Bu çalışmada farklı gluten kaynakları ile beslenen kuzuların dışkılarındaki total aerob, koliform ve C. perfringens sayısı üzerine etkisi ve klostridial aşılama sonrası meydana gelen IgG seviyelerindeki farklılıkların araştırılması amaçlanmıştır. Bu amaçla 24 adet dokuz aylık yaşta Mor Karaman cinsi erkek kuzu buğday gluteni, mısır gluteni ve kontrol olmak üzere üç gruba (her grupta 8 kuzu) ayrılmıştır. Protein kaynakları, mısır gluteni grubunda mısır gluteninden, buğday gluteni grubunda buğday gluteninden ve kontrol grubunda ise soya fasulyesi küspesinden karşılanmıştır. Hazırlanan rasyon içeriği ham protein (HP) %17 ve metabolik enerji (ME) 2700 kcal/kg olarak eşit şekilde oluşturulmuştur. Denemeye başlamadan önce ve 15 gün sonra olmak üzere iki kez klostridial infeksiyona karşı aşılama yapılmıştır. Deneme sonunda dışkı örnekleri toplanarak total aerobik bakteri, toplam koliform ve C. perfringens sayımı yapılmıştır. Aynı zamanda kuzulardan alınan kan serumlarında IgG seviyeleri ölçülmüştür. Yapılan analizlerde kullanılan protein kaynaklarının total bakteri, koliform ve C. perfiringens sayıları üzerine istatistiksel olarak önemli bir etkisinin olmadığı tespit edilmiştir (P>0.05). Serumda IgG seviyeleri yönünden gruplar arasında önemli bir fark bulunmamıştır (P>0.05). Sonuç olarak, bu çalışmada alınan örneklerde farklı protein kaynaklarının klostridial aşılama sonrası kuzuların IgG seviyelerine etki etmediği, buğday gluteninin total bakteri, koliform ve C. perfiringens sayıları üzerine azaltıcı eğiliminde olduğu görüldü. Ancak bu durumun daha açık bir şekilde ortaya konabilmesi için daha geniş örneklemin olduğu çalışmalara ihtiyaç duyulduğu düşünülmektedir.
Alp, M., & Kocabağlı, N. (2019). Aminoasitler ve bağışıklık. Turkiye Klinikleri Animal Nutrition and Nutritional Diseases-Special Topics, 1, 14-9.
Castellini, C., Proietti, P. C., Pedrazzoli, M., Dal Bosco, A., & Franciosini, M. P. (2006). Bacterial counts and characterization of intestinal flora in organic and conventional chickens. In Proceedings of the 12th European
Poultry Conference. Verona,Italy.
Castillo‐Lopez, E., Moats, J., Aluthge, N. D., Ramirez Ramirez, H. A., Christensen, D. A., Mutsvangwa, T., Penner, G. B., & Fernando, S. C. (2018). Effect of partially replacing a barley‐based concentrate with flaxseed‐based products on the rumen bacterial population of lactating Holstein dairy cows. Journal of Applied Microbiology, 124(1), 42-57. https://doi.org/10.1111/jam.13630
Cengiz, S., & Adıgüzel, M. C. (2020). Determination of virulence factors and antimicrobial resistance of E. coli isolated from calf diarrhea, part of eastern Turkey. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 67(4), 365
-371.
De Filippo, C., Cavalieri, D., Di Paola, M., Ramazzotti, M., Poullet, J. B., Massart, S., Collini, S., Pieraccini, G., & Lionetti, P. (2010). Impact of diet in shaping gut microbiota revealed by a comparative study in children from
Europe and rural Africa. Proceedings of the National Academy of Sciences, 107(33), 14691-14696. https://doi.org/10.1073/pnas.1005963107
Fernando, S. C., Purvis, H. T., Najar, F. Z., Sukharnikov, L. O., Krehbiel, C. R., Nagaraja, T. G., Roe, B.A., & Desilva, U. (2010). Rumen microbial population dynamics during adaptation to a high-grain diet. Applied and Environmental Microbiology, 76(22), 7482-7490. https://doi.org/10.1128/AEM.00388-10
Gabriel, I., Lessire, M., Mallet, S., & Guillot, J. F. (2006). Microflora of the digestive tract: critical factors and consequences for poultry. World's Poultry Science Journal, 62(3), 499-511.
Gümüş, R., Uslu, S., Aydoğdu, U., İmik, A., Ekici, M. (2021). Investigation of the effects of glutens on serum ınterleukin-1 beta and tumor necrosis factor-alpha levels and the ımmunohistochemical distribution of CD3 and CD8 receptors in the small intestine in male rats. Brazilian Archives of Biology and Technology, 64, 1-9.
Hördegen, P., Hertzberg, H., Heilmann, J., Langhans, W., & Maurer, V. (2003). The anthelmintic efficacy of five plant products against gastrointestinal trichostrongylids in artificially infected lambs. Veterinary
Parasitology, 117(1-2), 51-60. https://doi.org/10.1016/j.vetpar.2003.07.027
İmik, H., Aytaç, M., Coşkun, B., &Fidancı, H. (2000). Effects of E and C Vitamins on the Growth and immunity of the Angora Goat Kids Exposedto Stress. Turkish Journal of Veterinary & Animal Sciences. 24 (1),51-58.
Jeurissen, S. H., Lewis, F., van der Klis, J. D., Mroz, Z., Rebel, J. M., & Ter Huurne, A. A. (2002). Parameters and techniques to determine intestinal health of poultry as constituted by immunity, integrity, and functionality.
Current Issues in Intestinal Microbiology, 3(1), 1-14.,
Jha, R., & Mishra, P. (2021). Dietary fiber in poultry nutrition and their effects on nutrient utilization, performance, gut health, and on the environment: a review. Journal of Animal Science and Biotechnology, 12
(1), 1-16.
Jiang, X., Ma, G. M., Cui, Z. Q., Li, Y., & Zhang, Y. G. (2020). Effects of fermented corn gluten meal on growth performance, plasma metabolites, rumen fermentation and bacterial community of Holstein calves during
the pre-weaning period. Livestock Science, 231, 103866. https://doi.org/10.1016/j.livsci.2019.103866
Kiu, R., & Hall, L. J. (2018). An update on the human and animal enteric pathogen Clostridium perfringens. Emerging Microbes and Infections, 7 (1). https://doi.org/10.1038/s41426-018-0144-8
Klein-Jöbstl, D., Schornsteiner, E., Mann, E., Wagner, M., Drillich, M., & Schmitz-Esser, S. (2014). Pyrosequencing reveals diverse fecal microbiota in Simmental calves during early development. Frontiers in Microbiology, 5, 622. https://doi.org/10.3389/fmicb.2014.00622
Kogut, M. H., & Arsenault, R. J. (2016). Gut health: The new paradigm in food animal production. Frontiers in Veterinary Science, 3, 71. https://doi.org/10.3389/fvets.2016.00071
Lu, J., Idris, U., Harmon, B., Hofacre, C., Maurer, J. J., & Lee, M. D. (2003). Diversity and succession of the intestinal bacterial community of the maturing broiler chicken. Applied and Environmental Microbiology, 69
(11), 6816-6824.
Maslowski, K. M., & Mackay, C. R. (2011). Diet, gut microbiota and immune responses. Nature Immunology, 12(1), 5-9.
Mazmanian, S. K., Liu, C. H., Tzianabos, A. O., & Kasper, D. L. (2005). An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell, 122(1), 107-118. https://doi.org/10.1016/
j.cell.2005.05.007
McCann, J. C., Luan, S., Cardoso, F. C., Derakhshani, H., Khafipour, E., & Loor, J. J. (2016). Induction of subacute ruminal acidosis affects the ruminal microbiome and epithelium. Frontiers in Microbiology, 7, 701.
https://doi.org/10.3389/fmicb.2016.00701
Mengatto, C. M., Marchini, L., de Souza Bernardes, L. A., Gomes, S. C., Silva, A. M., & Rizzatti-Barbosa, C. M. (2015). Partial denture metal framework may harbor potentially pathogenic bacteria. The Journal of
Advanced Prosthodontics, 7(6), 468-474. DOI: https://doi.org/10.4047/jap.2015.7.6.46
Mohiuddin, M., Iqbal, Z., Siddique, A., Liao, S., Salamat, M. K. F., Qi, N., Din, A. M., & Sun, M. (2020). Prevalence, genotypic and phenotypic characterization and antibiotic resistance profile of Clostridium perfringens type A and D isolated from feces of sheep (Ovis aries) and goats (Capra hircus) in Punjab, Pakistan. Toxins, 12(10), 657. DOI: 10.3390/toxins12100657
Munday, J. S., Bentall, H., Aberdein, D., Navarro, M., Uzal, F. A., & Brown, S. (2020). Death of a neonatal lamb due to Clostridium perfringens type B in New Zealand. New Zealand Veterinary Journal, 68(4), 242–246. https://
doi.org/10.1080/00480169.2019.1706660
Pawaiya, R. S., Gururaj, K., Gangwar, N. K., Singh, D. D., Kumar, R., & Kumar, A. (2020). The Challenges of Diagnosis and Control of Enterotoxaemia Caused by Clostridium perfringens in Small Ruminants.
Advances in Microbiology, 10(5), 238-273. DOI: 10.4236/aim.2020.105019
Petri, R. M., Schwaiger, T., Penner, G. B., Beauchemin, K. A., Forster, R. J., McKinnon, J. J., & McAllister, T. A. (2013). Changes in the rumen epimural bacterial diversity of beef cattle as affected by diet and induced ruminal
acidosis. Applied and Environmental Microbiology, 79(12), 3744-3755.DOI: https://doi.org/10.1128/AEM.03983-12
Prescott, H. (2002). Laboratory exercises in microbiology. 5th ed. (pp. 117-124). Texas, Lab Exerc Microbiol.
Proietti, P. C., Castellini, C., Pedrazzoli, M., Dal Bosco, A., & Franciosini, M. P. (2006). Bacterial counts and characterization of intestinal flora in organic and conventional chickens. In Proceedings of the 12th European
Poultry Conference. Verona, Italy.
Raabis, S., Li, W., & Cersosimo, L. (2019). Effects and immune responses of probiotic treatment in ruminants. Veterinary Immunology and Immunopathology, 208, 58-66. https://doi.org/10.1016/j.vetimm.2018.12.006
Rice, W. C., Galyean, M. L., Cox, S. B., Dowd, S. E., & Cole, N. A. (2012). Influence of wet distillers grains diets on beef cattle fecal bacterial community structure. BMC Microbiology, 12(1), 1-13.
Torok, V. A., Hughes, R. J., Mikkelsen, L. L., Perez-Maldonado, R., Balding, K., MacAlpine, R., Percy, N. J., & Ophel-Keller, K. (2011). Identification and characterization of potential performance-related gut microbiotas in
broiler chickens across various feeding trials. Applied and Environmental Microbiology, 77(17), 5868–5878. https://doi.org/10.1128/AEM.00165-11
Uzal, F. A., & Songer, J. G. (2008). Diagnosis of Clostridium perfringens intestinal infections in sheep and goats. Journal of Veterinary Diagnostic Investigation, 20(3), 253-265. https://doi.org/10.1177/104063870802000301
Uzal, F. A., Navarro, M. A., Li, J., Freedman, J. C., Shrestha, A., & McClane, B. A. (2018). Comparative pathogenesis of enteric clostridial infections in humans and animals. Anaerobe, 53, 11–20. https://doi.org/10.1016/ j.anaerobe.2018.06.002
Wu, K., Feng, H., Ma, J., Wang, B., Feng, J., Zhang, H., Jiang, Y., Li, R., Wang, J., & Yang, Z. (2022). Prevalence, toxin-typing and antimicrobial susceptibility of Clostridium perfringens in sheep with different feeding
modes from Gansu and Qinghai provinces, China. Anaerobe, 73. https://doi.org/10.1016/j.anaerobe.2022.102516
Zebeli, Q., & Metzler-Zebeli, B. U. (2012). Interplay between rumen digestive disorders and diet-induced inflammation in dairy cattle. Research in Veterinary Science, 93(3), 1099-1108. https://doi.org/10.1016/
j.rvsc.2012.02.004
Zhu, Y., Lin, X., Zhao, F., Shi, X., Li, H., Li, Y., Zhu, W., Xu, X., Lu, C., & Zhou, G. (2015). Meat, dairy and plant proteins alter bacterial composition of rat gut bacteria. Scientific Reports, 5, 1–14. doi: 10.1038/srep15220
The Effect of Different Protein Sources on IgG Level and Intestinal Microbiology After Clostridial Vaccination in Fattening Lambs
In this study, it was aimed to investigate the effects of total aerobe, coliform and C. perfringens counts in the feces of lambs fed with different gluten sources and to investigate the differences in IgG levels after clostridial vaccination. For this purpose, 24 nine-month-old male Mor Karaman lambs were divided into three groups (8 lambs in each group) as wheat gluten, corn gluten and control. Protein sources were obtained from corn gluten in the corn gluten group, wheat gluten in the wheat gluten group and soybean meal in the control group. The prepared ration content was formed equally as crude protein (HP) 17% and metabolic energy (ME) 2700 kcal/kg. Vaccination against clostridial infection was administered twice, before and 15 days after the start of the trial. At the end of the experiment, stool samples were collected and total aerobic bacteria, total coliform and C. perfringens counts were made. At the same time, IgG levels were measured in blood serum from lambs. It was determined that the protein sources used in the analyzes did not have a statistically significant effect on the total bacteria, coliform and C. perfiringens counts (P>0.05). There was no significant difference between the groups in terms of serum IgG levels (P>0.05). In conclusion, in the samples taken in this study, it was observed that different protein sources did not affect the IgG levels of lambs after clostridial vaccination, and wheat gluten tended to decrease the total bacteria, coliform and C. perfiringens counts. However, it is thought that studies with a larger sample are needed to reveal this situation more clearly.
Alp, M., & Kocabağlı, N. (2019). Aminoasitler ve bağışıklık. Turkiye Klinikleri Animal Nutrition and Nutritional Diseases-Special Topics, 1, 14-9.
Castellini, C., Proietti, P. C., Pedrazzoli, M., Dal Bosco, A., & Franciosini, M. P. (2006). Bacterial counts and characterization of intestinal flora in organic and conventional chickens. In Proceedings of the 12th European
Poultry Conference. Verona,Italy.
Castillo‐Lopez, E., Moats, J., Aluthge, N. D., Ramirez Ramirez, H. A., Christensen, D. A., Mutsvangwa, T., Penner, G. B., & Fernando, S. C. (2018). Effect of partially replacing a barley‐based concentrate with flaxseed‐based products on the rumen bacterial population of lactating Holstein dairy cows. Journal of Applied Microbiology, 124(1), 42-57. https://doi.org/10.1111/jam.13630
Cengiz, S., & Adıgüzel, M. C. (2020). Determination of virulence factors and antimicrobial resistance of E. coli isolated from calf diarrhea, part of eastern Turkey. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 67(4), 365
-371.
De Filippo, C., Cavalieri, D., Di Paola, M., Ramazzotti, M., Poullet, J. B., Massart, S., Collini, S., Pieraccini, G., & Lionetti, P. (2010). Impact of diet in shaping gut microbiota revealed by a comparative study in children from
Europe and rural Africa. Proceedings of the National Academy of Sciences, 107(33), 14691-14696. https://doi.org/10.1073/pnas.1005963107
Fernando, S. C., Purvis, H. T., Najar, F. Z., Sukharnikov, L. O., Krehbiel, C. R., Nagaraja, T. G., Roe, B.A., & Desilva, U. (2010). Rumen microbial population dynamics during adaptation to a high-grain diet. Applied and Environmental Microbiology, 76(22), 7482-7490. https://doi.org/10.1128/AEM.00388-10
Gabriel, I., Lessire, M., Mallet, S., & Guillot, J. F. (2006). Microflora of the digestive tract: critical factors and consequences for poultry. World's Poultry Science Journal, 62(3), 499-511.
Gümüş, R., Uslu, S., Aydoğdu, U., İmik, A., Ekici, M. (2021). Investigation of the effects of glutens on serum ınterleukin-1 beta and tumor necrosis factor-alpha levels and the ımmunohistochemical distribution of CD3 and CD8 receptors in the small intestine in male rats. Brazilian Archives of Biology and Technology, 64, 1-9.
Hördegen, P., Hertzberg, H., Heilmann, J., Langhans, W., & Maurer, V. (2003). The anthelmintic efficacy of five plant products against gastrointestinal trichostrongylids in artificially infected lambs. Veterinary
Parasitology, 117(1-2), 51-60. https://doi.org/10.1016/j.vetpar.2003.07.027
İmik, H., Aytaç, M., Coşkun, B., &Fidancı, H. (2000). Effects of E and C Vitamins on the Growth and immunity of the Angora Goat Kids Exposedto Stress. Turkish Journal of Veterinary & Animal Sciences. 24 (1),51-58.
Jeurissen, S. H., Lewis, F., van der Klis, J. D., Mroz, Z., Rebel, J. M., & Ter Huurne, A. A. (2002). Parameters and techniques to determine intestinal health of poultry as constituted by immunity, integrity, and functionality.
Current Issues in Intestinal Microbiology, 3(1), 1-14.,
Jha, R., & Mishra, P. (2021). Dietary fiber in poultry nutrition and their effects on nutrient utilization, performance, gut health, and on the environment: a review. Journal of Animal Science and Biotechnology, 12
(1), 1-16.
Jiang, X., Ma, G. M., Cui, Z. Q., Li, Y., & Zhang, Y. G. (2020). Effects of fermented corn gluten meal on growth performance, plasma metabolites, rumen fermentation and bacterial community of Holstein calves during
the pre-weaning period. Livestock Science, 231, 103866. https://doi.org/10.1016/j.livsci.2019.103866
Kiu, R., & Hall, L. J. (2018). An update on the human and animal enteric pathogen Clostridium perfringens. Emerging Microbes and Infections, 7 (1). https://doi.org/10.1038/s41426-018-0144-8
Klein-Jöbstl, D., Schornsteiner, E., Mann, E., Wagner, M., Drillich, M., & Schmitz-Esser, S. (2014). Pyrosequencing reveals diverse fecal microbiota in Simmental calves during early development. Frontiers in Microbiology, 5, 622. https://doi.org/10.3389/fmicb.2014.00622
Kogut, M. H., & Arsenault, R. J. (2016). Gut health: The new paradigm in food animal production. Frontiers in Veterinary Science, 3, 71. https://doi.org/10.3389/fvets.2016.00071
Lu, J., Idris, U., Harmon, B., Hofacre, C., Maurer, J. J., & Lee, M. D. (2003). Diversity and succession of the intestinal bacterial community of the maturing broiler chicken. Applied and Environmental Microbiology, 69
(11), 6816-6824.
Maslowski, K. M., & Mackay, C. R. (2011). Diet, gut microbiota and immune responses. Nature Immunology, 12(1), 5-9.
Mazmanian, S. K., Liu, C. H., Tzianabos, A. O., & Kasper, D. L. (2005). An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell, 122(1), 107-118. https://doi.org/10.1016/
j.cell.2005.05.007
McCann, J. C., Luan, S., Cardoso, F. C., Derakhshani, H., Khafipour, E., & Loor, J. J. (2016). Induction of subacute ruminal acidosis affects the ruminal microbiome and epithelium. Frontiers in Microbiology, 7, 701.
https://doi.org/10.3389/fmicb.2016.00701
Mengatto, C. M., Marchini, L., de Souza Bernardes, L. A., Gomes, S. C., Silva, A. M., & Rizzatti-Barbosa, C. M. (2015). Partial denture metal framework may harbor potentially pathogenic bacteria. The Journal of
Advanced Prosthodontics, 7(6), 468-474. DOI: https://doi.org/10.4047/jap.2015.7.6.46
Mohiuddin, M., Iqbal, Z., Siddique, A., Liao, S., Salamat, M. K. F., Qi, N., Din, A. M., & Sun, M. (2020). Prevalence, genotypic and phenotypic characterization and antibiotic resistance profile of Clostridium perfringens type A and D isolated from feces of sheep (Ovis aries) and goats (Capra hircus) in Punjab, Pakistan. Toxins, 12(10), 657. DOI: 10.3390/toxins12100657
Munday, J. S., Bentall, H., Aberdein, D., Navarro, M., Uzal, F. A., & Brown, S. (2020). Death of a neonatal lamb due to Clostridium perfringens type B in New Zealand. New Zealand Veterinary Journal, 68(4), 242–246. https://
doi.org/10.1080/00480169.2019.1706660
Pawaiya, R. S., Gururaj, K., Gangwar, N. K., Singh, D. D., Kumar, R., & Kumar, A. (2020). The Challenges of Diagnosis and Control of Enterotoxaemia Caused by Clostridium perfringens in Small Ruminants.
Advances in Microbiology, 10(5), 238-273. DOI: 10.4236/aim.2020.105019
Petri, R. M., Schwaiger, T., Penner, G. B., Beauchemin, K. A., Forster, R. J., McKinnon, J. J., & McAllister, T. A. (2013). Changes in the rumen epimural bacterial diversity of beef cattle as affected by diet and induced ruminal
acidosis. Applied and Environmental Microbiology, 79(12), 3744-3755.DOI: https://doi.org/10.1128/AEM.03983-12
Prescott, H. (2002). Laboratory exercises in microbiology. 5th ed. (pp. 117-124). Texas, Lab Exerc Microbiol.
Proietti, P. C., Castellini, C., Pedrazzoli, M., Dal Bosco, A., & Franciosini, M. P. (2006). Bacterial counts and characterization of intestinal flora in organic and conventional chickens. In Proceedings of the 12th European
Poultry Conference. Verona, Italy.
Raabis, S., Li, W., & Cersosimo, L. (2019). Effects and immune responses of probiotic treatment in ruminants. Veterinary Immunology and Immunopathology, 208, 58-66. https://doi.org/10.1016/j.vetimm.2018.12.006
Rice, W. C., Galyean, M. L., Cox, S. B., Dowd, S. E., & Cole, N. A. (2012). Influence of wet distillers grains diets on beef cattle fecal bacterial community structure. BMC Microbiology, 12(1), 1-13.
Torok, V. A., Hughes, R. J., Mikkelsen, L. L., Perez-Maldonado, R., Balding, K., MacAlpine, R., Percy, N. J., & Ophel-Keller, K. (2011). Identification and characterization of potential performance-related gut microbiotas in
broiler chickens across various feeding trials. Applied and Environmental Microbiology, 77(17), 5868–5878. https://doi.org/10.1128/AEM.00165-11
Uzal, F. A., & Songer, J. G. (2008). Diagnosis of Clostridium perfringens intestinal infections in sheep and goats. Journal of Veterinary Diagnostic Investigation, 20(3), 253-265. https://doi.org/10.1177/104063870802000301
Uzal, F. A., Navarro, M. A., Li, J., Freedman, J. C., Shrestha, A., & McClane, B. A. (2018). Comparative pathogenesis of enteric clostridial infections in humans and animals. Anaerobe, 53, 11–20. https://doi.org/10.1016/ j.anaerobe.2018.06.002
Wu, K., Feng, H., Ma, J., Wang, B., Feng, J., Zhang, H., Jiang, Y., Li, R., Wang, J., & Yang, Z. (2022). Prevalence, toxin-typing and antimicrobial susceptibility of Clostridium perfringens in sheep with different feeding
modes from Gansu and Qinghai provinces, China. Anaerobe, 73. https://doi.org/10.1016/j.anaerobe.2022.102516
Zebeli, Q., & Metzler-Zebeli, B. U. (2012). Interplay between rumen digestive disorders and diet-induced inflammation in dairy cattle. Research in Veterinary Science, 93(3), 1099-1108. https://doi.org/10.1016/
j.rvsc.2012.02.004
Zhu, Y., Lin, X., Zhao, F., Shi, X., Li, H., Li, Y., Zhu, W., Xu, X., Lu, C., & Zhou, G. (2015). Meat, dairy and plant proteins alter bacterial composition of rat gut bacteria. Scientific Reports, 5, 1–14. doi: 10.1038/srep15220
Uysal, S., Öz, C., Can, M. B., Aytek, E., et al. (2023). Besi Kuzularında Farklı Protein Kaynaklarının Klostridial Aşılama Sonrası IgG Seviyesi ve Bağırsak Mikrobiyolojisi Üzerine Etkisi. Antakya Veteriner Bilimleri Dergisi, 2(1), 1-7.