Review
BibTex RIS Cite

Sporcuların bağırsak mikrobiyomu üzerinde egzersizin etkisi: sistematik bir derleme

Year 2022, Volume: 27 Issue: 3, 357 - 369, 27.09.2022
https://doi.org/10.21673/anadoluklin.1059732

Abstract

Gastrointestinal sistemdeki mikroorganizmalar besin alımı, vitamin sentezi, enerji üretimi, enflamatuar modülasyon ve konakçı bağışıklık tepkisinde önemli bir rol oynar ve toplu olarak insan sağlığına katkıda bulunur. Bağırsak mikrobiyotasını şekillendiren biçimlendirici faktörlerden biri olan egzersizin oynadığı rol, özellikle spora veya egzersize özgü diyet, çevre ve bunların etkileşimleri gibi ilişkili faktörlerin ve stres faktörlerinin bağırsak mikrobiyotasını nasıl etkileyebileceği daha az açıklanmıştır. Bu nedenle, bu sistematik derlemenin amacı, egzersizin sporcuların bağırsak mikrobiyotası ve onu şekillendiren faktörler üzerindeki etkisi ile ilgili literatürü özetlemek ve onu şekillendiren faktörler hakkındaki mevcut bilgileri özetlemektir. Bu çalışma sistematik derleme niteliğindedir ve Aralık 2010–Aralık 2020 tarihleri arasında elektronik veritabanlarından (Pubmed, Web of Science ve EBSCOhost) İngilizce dizinler taranarak gerçekleştirilmiştir. Elektronik veri tabanı sistematik araştırmasında metodoloji olarak Sistematik Derlemeler ve Meta-Analiz Protokolleri için Tercih Edilen Raporlama Öğeleri (The Preferred Reporting Items for Systematic Reviews and MetaAnalyses -PRISMA) temel alınmıştır. Araştırmaya toplam 14 tam metin çalışma dâhil edilmiştir. Çalışmaların büyük çoğunluğunda sporcuların gastrointestinal mikrobiyota bileşimindeki değişiklikler arasında yüksek bir korelasyon olduğu görülmektedir. Çok kısa vadeli ve orta/uzun vadeli egzersiz programlarının bağırsak mikrobiyotasının bileşimi üzerindeki etkilerine ilişkin raporlar tutarsızdır. Sporcuların bazı bağırsak mikrobiyom çeşitliliğinin egzersize yanıt verebileceği ve karşılığında sporcu sağlığını ve performansını etkileyebileceği olası mekanizmaları ortaya çıkarmak için daha birçok araştırmaya ihtiyaç vardır.

References

  • Tremaroli V, Backhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489:242–9.
  • Nicholson JK, Holmes E, Kinross J, et al. Host-gut microbiota metabolic interactions. Science. 2012;336:1262–7.
  • Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Reddy DN. Role of the normal gut microbiota. World J Gastroenterol. 2015;21(29):8787-803.
  • Koliada A, Syzenko G, Moseiko V, et al. Association between body mass index and Firmicutes? Bacteroidetes ratio in an adult Ukrainian popultion. BMC microbiology. 2017;17(1):120.
  • Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018;1693:128–33.
  • Dinan TG, Cryan JF. Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. J. Physiol. 2017;595(2):489–503.
  • Huang WC, Chen YH, Chuang HL, Chiu CC, Huang CC. Investigation of the effects of microbiota on exercise physiological adaption, performance, and energy utilization using a gnotobiotic animal model. Front Microbiol. 2019;10:1906.
  • Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature. 2007;449:804–10.
  • Dudek-Wicher RK, Junka A, Bartoszewicz M. The influence of antibiotics and dietary components on gut microbiota. Prz Gastroenterol. 2018;13(2):85–92.
  • Wampach L, Heintz-Buschart A, Fritz JV, Ramiro-Garcia J, Habier J, Herold M, et al. Birth mode is associated with earliest strain-conferred gut microbiome functions and immunostimulatory potential. Nat Commun. 2018;9(1):5091.
  • Schmidt TSB, Raes J, Bork P. The human gut microbiome: from association to modulation. Cell. 2018;172(6):1198–215.
  • Rinninella E, Raoul P, Cintoni M, et al. What is the healthy gut microbiota composition? a changing ecosystem across age, environment, diet, and diseases. Microorganisms. 2019;7(1):14.
  • Monda V, Villano I, Messina A, et al. Exercise modifies the gut microbiota with positive health effects. Oxid Med Cell Longev. 2017;3831972.
  • Oettle GJ. Effect of moderate exercise on bowel habit. Gut. 1991;32:941–44.
  • Hagio M, Matsumoto M, Yajima T, Hara H, Ishizuka S. Voluntary wheel running exercise and dietary lactose concomitantly reduce proportion of secondary bile acids in rat feces. J. Appl. Physiol. 2010;109(3):663–8.
  • Allen JM, Mailing LJ, Niemiro GM, et al. Exercise alters gut microbiota composition and function in lean and obese humans. Med Sci Sports Exerc. 2018;50(4):747–57.
  • Cerda B, Perez M, Perez-Santiago JD, Tornero-Aguilera JF, Gonzalez-Soltero R, Larrosa M. Gut microbiota modification: another piece in the puzzle of the benefits of physical exercise in health? Front Physiol. 2016;7:51.
  • Frosali S, Pagliari D, Gambassi G, Landolfi R, Pandolfi F, Cianci R. How the Intricate Interaction among Toll-Like Receptors, Microbiota, and Intestinal Immunity Can Influence Gastrointestinal Pathology. J Immunol Res. 2015;2015:489821.
  • Viloria M, Lara-Padilla E, Campos-Rodriguez R, et al. Effect of moderate exercise on IgA levels and lymphocyte count in mouse intestine. Immunol Invest. 2011;40(6):640–56.
  • Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JB. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31.
  • Barton W, Penney NC, Cronin O, et al. The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut. 2018;67(4):625-33.
  • Estaki M, Pither J, Baumeister P, et al. Cardiorespiratory fitness as a predictor of intestinal microbial diversity and distinct metagenomic functions. Microbiome. 2016;4(1):42.
  • Clarke SF, Murphy EF, O’Sullivan O, et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut. 2014; 63(12):1913–20.
  • Clark A, Mach N. Exercise-induced stress behavior, gut-microbiota-brain axis and diet: a systematic review for athletes. J Int Soc Sports Nutr. 2016;13:43.
  • Petersen LM, Bautista EJ, Nguyen H, et al. Community characteristics of the gut microbiomes of competitive cyclists. Microbiome. 2017;5(1):98.
  • Mohr AE, Jager R, Carpenter KC, et al. The athletic gut microbiota. J Int Soc Sports Nutr. 2020;17(1):24.
  • Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009;6(7):e1000100.
  • Hampton-Marcell JT, Eshoo TW, Cook MD, Gilbert JA, Horswill JA, Poretsky R. Comparative analysis of gut microbiota following changes in training volume among swimmers. Int J Sports Med. 2020;41:292–99.
  • Joy S, Lae-Guen J, Byung-Yong K, Sunghee L, Hyon P. The effect of athletes’ probiotic intake may depend on protein and dietary fiber intake. Nutrients. 2020;12:2947.
  • Che-Li L, Yi-Ju H, Hsieh-Hsun H, et al. Bifidobacterium longum subsp. longum OLP-01 supplementation during endurance running training improves exercise performance in middleand long-distance runners: a double-blind controlled trial. Nutrients. 2020;12:1972.
  • Keohane DM, Woods T, O’Connor P, et al. Four men in a boat: ultra-endurance exercise alters the gut microbiome. J Sci Med Sport. 2019; 22(9):1059-64.
  • Jang LG, Choi G, Kim SW, Kim BY, Lee S, Park H. The combination of sport and sport-specific diet is associated with characteristics of gut microbiota: an observational study. J Int Soc Sports Nutr. 2019;16(1):21.
  • Liang R, Zhang S, Peng X, et al. Characteristics of the gut microbiota in professional martial arts athletes: A comparison between different competition levels. PLoS ONE. 2019;14(12).
  • Murtaza N, Burke LM, Vlahovich N, et al. The effects of dietary pattern during intensified training on stool microbiota of elite race walkers. Nutrients. 2019;11(2):261.
  • Moreno-Perez D, Bressa C, Bailen M, et al. Effect of a protein supplement on the gut microbiota of endurance athletes: a randomized, controlled, double-blind pilot study. Nutrients. 2018;10(3):337.
  • Axelrod CL, Brennan CJ, Cresci G, et al. UCC118 supplementation reduces exercise-induced gastrointestinal permeability and remodels the gut microbiome in healthy humans. Physiol Rep. 2019;7(22):e14276.
  • Zhao X, Zhang Z, Hu B, Huang W, Yuan C, Zou, L. Response of gut microbiota to metabolite changes induced by endurance exercise. Front. Microbiol. 2018;9:765.
  • Roberts JD, Suckling CA, Peedle GY, Murphy JA, Dawkins TG, Roberts MG. An exploratory investigation of endotoxin levels in novice long distance triathletes, and the effects of a multi-strain probiotic/prebiotic, antioxidant intervention. Nutrients. 2016;8:733.
  • Cronin O, Barton W, Skuse P, et al. A prospective metagenomic and metabolomic analysis of the ımpact of exercise and/or whey protein supplementation on the gut microbiome of sedentary adults. mSystems. 2018;3(3):e00044-18.
  • Campbell SC, Wisniewski 2nd P.J. Exercise is a novel promoter of intestinal health and microbial diversity. Exerc Sport Sci Rev. 2017;45(1):41–7.
  • David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63.
  • Francino MP. Antibiotics and the human gut microbiome: dysbioses and accumulation of resistances. Front Microbiol. 2015;6:1543.

The effect of exercise on the gut microbiome of athletes: a systematic review

Year 2022, Volume: 27 Issue: 3, 357 - 369, 27.09.2022
https://doi.org/10.21673/anadoluklin.1059732

Abstract

Microorganisms in the gastrointestinal tract play an important role in nutrient uptake, vitamin synthesis, energy harvesting, inflammatory modulation and host immune response, and collectively contribute to human health. The role played by exercise, which is one of the formative factors that shape the gut microbiota, and how stress factors and associated factors, especially sport or exercise-specific diet, environment and their interactions, can affect the gut microbiota has been less clear. Therefore, the purpose of this systematic review is to summarize the literature on the impact of exercise on the gut microbiota of athletes and the factors that shape it, and to summarize the current knowledge about the factors that shape it. This study is a systematic review and was carried out by searching English indexes from electronic databases (Pubmed, Web of Science and EBSCOhost) between December 2010 and December 2020. The Preferred Reporting Items for Systematic Reviews and MetaAnalyses (PRISMA) was used as the methodology for the systematic search of the electronic database. A total of 14 full-text studies were included in the study. The vast majority of studies show a high correlation between changes in the gastrointestinal microbiota composition of athletes. Reports on the effects of very short-term and medium/long-term exercise programs on the composition of the gut microbiota are inconsistent. Much more research is needed to uncover possible mechanisms by which some of the athletes’ gut microbiome diversity may respond to exercise and in turn affect athlete health and performance.

References

  • Tremaroli V, Backhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489:242–9.
  • Nicholson JK, Holmes E, Kinross J, et al. Host-gut microbiota metabolic interactions. Science. 2012;336:1262–7.
  • Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Reddy DN. Role of the normal gut microbiota. World J Gastroenterol. 2015;21(29):8787-803.
  • Koliada A, Syzenko G, Moseiko V, et al. Association between body mass index and Firmicutes? Bacteroidetes ratio in an adult Ukrainian popultion. BMC microbiology. 2017;17(1):120.
  • Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018;1693:128–33.
  • Dinan TG, Cryan JF. Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. J. Physiol. 2017;595(2):489–503.
  • Huang WC, Chen YH, Chuang HL, Chiu CC, Huang CC. Investigation of the effects of microbiota on exercise physiological adaption, performance, and energy utilization using a gnotobiotic animal model. Front Microbiol. 2019;10:1906.
  • Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature. 2007;449:804–10.
  • Dudek-Wicher RK, Junka A, Bartoszewicz M. The influence of antibiotics and dietary components on gut microbiota. Prz Gastroenterol. 2018;13(2):85–92.
  • Wampach L, Heintz-Buschart A, Fritz JV, Ramiro-Garcia J, Habier J, Herold M, et al. Birth mode is associated with earliest strain-conferred gut microbiome functions and immunostimulatory potential. Nat Commun. 2018;9(1):5091.
  • Schmidt TSB, Raes J, Bork P. The human gut microbiome: from association to modulation. Cell. 2018;172(6):1198–215.
  • Rinninella E, Raoul P, Cintoni M, et al. What is the healthy gut microbiota composition? a changing ecosystem across age, environment, diet, and diseases. Microorganisms. 2019;7(1):14.
  • Monda V, Villano I, Messina A, et al. Exercise modifies the gut microbiota with positive health effects. Oxid Med Cell Longev. 2017;3831972.
  • Oettle GJ. Effect of moderate exercise on bowel habit. Gut. 1991;32:941–44.
  • Hagio M, Matsumoto M, Yajima T, Hara H, Ishizuka S. Voluntary wheel running exercise and dietary lactose concomitantly reduce proportion of secondary bile acids in rat feces. J. Appl. Physiol. 2010;109(3):663–8.
  • Allen JM, Mailing LJ, Niemiro GM, et al. Exercise alters gut microbiota composition and function in lean and obese humans. Med Sci Sports Exerc. 2018;50(4):747–57.
  • Cerda B, Perez M, Perez-Santiago JD, Tornero-Aguilera JF, Gonzalez-Soltero R, Larrosa M. Gut microbiota modification: another piece in the puzzle of the benefits of physical exercise in health? Front Physiol. 2016;7:51.
  • Frosali S, Pagliari D, Gambassi G, Landolfi R, Pandolfi F, Cianci R. How the Intricate Interaction among Toll-Like Receptors, Microbiota, and Intestinal Immunity Can Influence Gastrointestinal Pathology. J Immunol Res. 2015;2015:489821.
  • Viloria M, Lara-Padilla E, Campos-Rodriguez R, et al. Effect of moderate exercise on IgA levels and lymphocyte count in mouse intestine. Immunol Invest. 2011;40(6):640–56.
  • Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JB. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31.
  • Barton W, Penney NC, Cronin O, et al. The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut. 2018;67(4):625-33.
  • Estaki M, Pither J, Baumeister P, et al. Cardiorespiratory fitness as a predictor of intestinal microbial diversity and distinct metagenomic functions. Microbiome. 2016;4(1):42.
  • Clarke SF, Murphy EF, O’Sullivan O, et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut. 2014; 63(12):1913–20.
  • Clark A, Mach N. Exercise-induced stress behavior, gut-microbiota-brain axis and diet: a systematic review for athletes. J Int Soc Sports Nutr. 2016;13:43.
  • Petersen LM, Bautista EJ, Nguyen H, et al. Community characteristics of the gut microbiomes of competitive cyclists. Microbiome. 2017;5(1):98.
  • Mohr AE, Jager R, Carpenter KC, et al. The athletic gut microbiota. J Int Soc Sports Nutr. 2020;17(1):24.
  • Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009;6(7):e1000100.
  • Hampton-Marcell JT, Eshoo TW, Cook MD, Gilbert JA, Horswill JA, Poretsky R. Comparative analysis of gut microbiota following changes in training volume among swimmers. Int J Sports Med. 2020;41:292–99.
  • Joy S, Lae-Guen J, Byung-Yong K, Sunghee L, Hyon P. The effect of athletes’ probiotic intake may depend on protein and dietary fiber intake. Nutrients. 2020;12:2947.
  • Che-Li L, Yi-Ju H, Hsieh-Hsun H, et al. Bifidobacterium longum subsp. longum OLP-01 supplementation during endurance running training improves exercise performance in middleand long-distance runners: a double-blind controlled trial. Nutrients. 2020;12:1972.
  • Keohane DM, Woods T, O’Connor P, et al. Four men in a boat: ultra-endurance exercise alters the gut microbiome. J Sci Med Sport. 2019; 22(9):1059-64.
  • Jang LG, Choi G, Kim SW, Kim BY, Lee S, Park H. The combination of sport and sport-specific diet is associated with characteristics of gut microbiota: an observational study. J Int Soc Sports Nutr. 2019;16(1):21.
  • Liang R, Zhang S, Peng X, et al. Characteristics of the gut microbiota in professional martial arts athletes: A comparison between different competition levels. PLoS ONE. 2019;14(12).
  • Murtaza N, Burke LM, Vlahovich N, et al. The effects of dietary pattern during intensified training on stool microbiota of elite race walkers. Nutrients. 2019;11(2):261.
  • Moreno-Perez D, Bressa C, Bailen M, et al. Effect of a protein supplement on the gut microbiota of endurance athletes: a randomized, controlled, double-blind pilot study. Nutrients. 2018;10(3):337.
  • Axelrod CL, Brennan CJ, Cresci G, et al. UCC118 supplementation reduces exercise-induced gastrointestinal permeability and remodels the gut microbiome in healthy humans. Physiol Rep. 2019;7(22):e14276.
  • Zhao X, Zhang Z, Hu B, Huang W, Yuan C, Zou, L. Response of gut microbiota to metabolite changes induced by endurance exercise. Front. Microbiol. 2018;9:765.
  • Roberts JD, Suckling CA, Peedle GY, Murphy JA, Dawkins TG, Roberts MG. An exploratory investigation of endotoxin levels in novice long distance triathletes, and the effects of a multi-strain probiotic/prebiotic, antioxidant intervention. Nutrients. 2016;8:733.
  • Cronin O, Barton W, Skuse P, et al. A prospective metagenomic and metabolomic analysis of the ımpact of exercise and/or whey protein supplementation on the gut microbiome of sedentary adults. mSystems. 2018;3(3):e00044-18.
  • Campbell SC, Wisniewski 2nd P.J. Exercise is a novel promoter of intestinal health and microbial diversity. Exerc Sport Sci Rev. 2017;45(1):41–7.
  • David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63.
  • Francino MP. Antibiotics and the human gut microbiome: dysbioses and accumulation of resistances. Front Microbiol. 2015;6:1543.
There are 42 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section REVİEW
Authors

Merve Gezen Bölükbaş 0000-0002-6681-2867

Şerife Vatansever 0000-0003-4722-5197

Publication Date September 27, 2022
Acceptance Date June 5, 2022
Published in Issue Year 2022 Volume: 27 Issue: 3

Cite

Vancouver Gezen Bölükbaş M, Vatansever Ş. Sporcuların bağırsak mikrobiyomu üzerinde egzersizin etkisi: sistematik bir derleme. Anatolian Clin. 2022;27(3):357-69.

13151 This Journal licensed under a CC BY-NC (Creative Commons Attribution-NonCommercial 4.0) International License.