Review
BibTex RIS Cite

Genetic, Epigenetic and Environmental Factors Affecting Tooth Morphology

Year 2024, Issue: 48, 36 - 43, 30.06.2024
https://doi.org/10.33613/antropolojidergisi.1468265

Abstract

Tooth morpholog y is determined predominantly by genetic factors. For this reason, teeth are frequently used in anthropological studies as they provide information on important issues including the geographical region to which individuals and populations belong, kinship relations, similarities and differences between populations. In this article, genetic, epigenetic and environmental factors that cause dental variations are discussed. Additionally, embryological development of teeth, twin studies, and genome-wide association studies were mentioned. These studies point out that tooth variations are largely genetic in origin, but environmental and epigenetic factors exposed during embryological development also affect tooth morpholog y. More genetic studies are needed to determine the factors contributing to tooth morpholog y.

References

  • Eriksson, N., Macpherson, J. M., Tung, J. Y., Hon, L. S., Naughton, B., Saxonov, S., Avey, L., Wojcicki, A., Pe’er, I., ve Mountain, J. (2010) Web-based, Participant-Driven Studies Yield Novel Genetic Associations for Common Traits. PLoS Genetics, 6, e1000993. https://doi.org/10.1371/journal.pgen.1000993
  • Hughes, T. E., ve Townsend, G. C. (2013). Twin and family studies of human dental crown morphology: genetic, epigenetic, and environmental determinants of the modern human dentition. G. R. Scott ve J. D. Irish (Ed.) içinde, Anthropological Perspectives on Tooth Morphology: Genetics, Evolution, Variation (s. 31–68). Cambridge University Press.
  • Hughes, T., Townsend, G., ve Bockmann, M. (2015). An overview of Dental Genetics. J. D. Irish ve G. R. Scott (Ed.) içinde, A companion to Dental Anthropology (s. 123-141). Wiley Blackwell.
  • Hlusko, L.J., Carlson, J.P., Chaplin, G., Elias, S.A., Hoffecker, J.F., Huffman, M., Jablonski, N.G., Monson, T.A., O’Rourke, D.H., Pilloud, M.A., ve Scott, G.R. (2018). Environmental selection during the last ice age on the mother-to-infant transmission of vitamin D and fatty acids through breast milk. Proceedings of the National Academy of Sciences, 115(19), E4426-E4432. https://doi.org/10.1073/pnas.1711788115
  • Jernvall, J., ve Thesleff, I. (2000). Reiterative signaling and patterning during mammalian tooth morphogenesis. Mechanisms of Development, 92(1), s.19–29. https://doi.org/10.1016/S0925-4773(99)00322-6
  • Jernvall, J. ve Thesleff, I. (2012). Tooth shape formation and tooth renewal: evolving with the same signals. Development, 139(19), s.3487-3497. https://doi.org/10.1242/dev.085084
  • Jussila, M. and Thesleff, I. (2012). Signaling Networks Regulating Tooth Organogenesis and Regeneration, and the Specification of Dental Mesenchymal and Epithelial Cell Llineages. Cold Spring Harb Perspect Biol 2012;4:a008425. doi: 10.1101/cshperspect.a008425
  • Kamberov, Y.G., Wang, S., Tan, J., Gerbault, P., Wark, A., Tan, L., Yang, Y., Li, S., Tang, K., Chen, H., ve Powell, A. (2013). Modeling recent human evolution in mice by expression of a selected EDAR variant. Cell, 152(4), 691-702. https://doi.org/10.1016/j.cell.2013.01.016
  • Kimura, R., Yamaguchi, T., Takeda, M., Kondo, O., Toma, T., Haneji, K., Hanihara, T., Matsukusa, H., Kawamura, S., Maki, K. and Osawa, M., Ishida, H., ve Oota, H. (2009). A Common Variation in EDAR Is a Genetic Determinant of Shovel-Shaped Incisors. The American Journal of Human Genetics, 85:528–535. https://doi.org/10.1016/j.ajhg.2009.09.006
  • Kimura, R., Watanabe, C., Kawaguchi, A., Kim, Y.I., Park, S.B., Maki, K., Ishida, H., ve Yamaguchi, T. (2015). Common polymorphisms in WNT10A affect tooth morphology as well as hair shape. Human Molecular Genetics, 24(9), 2673-2680. https://doi.org/10.1093/hmg/ddv014
  • Klein, O.D., Oberoi, S., Huysseune, A., Hovorakova, M., Peterka, M., ve Peterkova, R. (2013). Developmental disorders of the dentition: An update. American Journal of Medical Genetics Part C (Seminars in Medical Genetics) 163C, 318–332. https://doi.org/10.1002/ajmg.c.31382
  • Lan, Y., Jia, S., ve Jiang, R. (2014). Molecular patterning of the mammalian dentition. Seminars in Cell & Developmental Biology (Vol. 25, s. 61-70). Academic Press. https://doi.org/10.1016/j.semcdb.2013.12.003
  • Lin, Y., Zheng, L., Fan, L., Kuang, W., Guo, R., Lin, J., Wu, J., ve Tan, J. (2018). The Epigenetic Regulation in Tooth Development and Regeneration. Current Stem Cell Research & Therapy, 13, 4-15. https://doi.org/10.2174/1574888X11666161129142525
  • Liu, F., Wollstein, A., Hysi, P. G., Ankra-Badu, G. A., Spector, T. D., Park, D., Zhu, G., Larsson, M., Duffy, D. L., Montgomery, G. W., Mackey, D.A., Walsh, S., Lao, O., Hofman, A., Rivadeneira, F., Vingerling, J. R., Uitterlinden, A. G., Martin, N. G., Hammond, C. J., ve Kayser, M. (2010). Digital quantification of human eye color highlights genetic association of three new loci. PLoS genetics, 6(5), e1000934. https://doi.org/10.1371/journal.pgen.1000934
  • Malik, Z., Alexiou, M., Hallgrimsson, B., Economides, A.N., Luder, H.U., ve Graf, D. (2018). Bone Morphogenetic Protein 2 Coordinates Early Tooth Mineralization. Journal of Dental Research, Vol. 97(7), 835-843. https://doi.org/10.1177/0022034518758044
  • Medland, S. E., Nyholt, D. R., Painter, J.N., McEvoy, B.P., McRae, A.F., Zhu, G., Gordon, S.D., Ferreira, M.A., Wright, M.J., Henders, A.K. et al. (2009) Common variants in the trichohyalin gene are associated with straight hair in Europeans. Am. J. Hum. Genet., 85, 750–755. https://doi.org/10.1016/j.ajhg.2009.10.009
  • Mikkola, M. L. (2009). Molecular aspects of hypohidrotic ectodermal dysplasia. Am J Med Genet Part A 149A:2031–2036. https://doi.org/10.1002/ajmg.a.32855
  • Miletich, I. and Sharpe, P.T., 2003. Normal and abnormal dental development. Human molecular genetics, 12(suppl_1), R69-R73. https://doi.org/10.1093/hmg/ddg085
  • Pantalacci, S., Guéguen, L., Petit, C., Lambert, A., Peterkova, R., ve Sémon, M. (2017). Transcriptomic signatures shaped by cell proportions shed light on comparative developmental biology. Genome Biology, 18:29. https://doi.org/10.1186/s13059-017-1157-7
  • Park, J. H., Yamaguchi, T., Watanabe, C., Kawaguchi, A., Haneji, K., Takeda, M., Kim, Y. I., Tomoyasu, Y., Watanabe, M., Oota, H., Hanihara, T., Ishida, H., Maki, K., Park, S. B., ve Kimura, R. (2012). Effects of an Asian-specific nonsynonymous EDAR variant on multiple dental traits. Journal of Human Genetics, 57, s.508-514. https://doi.org/10.1038/jhg.2012.60
  • Peterkova, R., Hovorakova, M., Peterka, M. and Lesot, H. (2014). Three‐dimensional analysis of the early development of the dentition. Australian Dental Journal, 59 (1 Suppl), 55-80. https://doi.org/10.1111/adj.12130
  • Pillas, D., Hoggart, C.J., Evans, D.M., O'Reilly, P.F., Sipilä, K., Lähdesmäki, R., Millwood, I.Y., Kaakinen, M., Netuveli, G., Blane, D., ve Charoen, P. (2010). Genome-wide association study reveals multiple loci associated with primary tooth development during infancy. PLoS genetics, 6(2). https://doi.org/10.1371/journal.pgen.1000856
  • Riga, A., Belcastro, M.G., ve Moggi-Cecchi, J. (2013). Environmental influence on dental morphology. arXiv preprint arXiv:1301.7334. https://doi.org/10.48550/arXiv.1301.7334
  • Scott, G. R., Schmitz, K., Heim, K. N., Paul, K. S., Schomberg, R., & Pilloud, M. A. (2018a). Sinodonty, Sundadonty, and the Beringian Standstill model: Issues of timing and migrations into the New World. Quaternary International, 466, 233– 246. https://doi.org/10.1016/j.quaint.2016.04.027
  • Scott, G. R., Turner II, C. G., Townsend, G. C., ve Martinón-Torres, M. (2018b). The Anthropology of Modern Human Teeth: Dental Morphology and its Variation in Recent and Fossil Homo sapiens (2nd ed.). Cambridge University Press.
  • Tan, J., Peng, Q., Li, J., Guan, Y., Zhang, L., Jiao, Y., Yang, Y., Wang, S., ve Jin, L. (2014). Characteristics of dental morphology in the Xinjiang Uyghurs and correlation with the EDARV370A variant. Science China Life Sciences, 57(5), s.510-518. https://doi.org/10.1007/s11427-014-4654-x
  • Thesleff, I. (2006). The genetic basis of tooth development and dental defects. American Journal of Medical Genetics, 140(23), 2530–2535. https://doi.org/10.1002/ajmg.a.31360
  • Thesleff, I. (2014). Current understanding of the process of tooth formation: transfer from the laboratory to the clinic. Australian Dental Journal, 59:(1 Suppl): 48–54. https://doi.org/10.1111/adj.12102
  • Townsend, G. C., Richards, L., Hughes, T., Pinkerton, S., ve Schwerdt, W. (2005). Epigenetic influences may explain dental differences in monozygotic twin pairs. Australian Dental Journal, 50(2), s.95-100. https://doi.org/10.1111/j.1834-7819.2005.tb00347.x
  • Townsend, G., Hughes, T., Luciano, M., Bockmann, M., ve Brook, A. (2009). Genetic and environmental influences on human dental variation: a critical evaluation of studies involving twins. Archives of Oral Biology, 54, s.S45-S51. https://doi.org/10.1016/j.archoralbio.2008.06.009
  • Townsend, G. C., Pinkerton, S. K., Rogers, J. R., Bockmann, M. R., ve Hughes, T. E. (2015). Twin studies: research in genes, teeth and faces. University of Adelaide Press.
  • Townsend, G., Bockmann, M., Hughes, T., ve Brook, A. (2012). Genetic, environmental and epigenetic influences on variation in human tooth number, size and shape. Odontology, 100(1), s.1-9. https://doi.org/10.1007/s10266-011-0052-z
  • Tucker, A. ve Sharpe, P. (2004). The cutting-edge of mammalian development; how the embryo makes teeth. Nature Reviews Genetics, 5(7), 499-508. https://doi.org/10.1038/nrg1380
  • Turner II, C. G., Nichol, C. R., ve Scott, G. R. (1991). Scoring procedures for key morphological traits of the permanent dentition: The Arizona State University dental Anthropology system. Advances in Dental Anthropology, 13-31.
  • Vohr, S.H., ve Green, R.E. (2013). A Mouse Following in the Footsteps of Human Prehistory. Cell, 152(4), s.667-668. https://doi.org/10.1016/j.cell.2013.01.039
  • Wood, A. R., Esko, T., Yang, J., Vedantam, S., Pers, T. H., Gustafsson, S., Audrey, Y. C., Estrada, K., Luan, J., Kutalik, Z., Amin, N., Buchkovich, M. L., Croteau-Chonka, D. C., Day, F. R., Duan, Y., Fall, T., Fehrmann, R., Ferreira, T., Jackson, A. U., ... ve Frayling, T. M. (2014). Defining the role of common variation in the genomic and biological architecture of adult human height. Nature genetics, 46(11), 1173-1186. https://doi.org/10.1038/ng.3097

Diş morfolojisini etkileyen genetik, epigenetik ve çevresel faktörler

Year 2024, Issue: 48, 36 - 43, 30.06.2024
https://doi.org/10.33613/antropolojidergisi.1468265

Abstract

Diş morfolojisi ağırlıklı olarak genetik faktörler tarafından belirlenir. Bu sebeple dişler, bireylerin ve popülasyonların ait olduğu coğrafi bölge, akrabalık ilişkileri, popülasyonlar arası benzerlik ve farklılıklar gibi önemli konularda bilgiler vermesi bakımından antropolojik çalışmalarda sıklıkla kullanılmaktadır. Bu makalede, diş varyasyonlarına sebep olan genetik, epigenetik ve çevresel faktörlere değinilmiştir. Ayrıca, dişlerin embriyolojik gelişimi, ikiz çalışmaları, genom çapında ilişkilendirme çalışmalarından bahsedilmiştir. Bu çalışmalar diş varyasyonlarının büyük ölçüde genetik kökenli olduğunu, ancak, embriyolojik gelişim döneminde maruz kalınan çevresel ve epigenetik faktörlerin de diş morfolojisine etki ettiğine dikkat çekmiştir. Diş morfolojisine katkı sağlayan faktörlerin belirlenmesine yönelik daha çok genetik çalışmaya ihtiyaç vardır.

References

  • Eriksson, N., Macpherson, J. M., Tung, J. Y., Hon, L. S., Naughton, B., Saxonov, S., Avey, L., Wojcicki, A., Pe’er, I., ve Mountain, J. (2010) Web-based, Participant-Driven Studies Yield Novel Genetic Associations for Common Traits. PLoS Genetics, 6, e1000993. https://doi.org/10.1371/journal.pgen.1000993
  • Hughes, T. E., ve Townsend, G. C. (2013). Twin and family studies of human dental crown morphology: genetic, epigenetic, and environmental determinants of the modern human dentition. G. R. Scott ve J. D. Irish (Ed.) içinde, Anthropological Perspectives on Tooth Morphology: Genetics, Evolution, Variation (s. 31–68). Cambridge University Press.
  • Hughes, T., Townsend, G., ve Bockmann, M. (2015). An overview of Dental Genetics. J. D. Irish ve G. R. Scott (Ed.) içinde, A companion to Dental Anthropology (s. 123-141). Wiley Blackwell.
  • Hlusko, L.J., Carlson, J.P., Chaplin, G., Elias, S.A., Hoffecker, J.F., Huffman, M., Jablonski, N.G., Monson, T.A., O’Rourke, D.H., Pilloud, M.A., ve Scott, G.R. (2018). Environmental selection during the last ice age on the mother-to-infant transmission of vitamin D and fatty acids through breast milk. Proceedings of the National Academy of Sciences, 115(19), E4426-E4432. https://doi.org/10.1073/pnas.1711788115
  • Jernvall, J., ve Thesleff, I. (2000). Reiterative signaling and patterning during mammalian tooth morphogenesis. Mechanisms of Development, 92(1), s.19–29. https://doi.org/10.1016/S0925-4773(99)00322-6
  • Jernvall, J. ve Thesleff, I. (2012). Tooth shape formation and tooth renewal: evolving with the same signals. Development, 139(19), s.3487-3497. https://doi.org/10.1242/dev.085084
  • Jussila, M. and Thesleff, I. (2012). Signaling Networks Regulating Tooth Organogenesis and Regeneration, and the Specification of Dental Mesenchymal and Epithelial Cell Llineages. Cold Spring Harb Perspect Biol 2012;4:a008425. doi: 10.1101/cshperspect.a008425
  • Kamberov, Y.G., Wang, S., Tan, J., Gerbault, P., Wark, A., Tan, L., Yang, Y., Li, S., Tang, K., Chen, H., ve Powell, A. (2013). Modeling recent human evolution in mice by expression of a selected EDAR variant. Cell, 152(4), 691-702. https://doi.org/10.1016/j.cell.2013.01.016
  • Kimura, R., Yamaguchi, T., Takeda, M., Kondo, O., Toma, T., Haneji, K., Hanihara, T., Matsukusa, H., Kawamura, S., Maki, K. and Osawa, M., Ishida, H., ve Oota, H. (2009). A Common Variation in EDAR Is a Genetic Determinant of Shovel-Shaped Incisors. The American Journal of Human Genetics, 85:528–535. https://doi.org/10.1016/j.ajhg.2009.09.006
  • Kimura, R., Watanabe, C., Kawaguchi, A., Kim, Y.I., Park, S.B., Maki, K., Ishida, H., ve Yamaguchi, T. (2015). Common polymorphisms in WNT10A affect tooth morphology as well as hair shape. Human Molecular Genetics, 24(9), 2673-2680. https://doi.org/10.1093/hmg/ddv014
  • Klein, O.D., Oberoi, S., Huysseune, A., Hovorakova, M., Peterka, M., ve Peterkova, R. (2013). Developmental disorders of the dentition: An update. American Journal of Medical Genetics Part C (Seminars in Medical Genetics) 163C, 318–332. https://doi.org/10.1002/ajmg.c.31382
  • Lan, Y., Jia, S., ve Jiang, R. (2014). Molecular patterning of the mammalian dentition. Seminars in Cell & Developmental Biology (Vol. 25, s. 61-70). Academic Press. https://doi.org/10.1016/j.semcdb.2013.12.003
  • Lin, Y., Zheng, L., Fan, L., Kuang, W., Guo, R., Lin, J., Wu, J., ve Tan, J. (2018). The Epigenetic Regulation in Tooth Development and Regeneration. Current Stem Cell Research & Therapy, 13, 4-15. https://doi.org/10.2174/1574888X11666161129142525
  • Liu, F., Wollstein, A., Hysi, P. G., Ankra-Badu, G. A., Spector, T. D., Park, D., Zhu, G., Larsson, M., Duffy, D. L., Montgomery, G. W., Mackey, D.A., Walsh, S., Lao, O., Hofman, A., Rivadeneira, F., Vingerling, J. R., Uitterlinden, A. G., Martin, N. G., Hammond, C. J., ve Kayser, M. (2010). Digital quantification of human eye color highlights genetic association of three new loci. PLoS genetics, 6(5), e1000934. https://doi.org/10.1371/journal.pgen.1000934
  • Malik, Z., Alexiou, M., Hallgrimsson, B., Economides, A.N., Luder, H.U., ve Graf, D. (2018). Bone Morphogenetic Protein 2 Coordinates Early Tooth Mineralization. Journal of Dental Research, Vol. 97(7), 835-843. https://doi.org/10.1177/0022034518758044
  • Medland, S. E., Nyholt, D. R., Painter, J.N., McEvoy, B.P., McRae, A.F., Zhu, G., Gordon, S.D., Ferreira, M.A., Wright, M.J., Henders, A.K. et al. (2009) Common variants in the trichohyalin gene are associated with straight hair in Europeans. Am. J. Hum. Genet., 85, 750–755. https://doi.org/10.1016/j.ajhg.2009.10.009
  • Mikkola, M. L. (2009). Molecular aspects of hypohidrotic ectodermal dysplasia. Am J Med Genet Part A 149A:2031–2036. https://doi.org/10.1002/ajmg.a.32855
  • Miletich, I. and Sharpe, P.T., 2003. Normal and abnormal dental development. Human molecular genetics, 12(suppl_1), R69-R73. https://doi.org/10.1093/hmg/ddg085
  • Pantalacci, S., Guéguen, L., Petit, C., Lambert, A., Peterkova, R., ve Sémon, M. (2017). Transcriptomic signatures shaped by cell proportions shed light on comparative developmental biology. Genome Biology, 18:29. https://doi.org/10.1186/s13059-017-1157-7
  • Park, J. H., Yamaguchi, T., Watanabe, C., Kawaguchi, A., Haneji, K., Takeda, M., Kim, Y. I., Tomoyasu, Y., Watanabe, M., Oota, H., Hanihara, T., Ishida, H., Maki, K., Park, S. B., ve Kimura, R. (2012). Effects of an Asian-specific nonsynonymous EDAR variant on multiple dental traits. Journal of Human Genetics, 57, s.508-514. https://doi.org/10.1038/jhg.2012.60
  • Peterkova, R., Hovorakova, M., Peterka, M. and Lesot, H. (2014). Three‐dimensional analysis of the early development of the dentition. Australian Dental Journal, 59 (1 Suppl), 55-80. https://doi.org/10.1111/adj.12130
  • Pillas, D., Hoggart, C.J., Evans, D.M., O'Reilly, P.F., Sipilä, K., Lähdesmäki, R., Millwood, I.Y., Kaakinen, M., Netuveli, G., Blane, D., ve Charoen, P. (2010). Genome-wide association study reveals multiple loci associated with primary tooth development during infancy. PLoS genetics, 6(2). https://doi.org/10.1371/journal.pgen.1000856
  • Riga, A., Belcastro, M.G., ve Moggi-Cecchi, J. (2013). Environmental influence on dental morphology. arXiv preprint arXiv:1301.7334. https://doi.org/10.48550/arXiv.1301.7334
  • Scott, G. R., Schmitz, K., Heim, K. N., Paul, K. S., Schomberg, R., & Pilloud, M. A. (2018a). Sinodonty, Sundadonty, and the Beringian Standstill model: Issues of timing and migrations into the New World. Quaternary International, 466, 233– 246. https://doi.org/10.1016/j.quaint.2016.04.027
  • Scott, G. R., Turner II, C. G., Townsend, G. C., ve Martinón-Torres, M. (2018b). The Anthropology of Modern Human Teeth: Dental Morphology and its Variation in Recent and Fossil Homo sapiens (2nd ed.). Cambridge University Press.
  • Tan, J., Peng, Q., Li, J., Guan, Y., Zhang, L., Jiao, Y., Yang, Y., Wang, S., ve Jin, L. (2014). Characteristics of dental morphology in the Xinjiang Uyghurs and correlation with the EDARV370A variant. Science China Life Sciences, 57(5), s.510-518. https://doi.org/10.1007/s11427-014-4654-x
  • Thesleff, I. (2006). The genetic basis of tooth development and dental defects. American Journal of Medical Genetics, 140(23), 2530–2535. https://doi.org/10.1002/ajmg.a.31360
  • Thesleff, I. (2014). Current understanding of the process of tooth formation: transfer from the laboratory to the clinic. Australian Dental Journal, 59:(1 Suppl): 48–54. https://doi.org/10.1111/adj.12102
  • Townsend, G. C., Richards, L., Hughes, T., Pinkerton, S., ve Schwerdt, W. (2005). Epigenetic influences may explain dental differences in monozygotic twin pairs. Australian Dental Journal, 50(2), s.95-100. https://doi.org/10.1111/j.1834-7819.2005.tb00347.x
  • Townsend, G., Hughes, T., Luciano, M., Bockmann, M., ve Brook, A. (2009). Genetic and environmental influences on human dental variation: a critical evaluation of studies involving twins. Archives of Oral Biology, 54, s.S45-S51. https://doi.org/10.1016/j.archoralbio.2008.06.009
  • Townsend, G. C., Pinkerton, S. K., Rogers, J. R., Bockmann, M. R., ve Hughes, T. E. (2015). Twin studies: research in genes, teeth and faces. University of Adelaide Press.
  • Townsend, G., Bockmann, M., Hughes, T., ve Brook, A. (2012). Genetic, environmental and epigenetic influences on variation in human tooth number, size and shape. Odontology, 100(1), s.1-9. https://doi.org/10.1007/s10266-011-0052-z
  • Tucker, A. ve Sharpe, P. (2004). The cutting-edge of mammalian development; how the embryo makes teeth. Nature Reviews Genetics, 5(7), 499-508. https://doi.org/10.1038/nrg1380
  • Turner II, C. G., Nichol, C. R., ve Scott, G. R. (1991). Scoring procedures for key morphological traits of the permanent dentition: The Arizona State University dental Anthropology system. Advances in Dental Anthropology, 13-31.
  • Vohr, S.H., ve Green, R.E. (2013). A Mouse Following in the Footsteps of Human Prehistory. Cell, 152(4), s.667-668. https://doi.org/10.1016/j.cell.2013.01.039
  • Wood, A. R., Esko, T., Yang, J., Vedantam, S., Pers, T. H., Gustafsson, S., Audrey, Y. C., Estrada, K., Luan, J., Kutalik, Z., Amin, N., Buchkovich, M. L., Croteau-Chonka, D. C., Day, F. R., Duan, Y., Fall, T., Fehrmann, R., Ferreira, T., Jackson, A. U., ... ve Frayling, T. M. (2014). Defining the role of common variation in the genomic and biological architecture of adult human height. Nature genetics, 46(11), 1173-1186. https://doi.org/10.1038/ng.3097
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Anthropological Genetics, Biological Anthropology
Journal Section Review Articles
Authors

Fatma Nur Erbil 0000-0002-6302-8698

Publication Date June 30, 2024
Submission Date April 15, 2024
Acceptance Date June 11, 2024
Published in Issue Year 2024 Issue: 48

Cite

APA Erbil, F. N. (2024). Diş morfolojisini etkileyen genetik, epigenetik ve çevresel faktörler. Antropoloji(48), 36-43. https://doi.org/10.33613/antropolojidergisi.1468265

by-nc.eu.png

All the published contents in Antropoloji are licensed under Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). That means the published contents can be used elsewhere by giving appropriate credits, references and a link to the license. Users should also indicate if any changes to the original work have been made. Moreover, users cannot use the original and/or derived material for any commercial purposes. Briefly, the author(s) and reader(s) can reproduce and/or spread the published and/or electronic content in Antropoloji, without any commercial purposes. Nevertheless, this does not necessarily mean that Antropoloji will endorse you or your work as the licensor.
Budapest Open Access Initiative