabe-Hesketh S. Estimating parameters of dichotomous and ordinal item response models with gllamm. Stata J. 2007;7(3):313-33.
  • Allen DD. Validity and reliability of the movement ability measure: a self-report instrument proposed for assessing movement across diagnoses and ability levels. Phys Ther. 2007;87(7):899-916.
  • Kaipper MB, Chachamovich E, Hidalgo MPL, da Silva Torres IL, Caumo W. Evaluation of the structure of Brazilian State-Trait Anxiety Inventory using a Rasch psychometric approach. J Psychosom Res. 2010;68(3):223-33.
  • Hagell P, Nilsson MH. The 39-item Parkinson’s Disease Questionnaire (PDQ-39): Is it a unidimensional construct? Ther Adv Neurol Disord. 2009;2(4):205-14.
  • Tennant A, Pallant J. Unidimensionality matters!(A tale of two Smiths?). Rasch measurement transactions 2006;20(1):1048-51.
  • Andrich D, Sheridan B, Luo G. RUMM 2030 Version 5.4 for windows. RUMM Laboratory Pty Ltd. 2012:21.
  • IBM SPSS Amos Campus Edition Academic Authorized, Version 25.0., IBM Corp., Armonk, NY; 2012.
  • Ashley L, Smith AB, Keding A, Jones H, Velikova G, Wright P. Psychometric evaluation of the Revised Illness Perception Questionnaire (IPQ-R) in cancer patients: Confirmatory factor analysis and Rasch analysis. J Psychosom Res. 2013;75(6):556-62.
  • Franchignoni F, Giordano A, Sartorio F, Vercelli S, Pascariello B, Ferriero G. Suggestions for refinement of the Disabilities of the Arm, Shoulder and Hand Outcome Measure (DASH): a factor analysis and Rasch validation study. Arch Phys Med Rehabil. 2010;91(9):1370-7.
  • GORTON III GE, Stout JL, Bagley AM, Bevans K, Novacheck TF, Tucker CA. Gillette Functional Assessment Questionnaire 22‐item skill set: factor and Rasch analyses. Dev Med Child Neurol. 2011;53(3):250-5.
  • Delgado AR., Prieto G., Burin DI. Constructing three emotion knowledge tests from the invariant measurement approach. PeerJ. 2017;13(5):e3755.
  • Aplin T, Chien CW, Gustafsson L. Initial validation of the dimensions of home measure. Aust Occup Ther J. 2016;63(1):47-56.
  • Hendriks J, Fyfe S, Styles I, Skinner SR, Merriman G. Scale construction utilising the Rasch unidimensional measurement model: A measurement of adolescent attitudes towards abortion. Australas Med J. 2012;5(5):251-261.
  • Smith AB, Fallowfield LJ, Stark DP, Velikova G, Jenkins V. A Rasch and confirmatory factor analysis of the General Health Questionnaire (GHQ)-12. Health Qual Life Outcomes 2010;8(1):45.
  • Lin C-Y, Broström A, Nilsen P, Griffiths MD, Pakpour AH. Psychometric validation of the Bergen Social Media Addiction Scale using classic test theory and Rasch models. Journal of Behavioral Addictions. 2017;6(4):620-9.
  • Smith Jr EV. Understanding Rasch measurement: Detecting and evaluating the impact of multidimenstionality using item fit statistics and principal component analysis of residuals. J Appl Meas. 2002;3(2):205-31.
  • Hsiao Y-Y, Shih C-L, Yu W-H, Hsieh C-H, Hsieh C-L. Examining unidimensionality and improving reliability for the eight subscales of the SF-36 in opioid-dependent patients using Rasch analysis. Qual Life Res. 2015;24(2):279-85.
  • Lin C-Y, Yang S-C, Lai W-W, Su W-C, Wang J-D. Rasch models suggested the satisfactory psychometric properties of the World Health Organization Quality of Life-Brief among lung cancer patients. Journal of Health Psychology 2017:22(4):397-408.
  • Chang K-C, Wang J-D, Tang H-P, Cheng C-M, Lin C-Y. Psychometric evaluation using Rasch analysis of the WHOQOL-BREF in heroin-dependent people undergoing methadone maintenance treatment: further item validation. Health and Quality of Life Outcomes 2014;3 (12):148.
  • Pallant JF, Tennant A. An introduction to the Rasch measurement model: an example using the Hospital Anxiety and Depression Scale (HADS). Br J Clin Psychol. 2007;46(1):1-18.
  • Tomak L, Midik O. Primary principles in developing scale with Rasch analysis: Portfolio anxiety assessment. Niger J Clin Pract. 2018;21(10):1296-303.

Durumluk-Sürekli Kaygı Ölçeği’nin Türkçe versiyonunun faktör yapısının değerlendirilmesi

Year 2022, Volume: 27 Issue: 1, 22 - 31, 29.01.2022
https://doi.org/10.21673/anadoluklin.889735

Abstract

Amaç: Doğrulayıcı faktör analizi (DFA) ve Rasch Analizi, psikolojik ölçeklerin yapısını incelemek için yaygın olarak kullanılan yöntemlerdir. Bu çalışmada, Durumluk-Sürekli Kaygı Envanteri’nin Türkçe versiyonunun faktör yapısının Rasch modeli ve DFA temelli istatistikler kullanılarak değerlendirilmesi amaçlanmıştır.


Yöntem: Analiz için Durumluk-Sürekli Kaygı Envanteri’nin kullanıldığı çalışmada, grubunun 186’sı (% 46,5) erkek, 214’ü (% 53,5) kadındı. Tek boyutluluk, rezidüellerin Rasch tabanlı temel bileşen analizi (TBA), ki-kare testleri, madde uyumu istatistikleri ve diğer istatistikler kullanılarak araştırılmıştır. Aynı zamanda ölçeğin tek faktörlü yapısına ait hipotezi test etmek için DFA uygulanmıştır.


Bulgular: Madde-özellik interaksiyon ki-kare istatistiği, durumluk kaygı ölçeği için 342.344 (p<0.001) ve sürekli kaygı ölçeği için 381.247 (p <0.001) idi. Durumluk kaygı ölçeği için yanıt kategorileri değerlendirildiğinde 7. ve 18. maddelerin kesim noktalarının düzensiz yerleştiği, sürekli kaygı ölçeği için kesim noktalarının yerleşiminde böyle bir düzensizlik olmadığı saptandı. Durumluk kaygı ölçeğindeki 4, 8 ve 18 numaralı maddelere ait uyum rezidüelleri +2,5 eşiğinin üzerindeyken, sürekli kaygı ölçeğindeki 23, 24 ve 34 numaralı maddelerin uyum rezidüelleri +2,5 eşiğinin üzerindeydi.
Benzer şekilde DFA ile değerlendirilen ölçek yapısı da yetersiz uyumu göstermekteydi.


Sonuç: Bu çalışma ile Durumluk-Sürekli Kaygı Envanteri’nin, ne durumluk, ne de sürekli kaygı ölçeklerinin tek boyutluluk varsayımını karşılamadığı saptanmıştır. Sonuç olarak, hem Rasch analizi hem
de DFA, ölçek alt boyutlarının değerlendirilmesinde ve yanıt maddelerinin toplam ölçek puanı için kullanılıp kullanılamayacağının belirlenmesinde kullanılabilecek önemli yöntemlerdir.

Project Number

No

References

  • Reckase M. Multidimensional item response theory: Statistics for Social and Behavioral Sciences. New York, US: Springer; 2009.
  • Brown TA. Confirmatory factor analysis for applied research. New York, US: Guilford Publications; 2014.
  • Brown TA, Moore MT. Confirmatory factor analysis. In: Hoyle RH, editor. Handbook of structural equation modeling. New York, US: Guilford Publications, 2012; p. 361-79.
  • Bryant FB, Yarnold PR. Principal-components analysis and exploratory and confirmatory factor analysis. In: Grimm LG, Yarnold PR, eds. Reading and Understanding Multivariate Statistics. Washington DC, US: American Psychological Association, 1995; p. 99-136.
  • Thompson B. Exploratory and confirmatory factor analysis: Understanding concepts and applications. Washington DC, US: American Psychological Association; 2004.
  • Harrington D. Confirmatory factor analysis. New York, US: Oxford University Press; 2009.
  • Medvedev ON, Landhuis CE. Exploring constructs of well-being, happiness and quality of life. PeerJ. 2018;1(6):e4903.
  • Siegert RJ, Jackson DM, Tennant A, Turner-Stokes L. Factor analysis and Rasch analysis of the Zarit Burden Interview for acquired brain injury carer research. J Rehabil Med. 2010;42(4):302-9.
  • Forkmann T, Gauggel S, Spangenberg L, Brähler E, Glaesmer H. Dimensional assessment of depressive severity in the elderly general population: psychometric evaluation of the PHQ-9 using Rasch Analysis. J Affect Disord. 2013;148(2):323-30.
  • Wardenaar KJ, van Veen T, Giltay EJ, den Hollander-Gijsman M, Penninx BW, Zitman FG. The structure and dimensionality of the Inventory of Depressive Symptomatology Self Report (IDS-SR) in patients with depressive disorders and healthy controls. J Affect Disord. 2010;125(1):146-54.
  • DeVellis RF. Classical test theory. Med Care. 2006;44(11):50-S9.
  • Spielberger CD. State‐Trait anxiety inventory. Wiley Online Library; 2010.
  • Oner N, Le Compte A. Durumluk-Surekli kaygı envanteri el kitabı. Istanbul: Boğaziçi Yayınları; 1985.
  • Franchignoni F, Mora G, Giordano A, Volanti P, Chiò A. Evidence of multidimensionality in the ALSFRS-R Scale: a critical appraisal on its measurement properties using Rasch analysis. J Neurol Neurosurg Psychiatry. 2013;84(12):1340-5.
  • Wilson M. Constructing measures: An item response modeling approach. Mahwah, J: Lawrence Erlbaum Associates; 2005.
  • Brodin U, Fors U, Laksov KB. The application of Item Response Theory on a teaching strategy profile questionnaire. BMC Med Educ. 2010;10(1):14.
  • Zheng X, Rabe-Hesketh S. Estimating parameters of dichotomous and ordinal item response models with gllamm. Stata J. 2007;7(3):313-33.
  • Allen DD. Validity and reliability of the movement ability measure: a self-report instrument proposed for assessing movement across diagnoses and ability levels. Phys Ther. 2007;87(7):899-916.
  • Kaipper MB, Chachamovich E, Hidalgo MPL, da Silva Torres IL, Caumo W. Evaluation of the structure of Brazilian State-Trait Anxiety Inventory using a Rasch psychometric approach. J Psychosom Res. 2010;68(3):223-33.
  • Hagell P, Nilsson MH. The 39-item Parkinson’s Disease Questionnaire (PDQ-39): Is it a unidimensional construct? Ther Adv Neurol Disord. 2009;2(4):205-14.
  • Tennant A, Pallant J. Unidimensionality matters!(A tale of two Smiths?). Rasch measurement transactions 2006;20(1):1048-51.
  • Andrich D, Sheridan B, Luo G. RUMM 2030 Version 5.4 for windows. RUMM Laboratory Pty Ltd. 2012:21.
  • IBM SPSS Amos Campus Edition Academic Authorized, Version 25.0., IBM Corp., Armonk, NY; 2012.
  • Ashley L, Smith AB, Keding A, Jones H, Velikova G, Wright P. Psychometric evaluation of the Revised Illness Perception Questionnaire (IPQ-R) in cancer patients: Confirmatory factor analysis and Rasch analysis. J Psychosom Res. 2013;75(6):556-62.
  • Franchignoni F, Giordano A, Sartorio F, Vercelli S, Pascariello B, Ferriero G. Suggestions for refinement of the Disabilities of the Arm, Shoulder and Hand Outcome Measure (DASH): a factor analysis and Rasch validation study. Arch Phys Med Rehabil. 2010;91(9):1370-7.
  • GORTON III GE, Stout JL, Bagley AM, Bevans K, Novacheck TF, Tucker CA. Gillette Functional Assessment Questionnaire 22‐item skill set: factor and Rasch analyses. Dev Med Child Neurol. 2011;53(3):250-5.
  • Delgado AR., Prieto G., Burin DI. Constructing three emotion knowledge tests from the invariant measurement approach. PeerJ. 2017;13(5):e3755.
  • Aplin T, Chien CW, Gustafsson L. Initial validation of the dimensions of home measure. Aust Occup Ther J. 2016;63(1):47-56.
  • Hendriks J, Fyfe S, Styles I, Skinner SR, Merriman G. Scale construction utilising the Rasch unidimensional measurement model: A measurement of adolescent attitudes towards abortion. Australas Med J. 2012;5(5):251-261.
  • Smith AB, Fallowfield LJ, Stark DP, Velikova G, Jenkins V. A Rasch and confirmatory factor analysis of the General Health Questionnaire (GHQ)-12. Health Qual Life Outcomes 2010;8(1):45.
  • Lin C-Y, Broström A, Nilsen P, Griffiths MD, Pakpour AH. Psychometric validation of the Bergen Social Media Addiction Scale using classic test theory and Rasch models. Journal of Behavioral Addictions. 2017;6(4):620-9.
  • Smith Jr EV. Understanding Rasch measurement: Detecting and evaluating the impact of multidimenstionality using item fit statistics and principal component analysis of residuals. J Appl Meas. 2002;3(2):205-31.
  • Hsiao Y-Y, Shih C-L, Yu W-H, Hsieh C-H, Hsieh C-L. Examining unidimensionality and improving reliability for the eight subscales of the SF-36 in opioid-dependent patients using Rasch analysis. Qual Life Res. 2015;24(2):279-85.
  • Lin C-Y, Yang S-C, Lai W-W, Su W-C, Wang J-D. Rasch models suggested the satisfactory psychometric properties of the World Health Organization Quality of Life-Brief among lung cancer patients. Journal of Health Psychology 2017:22(4):397-408.
  • Chang K-C, Wang J-D, Tang H-P, Cheng C-M, Lin C-Y. Psychometric evaluation using Rasch analysis of the WHOQOL-BREF in heroin-dependent people undergoing methadone maintenance treatment: further item validation. Health and Quality of Life Outcomes 2014;3 (12):148.
  • Pallant JF, Tennant A. An introduction to the Rasch measurement model: an example using the Hospital Anxiety and Depression Scale (HADS). Br J Clin Psychol. 2007;46(1):1-18.
  • Tomak L, Midik O. Primary principles in developing scale with Rasch analysis: Portfolio anxiety assessment. Niger J Clin Pract. 2018;21(10):1296-303.
There are 37 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section ORIGINAL ARTICLE
Authors

Leman Tomak 0000-0002-8561-6706

Mustafa Sari 0000-0001-7497-4930

Sule Cavus This is me 0000-0003-4514-3796

Hatice Zehra Bodur Güney 0000-0001-7416-3177

Project Number No
Publication Date January 29, 2022
Acceptance Date August 13, 2021
Published in Issue Year 2022 Volume: 27 Issue: 1

Cite

Vancouver Tomak L, Sari M, Cavus S, Bodur Güney HZ. Investigation of the factor structure of the Turkish version of the State-Trait Anxiety Inventory. Anatolian Clin. 2022;27(1):22-31.

13151 This Journal licensed under a CC BY-NC (Creative Commons Attribution-NonCommercial 4.0) International License.