Research Article
BibTex RIS Cite

E VİTAMİNİ VE ÇÖREK OTU YAĞI İÇEREN POLİ-3-HİDROKSİBUTİRAT-KO-3- HİDROKSİHEKSAONAT-JELATİN MİKROFİBER TEKSTİL LİFLERİ: ANTİBAKTERİYEL ETKİNLİK VE YARA İYİLEŞMESİNE KATKI

Year 2024, Volume: 38 Issue: 2, 37 - 52, 30.08.2024
https://doi.org/10.54962/ankemderg.1475030

Abstract

Mikrofiber tekstil lifleri ile yara bakımında avantaj sağlayabilen ürünler geliştirilebilmektedir. Bu çalışmada poli-3-hidroksibutirat-ko-3-hidroksiheksaonat-jelatin içeren mikrofiber tekstil lifleri (PJ) ile E vitamini ve çörek otu yağı içeren ve biyolojik olarak parçalanabilen poli-3-hidroksibutirat-ko-3-hidroksiheksaonat-jelatin mikrofiber tekstil lifleri (PJ-ÇE) elektrospinning yöntemi kullanılarak hazırlandı. Liflerin yapısal karakterizasyonları Fourier Dönüşümlü Kızılötesi Spektroskopisi (FT-IR) ile gerçekleştirildi. Mikrofiber tekstil liflerinin termal davranışları Termogravimetri (TG)/Diferansiyel Termal Analiz (DTA)/Diferansiyel Termogravimetri (DTG) kombine sistemiyle, yüzey morfolojileri ise Taramalı Elektron Mikroskop (SEM) tekniği ile incelendi. PJ ve PJ-ÇE liflerinin antibakteriyel etkinlikleri, tekstillerin antibakteriyel aktivite test yöntemiyle (JIS L 1902: 2002) Escherichia coli ATCC 35150 ve Staphylococcus aureus ATCC 25923 suşlarına karşı araştırıldı. PJ ve PJ-ÇE liflerinin yara iyileşmesine in vitro etkisi L929 fibroblast hücreleri üzerinde incelendi. Elektrospinning tekniğiyle dayanıklı PJ ve PJ-ÇE lifleri elde edilebildiği yapısal testlerle gösterilmiştir. Antibakteriyel çalışma sonuçlarına göre PJ liflerinin E. coli üzerinde yüksek, S. aureus üzerinde ise düşük antibakteriyel aktiviteye sahip olduğu belirlenmiştir. PJ-ÇE liflerinin antibakteriyel etkinliği ise, PJ liflerine göre E. coli üzerinde daha düşük, S. aureus üzerinde daha yüksek bulunmuştur. PJ-ÇE liflerine maruz kalan L929 fibroblast hücrelerinde hasarın onarımında artış gözlenmiştir. PJ-ÇE liflerinin yeni kompozit yara örtülerinin geliştirilmesinde kullanım açısından umut vaat ettiği düşünülmüştür.

References

  • 1. Alkaya E. Farklı Tuzlardan Elde Edilen Hipokloröz Asitin Keratinosit Ve Fibroblast Hücrelerine Etkisi, Pamukkale Üniversitesi Sağlık Bilimleri Enstitüsü, https://hdl.handle.net/11499/45787 (erişim tarihi 30.05.2024).
  • 2. Anju S, Prajitha N, Sukanya VS, Mohanan PV. Complicity of degradable polymers in health-care applications. Mater Today Chem. 2020;16:100236. https://doi.org/10.1016/j.mtchem.2019.100236.
  • 3. Aras C. Çörek Otu Yağı Katkılı Nanokompozit Poliüretan Nanolifli Yüzey Uretimi, Karakterizasyonu ve Yara Ortüsü Olarak Kullanım Performansının Araştırılması, https://www.proquest.com/docview/2579336967. (erişim tarihi 12.04.2024).
  • 4. Balusamy B, Senthamizhan A, Uyar T. Electrospun Nanofibers for Wound Dressing and Tissue Engineering Applications. Hacettepe J Biol Chem. 2020;48(5):459-81. https://doi.org/10.15671/hjbc.789186.
  • 5. Bian YZ, Wang Y, Aibaidoula G, Chen GQ, Wu Q. Evaluation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) conduits for peripheral nerve regeneration. Biomaterials. 2009;30(2):217-25. https://doi.org/10.1016/j.bıomaterıals.2008.09.036.
  • 6. Boateng JS, Matthews KH, Stevens HNE, Eccleston GM. Wound Healing Dressings and Drug Delivery Systems: A Review. J Pharm Sci. 2008;97(8):2892-923. https://doi.org/10.1002/jps.21210.
  • 7. Cesur S. Gentamisin Yüklü Poli(Vi̇ni̇l Alkol)/Jelati̇n Nanofi̇berleri̇n Elektroeği̇rme Yöntemi̇yle Yara Örtüsü Malzemesi̇ Olarak Üreti̇lmesi̇. Konya J Eng Sci. 2022;10(4):878-88. https://doi.org/10.36306/konjes.1124919.
  • 8. Chapekar MS. Tissue Engineering: Challenges and Opportunities. J Biomed Mater Res -Part A. 2000;53(6):617-20. https://doi.org/10.1002/1097-4636.
  • 9. Chen G, Ushida T, Tateishi T. Scaffold Design for Tissue Engineering. Macromol Biosci. 2002;2(2):67-77. https://doi.org/10.1002/1616-5195.
  • 10. Cheng ML, Chen PY, Lan CH, Sun YM. Structure, mechanical properties and degradation behaviors of the electrospun fibrous blends of PHBHHx/PDLLA. Polymer (Guildf). 2011;52(6):1391-401. https://doi.org/10.1016/J.Polymer.2011.01.039.
  • 11. Çolpankan Güneş O. Production of antibacterial, biodegradable and biocompatible materials for tissue engineering applications. 2019. Doktora tezi. https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp
  • 12. Demirdogen RE, Kilic D, Emen FM, et al. Novel antibacterial cellulose acetate fibers modified with 2-fluoropyridine complexes. J Mol Struct. 2020;1204. https://doi.org/10.1016/j.molstruc.2019.127537.
  • 13. Demirdogen RE, Yeşilkaynak T, Tishakova T, Emen FM. Antıbacterıal Cellulose Acetate Mıcrofıbers Contaınıng Pyrıdıne Derıvatıve Complexes. 2021;15(2):217-25.
  • 14. Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS. Polymeric scaffolds in tissue engineering application: A review. Int J Polym Sci. 2011;2011. https://doi.org/10.1155/2011/290602.
  • 15. Doganci E, Doganci MD, Bulus GS, Bulus E. Ozon Yağı İçeren Nanoteknolojik Yara Örtüsü Üretimi ve Karakterizasyonu. Atatürk Üniversitesi Kim Derg. 2022;2(1):1-5.
  • 16. Eraslan K, Aversa C, Nofar M, et al. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH): Synthesis, properties, and applications -A review. Eur Polym J. 2022;167:111044. https://doi.org/10.1016/j.eurpolymj.2022.111044.
  • 17. Foulkes R, Man E, Thind J, Yeung S, Joy A, Hoskins C. The regulation of nanomaterials and nanomedicines for clinical application: current and future perspectives. Biomater Sci. 2020;8(17):4653-64. https://doi.org/10.1039/d0bm00558d.
  • 18. Hasan A, Morshed M, Memic A, Hassan S, Webster TJ, Marei HES. Nanoparticles in tissue engineering: Applications, challenges and prospects. Int J Nanomedicine. 2018;13:5637-55. https://doi.org/10.2147/ıjn.s153758.
  • 19. Hoque MS, Benjakul S, Prodpran T. Effects of partial hydrolysis and plasticizer content on the properties of film from cuttlefish (Sepia pharaonis) skin gelatin. Food Hydrocoll. 2011;25(1):82-90. https://doi.org/10.1016/J.Foodhyd.2010.05.008.
  • 20. Kamoun EA, Kenawy ERS, Chen X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res. 2017;8(3):217-33. https://doi.org/10.1016/j.jare.2017.01.005.
  • 21. Kim SH, Turnbull J, Guimond S. Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol. 2011;209(2):139-51. https://doi.org/10.1530/joe-10-0377.
  • 22. Kobolak J, Dinnyes A, Memic A, Khademhosseini A, Mobasheri A. Mesenchymal stem cells: Identification, phenotypic characterization, biological properties and potential for regenerative medicine through biomaterial micro-engineering of their niche. Methods. 2016;99:62-8. https://doi.org/10.1016/J.ymeth.2015.09.016.
  • 23. Kurtoğlu AH, Karataş A. Current Approaches To Wound Therapy: Modern Wound Dressings. Ankara Ecz Fak Derg J Fac Pharm. Ankara. 2009;38(3):211-32. https://doi.org/10.1501/Eczfak_0000000562.
  • 24. Kutlu E, Emen FM, Yıldırım K, et al. Novel thiourea derivatives against Mycobacterium tuberculosis : synthesis, characterization and molecular docking studies Novel thiourea derivatives against Mycobacterium tuberculosis : synthesis,. Phosphorus Sulfur Silicon Relat Elem. 2023;0(0):1-10. https://doi.org/10.1080/10426507.2023.2201503.
  • 25. Las Heras K, Igartua M, Santos-Vizcaino E, Hernandez RM. Chronic wounds: Current status, available strategies and emerging therapeutic solutions. J Control Release. 2020;328:532-50. https://doi.org/10.1016/j.jconrel.2020.09.039.
  • 26. Lazovic G, Colic M, Grubor M, Jovanovic M. The Application of Collagen Sheet in Open Wound Healing. Ann Burns Fire Disasters. 2005;18(3):151.
  • 27. Maaz Arif M, Khan SM, Gull N, Tabish TA, Zia S, Ullah Khan R, et al. Polymer-based biomaterials for chronic wound management: Promises and challenges. Int J Pharm. 2021;598:120270. https://doi.org/10.1016/j.ijpharm.2021.120270.
  • 28. Mir SH, Nagahara LA, Thundat T, Mokarian-Tabari P, Furukawa H, Khosla A. Review-Organic-Inorganic Hybrid Functional Materials: An Integrated Platform for Applied Technologies. J Electrochem Soc. 2018;165(8):B3137-56. https://doi.org/10.1149/2.0191808jes/xml.
  • 29. Pala N, Aral N, Nergis B. Sarı Kantaron Yağı Katkılı PVA Nanoliflerin Emülsiyon Elektroeğirme Yöntemi İle Üretimi. J Text Eng. 2022;29(128):267-71. https://doi.org/10.7216/teksmuh.1222500.
  • 30. Pancur S, Bi̇Lensoy E, Çaliş S. Use of Biodegradable Natural and Synthetic Polymers in Wound Dressing. Fabad J Pharm Sci. 2022;47(3):419-42. https://doi.org/10.55262/fabadeczacilik.1185870.
  • 31. Pinho E, Magalhães L, Henriques M, Oliveira R. Antimicrobial activity assessment of textiles: Standard methods comparison. Ann Microbiol. 2011;61(3):493-8. https://doi.org/10.1007/s13213-010-0163-8.
  • 32. Pinho E, Soares G, Henriques M, Grootveld M. Antibacterial activity of textiles for wound treatment. AATCC J Res. 2015;2(5):1-7. https://doi.org/10.14504/ajr.2.5.1.
  • 33. Pulingam T, Appaturi JN, Gayathiri M, Sudesh K. TiO2 loaded on glycidol functionalized poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) nanobiocomposite film for photocatalytic and antibacterial activities. Int J Biol Macromol. 2023;253(P6):127216.
  • 34. Qu XH, Wu Q, Liang J, Zou B, Chen GQ. Effect of 3-hydroxyhexanoate content in poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) on in vitro growth and differentiation of smooth muscle cells. Biomaterials. 2006;27(15):2944-50. https://doi.org/10.1016/j.bıomaterıals.2006.01.013.
  • 35. Sahithi K, Swetha M, Ramasamy K, Srinivasan N, Selvamurugan N. Polymeric composites containing carbon nanotubes for bone tissue engineering. Int J Biol Macromol. 2010;46(3):281-3. https://doi.org/10.1016/j.ıjbıomac.2010.01.006.
  • 36. Smith LA, Liu X, Ma PX. Tissue engineering with nano-fibrous scaffolds. Soft Matter. 2008;4(11):2144-9. https://doi.org/10.1039/B807088C.
  • 37. Su K, Wang C. Recent advances in the use of gelatin in biomedical research. Biotechnol Lett. 2015;37(11):2139-45. https://doi.org/10.1007/s10529-015-1907-0
  • 38. Summa M, Russo D, Penna I, al. A biocompatible sodium alginate/povidone iodine film enhances wound healing. Eur J Pharm Biopharm. 2018;122:17-24. https://doi.org/10.1016/j.ejpb.2017.10.004.
  • 39. Top N, Gokce H. Artificial Bone Scaffold Design in Tissue Engineering. Selçuk-Teknik Derg. 2019;18(1302-6178):3.
  • 40. Vasita R, Katti DS. Nanofibers and their applications in tissue engineering. Int J Nanomedicine. 2006;1(1):15-30. https://doi.org/10.2147/nano.2006.1.1.15.
  • 41. Wagner A, Poursorkhabi V, Mohanty AK, Misra M. Analysis of porous electrospun fibers from poly(l-lactic acid)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) blends. ACS Sustain Chem Eng. 2014;2(8):1976-82. https://doi.org/10.1021/sc5000495
  • 42. Wang P, Li Y, Zhang C, Feng F, Zhang H. Sequential electrospinning of multilayer ethylcellulose/gelatin/ethylcellulose nanofibrous film for sustained release of curcumin. Food Chem. 2020;308:125599. https://doi.org/10.1016/J.Foodchem.2019.125599.
  • 43. Wiegand C, Abel M, Ruth P, Elsner P, Hipler UC. In vitro assessment of the antimicrobial activity of wound dressings: influence of the test method selected and impact of the pH. J Mater Sci Mater Med. 2015;26(1):18. https://doi.org/10.1007/s10856-014-5343-9.
  • 44. Yeşilkaynak T, Özkömeç FN, Çeşme M, et al. Synthesis of new thiourea derivatives and metal complexes: Thermal behavior, biological evaluation, in silico ADMET profiling and molecular docking studies. J Mol Struct. 2022;1269:133758. https://doi.org/10.1016/j.molstruc.2022.133758
  • 45. Yırtmaz T. Kemik doku rejenerasyonu için Ballıbaba ekstraktı ile kaplanmış gümüş nanopartikül katkılı Kitosan/PCL nanofiber üretimi ve karakterizasyonu. https://www.proquest.com/docview/2787193124 (erişim tarihi 20.05.2024).
  • 46. Zheng Y, Liang Y, Zhang D, et al. Gelatin-Based Hydrogels Blended with Gellan as an Injectable Wound Dressing. ACS Omega. 2018;3(5):4766-75. https://doi.org/10.1021/acsomega.8b00308.

Poly 3 Hydroxybutyrate Co 3 Hydroxyhexaonate Gelatin Microfiber Textile Fibers Containing Vitamin E and Black Cumin Oil: Antibacterial Activity and Contribution to Wound Healing

Year 2024, Volume: 38 Issue: 2, 37 - 52, 30.08.2024
https://doi.org/10.54962/ankemderg.1475030

Abstract

Products that can provide advantages in wound care can be developed with microfiber textile fibers. In this study, microfiber textile fibers containing poly-3-hydroxybutyrate-co-3-hydroxyhexaonate-gelatin (PJ) and biodegradable poly-3-hydroxybutyrate-co-3-hydroxyhexaonate-gelatin microfiber textile fibers containing vitamin E and black cumin oil (PJ-ÇE) were prepared using electrospinning method. Structural characterization of the fibers was carried out by Fourier Transform Infrared Spectroscopy (FT-IR). The thermal behavior of the microfiber textile fibers was investigated by Thermogravimetry (TG)/Differential Thermal Analysis (DTA)/Differential Thermogravimetry (DTG) combined system and their surface morphology was investigated by Scanning Electron Microscopy (SEM) technique. The antibacterial activities of PJ and PJ-ÇE fibers were investigated against Escherichia coli ATCC 35150 and Staphylococcus aureus ATCC 25923 strains by the textile antibacterial activity test method (JIS L 1902: 2002). The in vitro effect of PJ and PJ-ÇE fibers on wound healing was investigated on L929 fibroblast cells. It was shown by structural tests that durable PJ and PJ-ÇE fibers can be obtained by electrospinning technique. According to the results of the antibacterial study, PJ fibers were found to have high antibacterial activity on E. coli and low antibacterial activity on S. aureus. The antibacterial activity of PJ-ÇE fibers was found to be lower on E. coli and higher on S. aureus compared to PJ fibers. An increase in damage repair was observed in L929 fibroblast cells exposed to PJ-ÇE fibers. PJ-ÇE fibers were thought to be promising for use in the development of new composite wound dressings.

References

  • 1. Alkaya E. Farklı Tuzlardan Elde Edilen Hipokloröz Asitin Keratinosit Ve Fibroblast Hücrelerine Etkisi, Pamukkale Üniversitesi Sağlık Bilimleri Enstitüsü, https://hdl.handle.net/11499/45787 (erişim tarihi 30.05.2024).
  • 2. Anju S, Prajitha N, Sukanya VS, Mohanan PV. Complicity of degradable polymers in health-care applications. Mater Today Chem. 2020;16:100236. https://doi.org/10.1016/j.mtchem.2019.100236.
  • 3. Aras C. Çörek Otu Yağı Katkılı Nanokompozit Poliüretan Nanolifli Yüzey Uretimi, Karakterizasyonu ve Yara Ortüsü Olarak Kullanım Performansının Araştırılması, https://www.proquest.com/docview/2579336967. (erişim tarihi 12.04.2024).
  • 4. Balusamy B, Senthamizhan A, Uyar T. Electrospun Nanofibers for Wound Dressing and Tissue Engineering Applications. Hacettepe J Biol Chem. 2020;48(5):459-81. https://doi.org/10.15671/hjbc.789186.
  • 5. Bian YZ, Wang Y, Aibaidoula G, Chen GQ, Wu Q. Evaluation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) conduits for peripheral nerve regeneration. Biomaterials. 2009;30(2):217-25. https://doi.org/10.1016/j.bıomaterıals.2008.09.036.
  • 6. Boateng JS, Matthews KH, Stevens HNE, Eccleston GM. Wound Healing Dressings and Drug Delivery Systems: A Review. J Pharm Sci. 2008;97(8):2892-923. https://doi.org/10.1002/jps.21210.
  • 7. Cesur S. Gentamisin Yüklü Poli(Vi̇ni̇l Alkol)/Jelati̇n Nanofi̇berleri̇n Elektroeği̇rme Yöntemi̇yle Yara Örtüsü Malzemesi̇ Olarak Üreti̇lmesi̇. Konya J Eng Sci. 2022;10(4):878-88. https://doi.org/10.36306/konjes.1124919.
  • 8. Chapekar MS. Tissue Engineering: Challenges and Opportunities. J Biomed Mater Res -Part A. 2000;53(6):617-20. https://doi.org/10.1002/1097-4636.
  • 9. Chen G, Ushida T, Tateishi T. Scaffold Design for Tissue Engineering. Macromol Biosci. 2002;2(2):67-77. https://doi.org/10.1002/1616-5195.
  • 10. Cheng ML, Chen PY, Lan CH, Sun YM. Structure, mechanical properties and degradation behaviors of the electrospun fibrous blends of PHBHHx/PDLLA. Polymer (Guildf). 2011;52(6):1391-401. https://doi.org/10.1016/J.Polymer.2011.01.039.
  • 11. Çolpankan Güneş O. Production of antibacterial, biodegradable and biocompatible materials for tissue engineering applications. 2019. Doktora tezi. https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp
  • 12. Demirdogen RE, Kilic D, Emen FM, et al. Novel antibacterial cellulose acetate fibers modified with 2-fluoropyridine complexes. J Mol Struct. 2020;1204. https://doi.org/10.1016/j.molstruc.2019.127537.
  • 13. Demirdogen RE, Yeşilkaynak T, Tishakova T, Emen FM. Antıbacterıal Cellulose Acetate Mıcrofıbers Contaınıng Pyrıdıne Derıvatıve Complexes. 2021;15(2):217-25.
  • 14. Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS. Polymeric scaffolds in tissue engineering application: A review. Int J Polym Sci. 2011;2011. https://doi.org/10.1155/2011/290602.
  • 15. Doganci E, Doganci MD, Bulus GS, Bulus E. Ozon Yağı İçeren Nanoteknolojik Yara Örtüsü Üretimi ve Karakterizasyonu. Atatürk Üniversitesi Kim Derg. 2022;2(1):1-5.
  • 16. Eraslan K, Aversa C, Nofar M, et al. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH): Synthesis, properties, and applications -A review. Eur Polym J. 2022;167:111044. https://doi.org/10.1016/j.eurpolymj.2022.111044.
  • 17. Foulkes R, Man E, Thind J, Yeung S, Joy A, Hoskins C. The regulation of nanomaterials and nanomedicines for clinical application: current and future perspectives. Biomater Sci. 2020;8(17):4653-64. https://doi.org/10.1039/d0bm00558d.
  • 18. Hasan A, Morshed M, Memic A, Hassan S, Webster TJ, Marei HES. Nanoparticles in tissue engineering: Applications, challenges and prospects. Int J Nanomedicine. 2018;13:5637-55. https://doi.org/10.2147/ıjn.s153758.
  • 19. Hoque MS, Benjakul S, Prodpran T. Effects of partial hydrolysis and plasticizer content on the properties of film from cuttlefish (Sepia pharaonis) skin gelatin. Food Hydrocoll. 2011;25(1):82-90. https://doi.org/10.1016/J.Foodhyd.2010.05.008.
  • 20. Kamoun EA, Kenawy ERS, Chen X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res. 2017;8(3):217-33. https://doi.org/10.1016/j.jare.2017.01.005.
  • 21. Kim SH, Turnbull J, Guimond S. Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol. 2011;209(2):139-51. https://doi.org/10.1530/joe-10-0377.
  • 22. Kobolak J, Dinnyes A, Memic A, Khademhosseini A, Mobasheri A. Mesenchymal stem cells: Identification, phenotypic characterization, biological properties and potential for regenerative medicine through biomaterial micro-engineering of their niche. Methods. 2016;99:62-8. https://doi.org/10.1016/J.ymeth.2015.09.016.
  • 23. Kurtoğlu AH, Karataş A. Current Approaches To Wound Therapy: Modern Wound Dressings. Ankara Ecz Fak Derg J Fac Pharm. Ankara. 2009;38(3):211-32. https://doi.org/10.1501/Eczfak_0000000562.
  • 24. Kutlu E, Emen FM, Yıldırım K, et al. Novel thiourea derivatives against Mycobacterium tuberculosis : synthesis, characterization and molecular docking studies Novel thiourea derivatives against Mycobacterium tuberculosis : synthesis,. Phosphorus Sulfur Silicon Relat Elem. 2023;0(0):1-10. https://doi.org/10.1080/10426507.2023.2201503.
  • 25. Las Heras K, Igartua M, Santos-Vizcaino E, Hernandez RM. Chronic wounds: Current status, available strategies and emerging therapeutic solutions. J Control Release. 2020;328:532-50. https://doi.org/10.1016/j.jconrel.2020.09.039.
  • 26. Lazovic G, Colic M, Grubor M, Jovanovic M. The Application of Collagen Sheet in Open Wound Healing. Ann Burns Fire Disasters. 2005;18(3):151.
  • 27. Maaz Arif M, Khan SM, Gull N, Tabish TA, Zia S, Ullah Khan R, et al. Polymer-based biomaterials for chronic wound management: Promises and challenges. Int J Pharm. 2021;598:120270. https://doi.org/10.1016/j.ijpharm.2021.120270.
  • 28. Mir SH, Nagahara LA, Thundat T, Mokarian-Tabari P, Furukawa H, Khosla A. Review-Organic-Inorganic Hybrid Functional Materials: An Integrated Platform for Applied Technologies. J Electrochem Soc. 2018;165(8):B3137-56. https://doi.org/10.1149/2.0191808jes/xml.
  • 29. Pala N, Aral N, Nergis B. Sarı Kantaron Yağı Katkılı PVA Nanoliflerin Emülsiyon Elektroeğirme Yöntemi İle Üretimi. J Text Eng. 2022;29(128):267-71. https://doi.org/10.7216/teksmuh.1222500.
  • 30. Pancur S, Bi̇Lensoy E, Çaliş S. Use of Biodegradable Natural and Synthetic Polymers in Wound Dressing. Fabad J Pharm Sci. 2022;47(3):419-42. https://doi.org/10.55262/fabadeczacilik.1185870.
  • 31. Pinho E, Magalhães L, Henriques M, Oliveira R. Antimicrobial activity assessment of textiles: Standard methods comparison. Ann Microbiol. 2011;61(3):493-8. https://doi.org/10.1007/s13213-010-0163-8.
  • 32. Pinho E, Soares G, Henriques M, Grootveld M. Antibacterial activity of textiles for wound treatment. AATCC J Res. 2015;2(5):1-7. https://doi.org/10.14504/ajr.2.5.1.
  • 33. Pulingam T, Appaturi JN, Gayathiri M, Sudesh K. TiO2 loaded on glycidol functionalized poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) nanobiocomposite film for photocatalytic and antibacterial activities. Int J Biol Macromol. 2023;253(P6):127216.
  • 34. Qu XH, Wu Q, Liang J, Zou B, Chen GQ. Effect of 3-hydroxyhexanoate content in poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) on in vitro growth and differentiation of smooth muscle cells. Biomaterials. 2006;27(15):2944-50. https://doi.org/10.1016/j.bıomaterıals.2006.01.013.
  • 35. Sahithi K, Swetha M, Ramasamy K, Srinivasan N, Selvamurugan N. Polymeric composites containing carbon nanotubes for bone tissue engineering. Int J Biol Macromol. 2010;46(3):281-3. https://doi.org/10.1016/j.ıjbıomac.2010.01.006.
  • 36. Smith LA, Liu X, Ma PX. Tissue engineering with nano-fibrous scaffolds. Soft Matter. 2008;4(11):2144-9. https://doi.org/10.1039/B807088C.
  • 37. Su K, Wang C. Recent advances in the use of gelatin in biomedical research. Biotechnol Lett. 2015;37(11):2139-45. https://doi.org/10.1007/s10529-015-1907-0
  • 38. Summa M, Russo D, Penna I, al. A biocompatible sodium alginate/povidone iodine film enhances wound healing. Eur J Pharm Biopharm. 2018;122:17-24. https://doi.org/10.1016/j.ejpb.2017.10.004.
  • 39. Top N, Gokce H. Artificial Bone Scaffold Design in Tissue Engineering. Selçuk-Teknik Derg. 2019;18(1302-6178):3.
  • 40. Vasita R, Katti DS. Nanofibers and their applications in tissue engineering. Int J Nanomedicine. 2006;1(1):15-30. https://doi.org/10.2147/nano.2006.1.1.15.
  • 41. Wagner A, Poursorkhabi V, Mohanty AK, Misra M. Analysis of porous electrospun fibers from poly(l-lactic acid)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) blends. ACS Sustain Chem Eng. 2014;2(8):1976-82. https://doi.org/10.1021/sc5000495
  • 42. Wang P, Li Y, Zhang C, Feng F, Zhang H. Sequential electrospinning of multilayer ethylcellulose/gelatin/ethylcellulose nanofibrous film for sustained release of curcumin. Food Chem. 2020;308:125599. https://doi.org/10.1016/J.Foodchem.2019.125599.
  • 43. Wiegand C, Abel M, Ruth P, Elsner P, Hipler UC. In vitro assessment of the antimicrobial activity of wound dressings: influence of the test method selected and impact of the pH. J Mater Sci Mater Med. 2015;26(1):18. https://doi.org/10.1007/s10856-014-5343-9.
  • 44. Yeşilkaynak T, Özkömeç FN, Çeşme M, et al. Synthesis of new thiourea derivatives and metal complexes: Thermal behavior, biological evaluation, in silico ADMET profiling and molecular docking studies. J Mol Struct. 2022;1269:133758. https://doi.org/10.1016/j.molstruc.2022.133758
  • 45. Yırtmaz T. Kemik doku rejenerasyonu için Ballıbaba ekstraktı ile kaplanmış gümüş nanopartikül katkılı Kitosan/PCL nanofiber üretimi ve karakterizasyonu. https://www.proquest.com/docview/2787193124 (erişim tarihi 20.05.2024).
  • 46. Zheng Y, Liang Y, Zhang D, et al. Gelatin-Based Hydrogels Blended with Gellan as an Injectable Wound Dressing. ACS Omega. 2018;3(5):4766-75. https://doi.org/10.1021/acsomega.8b00308.
There are 46 citations in total.

Details

Primary Language Turkish
Subjects Clinical Microbiology, Clinical Sciences (Other)
Journal Section Research Articles
Authors

Emine Kutlu 0000-0003-0211-1006

Fatih Mehmet Emen 0000-0002-4974-2940

Naciye Erkan 0000-0001-9502-1696

Cansu Olguner 0000-0001-7744-9015

Ece Kutlu 0009-0004-7001-3517

Kumar Sudesh 0000-0003-4756-9192

Publication Date August 30, 2024
Submission Date April 29, 2024
Acceptance Date July 3, 2024
Published in Issue Year 2024 Volume: 38 Issue: 2

Cite

Vancouver Kutlu E, Emen FM, Erkan N, Olguner C, Kutlu E, Sudesh K. E VİTAMİNİ VE ÇÖREK OTU YAĞI İÇEREN POLİ-3-HİDROKSİBUTİRAT-KO-3- HİDROKSİHEKSAONAT-JELATİN MİKROFİBER TEKSTİL LİFLERİ: ANTİBAKTERİYEL ETKİNLİK VE YARA İYİLEŞMESİNE KATKI. ANKEM Derg. 2024;38(2):37-52.

88x31.png

This work is licensed under a https://creativecommons.org/licenses/by-nc-nd/4.0/ license.