Research Article
BibTex RIS Cite

Determination of Biochemical Content and Antioxidant Activity of Calliergonella cuspidata (Hedw.) Loeske

Year 2024, Volume: 10 Issue: 1, 25 - 33, 01.06.2024
https://doi.org/10.26672/anatolianbryology.1434173

Abstract

Since ancient times, humans have been utilizing various plants for medicinal purposes, a practice that has persisted from early civilizations to the present day. Plants serve as rich sources of biomolecules, although many of their contents remain unidentified. Bryophytes are considered important reservoirs for new natural products, with mosses being less explored compared to liverworts despite their broader species diversity. This study contains the content analysis of ethanol, methanol, and n-hexane extracts of Calliergonella cuspidata to predict and compare their biochemical compound profiles. The ethanol extract revealed the presence of 3-Formyl-N-methyl-9-[phenylethynyl]dibenzo2,3-a:5,6-a'-thiazine and Eicosane, while Beta-Elemene and Neophytadiene were identified in the methanol extract, and predominantly alkanes were found in the n-hexane extract. Subsequently, antioxidant activity was determined using the DPPH method with the ethanol extract, yielding an EC50 value of 1.0237 mg/ml.

References

  • Abdelaziz R. Tartor Y. H. Barakat A.B. El-Didamony G. Gado M.M. Berbecea, A. 2023. Bioactive metabolites of Streptomyces misakiensis display broad-spectrum antimicrobial activity against multidrug-resistant bacteria and fungi. Frontiers in Cellular and Infection Microbiology. 13:1162721.
  • Ahsan T. Chen J. Zhao X. Irfan M. Wu Y. 2017. Extraction and identification of bioactive compounds (eicosane and dibutyl phthalate) produced by Streptomyces strain KX852460 for the biological control of Rhizoctonia solani AG-3 strain KX852461 to control target spot disease in tobacco leaf. AMB Express. 7:1, 1-9.
  • Alawode T.T. Lajide L. Olaleye M. Owolabi B. 2021. Stigmasterol and β-Sitosterol: Antimicrobial Compounds in the Leaves of Icacina trichantha identified by GC–MS. Beni-Suef University Journal of Basic and Applied Sciences. 10: 1-8.
  • Al-rubaye T.S. Risan M.H. Al-Rubaye D. 2020. Gas chromatography-mass-spectroscopy analysis of bioactive compounds from Streptomyces spp. isolated from Tigris River sediments in Baghdad city. Journal of Biotechnology Research Center. 14:1, 63-71.
  • Altuner E. M. Canli K. Akata I. 2014. Antimicrobial screening of Calliergonella cuspidata, Dicranum polysetum and Hypnum cupressiforme. Journal of Pure and Applied Microbiology. 8:1, 539-545.
  • Asakawa Y. 2007. Biologically active compounds from bryophytes. Pure and Applied Chemistry. 79:4, 557-580.
  • Asakawa Y. Ludwiczuk A. Hashimoto T. 2013. Cytotoxic and antiviral compounds from bryophytes and inedible fungi. Journal of pre-clinical and clinical Research. 7:2, 73-85.
  • Bandyopadhyay A. Dey A. 2022. The ethno-medicinal and pharmaceutical attributes of Bryophytes: A review. Phytomedicine Plus. 2:2, 100255.
  • Benek A. Canli K. Altuner E. M. 2022. Traditional medicinal uses of mosses. Anatolian Bryology. 8:1, 57-65.
  • Bhattarai H. D. Paudel B. Lee H. S. Lee Y. K. Yim J. H. 2008. Antioxidant activity of Sanionia uncinata, a polar moss species from King George Island, Antarctica. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives. 22:12, 1635-1639.
  • Canli K. Bozyel M. E. Turu D. Benek A. Simsek O. Altuner E. M. 2023. Biochemical, Antioxidant Properties and Antimicrobial Activity of Steno-Endemic Origanum onites. Microorganisms. 11:8, 1987.
  • Chen Z. Bertin R. Froldi G. 2013. EC50 estimation of antioxidant activity in DPPH assay using several statistical programs. Food chemistry. 138:1, 414-420.
  • Commisso M. Guarino F. Marchi L. Muto A. Piro A. Degola F. 2021. Bryo-activities: a review on how bryophytes are contributing to the arsenal of natural bioactive compounds against fungi. Plants. 10:2, 203.
  • Das M. Prakash S. Nayak C. Thangavel N. Singh S. K. Manisankar P. Devi K.P. 2018. Dihydroactinidiolide, a natural product against Aβ25-35 induced toxicity in Neuro2a cells: Synthesis, in silico and in vitro studies. Bioorganic Chemistry. 81: 340-349.
  • Dey A. De J.N. 2012. Antioxidative potential of bryophytes: stress tolerance and commercial perspectives: a review. Pharmacologia. 3:6, 151-159.
  • Effah C.Y. Sun T. Liu S. Wu Y. 2020. Klebsiella pneumoniae: an increasing threat to public health. Annals of clinical microbiology and antimicrobials. 19:1, 1-9.
  • El-Demerdash E. 2011. Anti-inflammatory and antifibrotic effects of methyl palmitate. Toxicology and applied pharmacology. 254:3, 238-244.
  • Emre A. 2012. Şifalı bitkiler ve vitaminler. Alfa Yayınları. Istanbul.
  • Faydaoğlu E. Sürücüoğlu M.S. 2011. Geçmişten günümüze tıbbi ve aromatik bitkilerin kullanılması ve ekonomik önemi. Kastamonu University Journal of Forestry Faculty. 11:1, 52-67.
  • Gezgin D. 2006. Bitki Mitosları. Sel Yayıncılık. İstanbul.
  • Islam M.T. Ali E.S. Uddin S.J. Shaw S. Islam M.A. Ahmed M.I. et al. Atanasov A.G. 2018. Phytol: A review of biomedical activities. Food and chemical toxicology. 121: 82-94.
  • Jing S. Qu Z. Zhao C. Li X. Guo L. Liu Z. et al. Gao W. 2021. Dihydroisocoumarins and Dihydroisoflavones from the Rhizomes of Dioscorea collettii with Cytotoxic Activity and Structural Revision of 2, 2′-Oxybis (1, 4-di-tert-butylbenzene). Molecules. 26:17, 5381.
  • Kedare S.B. Singh R.P. 2011. Genesis and development of DPPH method of antioxidant assay. Journal of food science and technology. 48: 412-422.
  • Khatiwora E. Adsul V.B. Kulkarni M. Deshpande N.R. Kashalkar R.V. 2012. Antibacterial activity of Dibutyl Phthalate: A secondary metabolite isolated from Ipomoea carnea stem. J Pharm Res. 5:1, 150-152.
  • Li J. Yin Y. Wang L. Liang P. Li M. Liu X. Yang, H. 2016. Synthesis, characterization, and anti-inflammatory activities of methyl salicylate derivatives bearing piperazine moiety. Molecules. 21:11, 1544.
  • Li Q.Q. Lee R.X. Liang H. Zhong Y. 2013. Anticancer activity of β-elemene and its synthetic analogs in human malignant brain tumor cells. Anticancer research. 33:1, 65-76.
  • Lobo V. Patil A. Phatak A. Chandra N. 2010. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy reviews. 4:8, 118.
  • Lorini A. Damin F.M. de Oliveira D.N. Crizel R.L. Godoy H.T. Galli V. Meinhart A.D. 2021. Characterization and quantification of bioactive compounds from Ilex paraguariensis residue by HPLC‐ESI‐QTOF‐MS from plants cultivated under different cultivation systems. Journal of Food Science. 86:5, 1599-1619.
  • Martins N. Barros L. Henriques M. Silva S. Ferreira I. C. 2015. Activity of phenolic compounds from plant origin against Candida species. Industrial Crops and Products. 74: 648-670.
  • Mimica-Dukic N. Bozin B. Sokovic M. Simin N. 2004. Antimicrobial and antioxidant activities of Melissa officinalis L. (Lamiaceae) essential oil. Journal of agricultural and food chemistry. 52:9, 2485-2489.
  • Nasr Z.S. El-shershaby H. Sallam K. M. Abed N. Ghany A. E. Sidkey N. 2022. Evaluation of Antimicrobial Potential of Tetradecane Extracted from Pediococcus acidilactici DSM: 20284-CM Isolated from Curd Milk. Egyptian Journal of Chemistry. 65:3, 705-713.
  • Pandey K.B. Rizvi S.I. 2009. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative medicine and cellular longevity. 2: 270-278.
  • Peng Z. Wang X. Huang J. Li B. 2024. Pathogenic Escherichia coli. In Molecular Medical Microbiology. Academic Press. pp. 1065-1096.
  • Roy R.N. Laskar S. Sen S.K. 2006. Dibutyl phthalate, the bioactive compound produced by Streptomyces albidoflavus 321.2. Microbiological research. 161:2, 121-126.
  • Sharifi-Rad M. Anil Kumar N.V. Zucca P. Varoni E. M. Dini L. Panzarini E. ... Sharifi-Rad J. 2020. Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Frontiers in physiology. 11: 694.
  • Shobi T. Viswanathan M. 2018. Antibacterial activity of di-butyl phthalate isolated from Begonia malabarica. Journal of Applied Biotechnology & Bioengineering. 5:2, 97-100.
  • Stopiglia C.D.O. Collares F. M. Ogliari F.A. Piva E. Fortes C.B.B. Samuel, S.M.W. Scroferneker M.L. 2012. Antimicrobial activity of [2-(methacryloyloxy) ethyl] trimethylammonium chloride against Candida spp. Revista iberoamericana de micologia. 29:1, 20-23.
  • Tilkat E.A. Batibay H. Yener I. Yilmaz P.K. Akdeniz M. Kaplan A. et al. Holubec, V. 2021. Determination of enzyme inhibition potential and anticancer effects of Pistacia khinjuk stocks raised in in vitro and in vivo conditions. Agronomy. 11:1, 154.
  • Uyar G. Doğru N.H. Ören M. Çavuş A. 2016. Determining Antibacterial Activity of Some Mosses (Cinclidotus riparius (Host ex Brid.) Arn., Calliergonella cuspidata (Hedw.) Loeske, Thamnobryum alopecurum (Hedw.) Gangulee, Leucobryum juniperoideum (Brid.) Müll. Hal., Cirriphyllum crassinervium (Taylor) Loeske & M. Fleisch.). Anatolian Bryology. 2:1-2, 1-8.
  • Vanitha V. Vijayakumar S. Nilavukkarasi M. Punitha V.N. Vidhya E. Praseetha P.K. 2020. Heneicosane—A novel microbicidal bioactive alkane identified from Plumbago zeylanica L. Industrial Crops and Products. 154, 112748.
  • Yehye W.A. Rahman N.A. Ariffin A. Abd Hamid S.B. Alhadi A.A. Kadir F.A. Yaeghoobi M. 2015. Understanding the chemistry behind the antioxidant activities of butylated hydroxytoluene (BHT): A review. European journal of medicinal chemistry. 101: 295-312.
  • Zhao F. Wang P. Lucardi R.D. Su Z. Li S. 2020. Natural sources and bioactivities of 2, 4-di-tert-butylphenol and its analogs. Toxins. 12:1, 35.

Calliergonella cuspidata (Hedw.) Loeske'nin Biyokimyasal İçeriğinin ve Antioksidan Aktivitesinin Belirlenmesi

Year 2024, Volume: 10 Issue: 1, 25 - 33, 01.06.2024
https://doi.org/10.26672/anatolianbryology.1434173

Abstract

İnsanların çok eski çağlardan beri çeşitli amaçlarla yararlandığı bitkilerin tıbbi amaçlı kullanımı ilk uygarlıklardan günümüze kadar devam etmiştir. Bitkiler oldukça zengin biyomolekül kaynakları oluştururlar. Ancak birçoğunun içerik tanımları henüz yapılmamıştır. Briyofitlerin yeni doğal ürünler için önemli bir rezervuar olduğu düşünülmektedir. Karayosunları ise daha geniş bir tür çeşitliliğine sahip olmasına rağmen, ciğerotlarına göre daha az araştırılmıştır. Bu çalışma, biyokimyasal bileşik profillerini tahmin etmek ve karşılaştırmak için Calliergonella cuspidata'nın etanol, metanol ve n-heksan ekstraktlarının içerik analizini içermektedir. Etanol ekstraktında 3-Formil-N-metil-9-[feniletinil]dibenzo[2,3-a:5,6-a'](1,4)-tiazin ve Eikosan, metanol ekstraktında Beta-Elemen ve Neofitadien, N-hekzan ekstraktında ise ağırlıklı olarak alkanlara rastlanmıştır. Daha sonra etanol ekstraktı ile DPPH yöntemi kullanılarak antioksidan aktivite belirlenmiştir. EC50 değeri 1,0237 mg/ml olarak tespit edilmiştir.

References

  • Abdelaziz R. Tartor Y. H. Barakat A.B. El-Didamony G. Gado M.M. Berbecea, A. 2023. Bioactive metabolites of Streptomyces misakiensis display broad-spectrum antimicrobial activity against multidrug-resistant bacteria and fungi. Frontiers in Cellular and Infection Microbiology. 13:1162721.
  • Ahsan T. Chen J. Zhao X. Irfan M. Wu Y. 2017. Extraction and identification of bioactive compounds (eicosane and dibutyl phthalate) produced by Streptomyces strain KX852460 for the biological control of Rhizoctonia solani AG-3 strain KX852461 to control target spot disease in tobacco leaf. AMB Express. 7:1, 1-9.
  • Alawode T.T. Lajide L. Olaleye M. Owolabi B. 2021. Stigmasterol and β-Sitosterol: Antimicrobial Compounds in the Leaves of Icacina trichantha identified by GC–MS. Beni-Suef University Journal of Basic and Applied Sciences. 10: 1-8.
  • Al-rubaye T.S. Risan M.H. Al-Rubaye D. 2020. Gas chromatography-mass-spectroscopy analysis of bioactive compounds from Streptomyces spp. isolated from Tigris River sediments in Baghdad city. Journal of Biotechnology Research Center. 14:1, 63-71.
  • Altuner E. M. Canli K. Akata I. 2014. Antimicrobial screening of Calliergonella cuspidata, Dicranum polysetum and Hypnum cupressiforme. Journal of Pure and Applied Microbiology. 8:1, 539-545.
  • Asakawa Y. 2007. Biologically active compounds from bryophytes. Pure and Applied Chemistry. 79:4, 557-580.
  • Asakawa Y. Ludwiczuk A. Hashimoto T. 2013. Cytotoxic and antiviral compounds from bryophytes and inedible fungi. Journal of pre-clinical and clinical Research. 7:2, 73-85.
  • Bandyopadhyay A. Dey A. 2022. The ethno-medicinal and pharmaceutical attributes of Bryophytes: A review. Phytomedicine Plus. 2:2, 100255.
  • Benek A. Canli K. Altuner E. M. 2022. Traditional medicinal uses of mosses. Anatolian Bryology. 8:1, 57-65.
  • Bhattarai H. D. Paudel B. Lee H. S. Lee Y. K. Yim J. H. 2008. Antioxidant activity of Sanionia uncinata, a polar moss species from King George Island, Antarctica. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives. 22:12, 1635-1639.
  • Canli K. Bozyel M. E. Turu D. Benek A. Simsek O. Altuner E. M. 2023. Biochemical, Antioxidant Properties and Antimicrobial Activity of Steno-Endemic Origanum onites. Microorganisms. 11:8, 1987.
  • Chen Z. Bertin R. Froldi G. 2013. EC50 estimation of antioxidant activity in DPPH assay using several statistical programs. Food chemistry. 138:1, 414-420.
  • Commisso M. Guarino F. Marchi L. Muto A. Piro A. Degola F. 2021. Bryo-activities: a review on how bryophytes are contributing to the arsenal of natural bioactive compounds against fungi. Plants. 10:2, 203.
  • Das M. Prakash S. Nayak C. Thangavel N. Singh S. K. Manisankar P. Devi K.P. 2018. Dihydroactinidiolide, a natural product against Aβ25-35 induced toxicity in Neuro2a cells: Synthesis, in silico and in vitro studies. Bioorganic Chemistry. 81: 340-349.
  • Dey A. De J.N. 2012. Antioxidative potential of bryophytes: stress tolerance and commercial perspectives: a review. Pharmacologia. 3:6, 151-159.
  • Effah C.Y. Sun T. Liu S. Wu Y. 2020. Klebsiella pneumoniae: an increasing threat to public health. Annals of clinical microbiology and antimicrobials. 19:1, 1-9.
  • El-Demerdash E. 2011. Anti-inflammatory and antifibrotic effects of methyl palmitate. Toxicology and applied pharmacology. 254:3, 238-244.
  • Emre A. 2012. Şifalı bitkiler ve vitaminler. Alfa Yayınları. Istanbul.
  • Faydaoğlu E. Sürücüoğlu M.S. 2011. Geçmişten günümüze tıbbi ve aromatik bitkilerin kullanılması ve ekonomik önemi. Kastamonu University Journal of Forestry Faculty. 11:1, 52-67.
  • Gezgin D. 2006. Bitki Mitosları. Sel Yayıncılık. İstanbul.
  • Islam M.T. Ali E.S. Uddin S.J. Shaw S. Islam M.A. Ahmed M.I. et al. Atanasov A.G. 2018. Phytol: A review of biomedical activities. Food and chemical toxicology. 121: 82-94.
  • Jing S. Qu Z. Zhao C. Li X. Guo L. Liu Z. et al. Gao W. 2021. Dihydroisocoumarins and Dihydroisoflavones from the Rhizomes of Dioscorea collettii with Cytotoxic Activity and Structural Revision of 2, 2′-Oxybis (1, 4-di-tert-butylbenzene). Molecules. 26:17, 5381.
  • Kedare S.B. Singh R.P. 2011. Genesis and development of DPPH method of antioxidant assay. Journal of food science and technology. 48: 412-422.
  • Khatiwora E. Adsul V.B. Kulkarni M. Deshpande N.R. Kashalkar R.V. 2012. Antibacterial activity of Dibutyl Phthalate: A secondary metabolite isolated from Ipomoea carnea stem. J Pharm Res. 5:1, 150-152.
  • Li J. Yin Y. Wang L. Liang P. Li M. Liu X. Yang, H. 2016. Synthesis, characterization, and anti-inflammatory activities of methyl salicylate derivatives bearing piperazine moiety. Molecules. 21:11, 1544.
  • Li Q.Q. Lee R.X. Liang H. Zhong Y. 2013. Anticancer activity of β-elemene and its synthetic analogs in human malignant brain tumor cells. Anticancer research. 33:1, 65-76.
  • Lobo V. Patil A. Phatak A. Chandra N. 2010. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy reviews. 4:8, 118.
  • Lorini A. Damin F.M. de Oliveira D.N. Crizel R.L. Godoy H.T. Galli V. Meinhart A.D. 2021. Characterization and quantification of bioactive compounds from Ilex paraguariensis residue by HPLC‐ESI‐QTOF‐MS from plants cultivated under different cultivation systems. Journal of Food Science. 86:5, 1599-1619.
  • Martins N. Barros L. Henriques M. Silva S. Ferreira I. C. 2015. Activity of phenolic compounds from plant origin against Candida species. Industrial Crops and Products. 74: 648-670.
  • Mimica-Dukic N. Bozin B. Sokovic M. Simin N. 2004. Antimicrobial and antioxidant activities of Melissa officinalis L. (Lamiaceae) essential oil. Journal of agricultural and food chemistry. 52:9, 2485-2489.
  • Nasr Z.S. El-shershaby H. Sallam K. M. Abed N. Ghany A. E. Sidkey N. 2022. Evaluation of Antimicrobial Potential of Tetradecane Extracted from Pediococcus acidilactici DSM: 20284-CM Isolated from Curd Milk. Egyptian Journal of Chemistry. 65:3, 705-713.
  • Pandey K.B. Rizvi S.I. 2009. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative medicine and cellular longevity. 2: 270-278.
  • Peng Z. Wang X. Huang J. Li B. 2024. Pathogenic Escherichia coli. In Molecular Medical Microbiology. Academic Press. pp. 1065-1096.
  • Roy R.N. Laskar S. Sen S.K. 2006. Dibutyl phthalate, the bioactive compound produced by Streptomyces albidoflavus 321.2. Microbiological research. 161:2, 121-126.
  • Sharifi-Rad M. Anil Kumar N.V. Zucca P. Varoni E. M. Dini L. Panzarini E. ... Sharifi-Rad J. 2020. Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Frontiers in physiology. 11: 694.
  • Shobi T. Viswanathan M. 2018. Antibacterial activity of di-butyl phthalate isolated from Begonia malabarica. Journal of Applied Biotechnology & Bioengineering. 5:2, 97-100.
  • Stopiglia C.D.O. Collares F. M. Ogliari F.A. Piva E. Fortes C.B.B. Samuel, S.M.W. Scroferneker M.L. 2012. Antimicrobial activity of [2-(methacryloyloxy) ethyl] trimethylammonium chloride against Candida spp. Revista iberoamericana de micologia. 29:1, 20-23.
  • Tilkat E.A. Batibay H. Yener I. Yilmaz P.K. Akdeniz M. Kaplan A. et al. Holubec, V. 2021. Determination of enzyme inhibition potential and anticancer effects of Pistacia khinjuk stocks raised in in vitro and in vivo conditions. Agronomy. 11:1, 154.
  • Uyar G. Doğru N.H. Ören M. Çavuş A. 2016. Determining Antibacterial Activity of Some Mosses (Cinclidotus riparius (Host ex Brid.) Arn., Calliergonella cuspidata (Hedw.) Loeske, Thamnobryum alopecurum (Hedw.) Gangulee, Leucobryum juniperoideum (Brid.) Müll. Hal., Cirriphyllum crassinervium (Taylor) Loeske & M. Fleisch.). Anatolian Bryology. 2:1-2, 1-8.
  • Vanitha V. Vijayakumar S. Nilavukkarasi M. Punitha V.N. Vidhya E. Praseetha P.K. 2020. Heneicosane—A novel microbicidal bioactive alkane identified from Plumbago zeylanica L. Industrial Crops and Products. 154, 112748.
  • Yehye W.A. Rahman N.A. Ariffin A. Abd Hamid S.B. Alhadi A.A. Kadir F.A. Yaeghoobi M. 2015. Understanding the chemistry behind the antioxidant activities of butylated hydroxytoluene (BHT): A review. European journal of medicinal chemistry. 101: 295-312.
  • Zhao F. Wang P. Lucardi R.D. Su Z. Li S. 2020. Natural sources and bioactivities of 2, 4-di-tert-butylphenol and its analogs. Toxins. 12:1, 35.
There are 42 citations in total.

Details

Primary Language English
Subjects Botany (Other)
Journal Section Research Articles
Authors

Dilay Turu 0000-0002-8485-0488

Selime Deniz Bozkurt 0009-0003-4782-8884

Cenker Yaman 0000-0002-3559-9098

Gizem Gül 0000-0003-3928-2917

Atakan Benek 0000-0001-6726-5968

Kerem Canlı 0000-0001-6061-6948

Publication Date June 1, 2024
Submission Date February 9, 2024
Acceptance Date March 8, 2024
Published in Issue Year 2024 Volume: 10 Issue: 1

Cite

APA Turu, D., Bozkurt, S. D., Yaman, C., Gül, G., et al. (2024). Determination of Biochemical Content and Antioxidant Activity of Calliergonella cuspidata (Hedw.) Loeske. Anatolian Bryology, 10(1), 25-33. https://doi.org/10.26672/anatolianbryology.1434173

13304133141331513316133242069422229 27016 27017 27017  27018