Research Article
BibTex RIS Cite

Bivariate Drought Frequency Analysis based on Copula Theory for Osmaniye Region

Year 2021, Volume: 9 Issue: 3, 388 - 396, 30.09.2021
https://doi.org/10.21541/apjes.728959

Abstract

References

  • [1] Kao, S. C., & Govindaraju, R. S. A copula-based joint deficit index for droughts. Journal of Hydrology, 380(1-2), 121-134, 2010
  • [2] Heim Jr, R. R. A review of twentieth-century drought indices used in the United States. Bulletin of the American Meteorological Society, 83(8), 1149-1166, 2002
  • [3] Sheffield, J., Wood, E. F., & Roderick, M. L. Little change in global drought over the past 60 years. Nature, 491(7424), 435-438, 2012
  • [4] McKee, T. B., Doesken, N. J., & Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology (Vol. 17, No. 22, pp. 179-183), January 1993
  • [5] Below, R., Grover-Kopec, E., & Dilley, M. Documenting drought-related disasters: A global reassessment. The Journal of Environment & Development, 16(3), 328-344, 2007
  • [6] Wilhite, D. A. Drought as a natural hazard: concepts and definitions, 2000
  • [7] Shiau, J. T., Feng, S., & Nadarajah, S. Assessment of hydrological droughts for the Yellow River, China, using copulas. Hydrological Processes: An International Journal, 21(16), 2157-2163, 2007
  • [8] Mishra, A. K., & Singh, V. P. A review of drought concepts. Journal of hydrology, 391(1-2), 202-216, 2010
  • [9] Kogan, F. N. Droughts of the late 1980s in the United States as derived from NOAA polar-orbiting satellite data. Bulletin of the American Meteorological Society, 76(5), 655-668, 1995
  • [10] Guttman, N. B. Accepting the standardized precipitation index: a calculation algorithm 1. JAWRA Journal of the American Water Resources Association, 35(2), 311-322, 1999
  • [11] Guttman, N. B. Comparing the palmer drought index and the standardized precipitation index 1. JAWRA Journal of the American Water Resources Association, 34(1), 113-121, 1998
  • [12] Ray, K. S., & Shewale, M. P. Probability of occurrence of drought in various sub-divisions of India. Mausam, 52(3), 541-546, 2001
  • [13] Efstathiou, M. N., & Varotsos, C. A. Intrinsic properties of Sahel precipitation anomalies and rainfall. Theoretical and applied climatology, 109(3-4), 627-633, 2012
  • [14] McKee, T. B. Drought monitoring with multiple time scales. In Proceedings of 9th Conference on Applied Climatology, Boston, 1995, 1995
  • [15] Eris, E., Aksoy, H., Onoz, B., Cetin, M., Yuce, M. I., Selek, B., ... & Karakus, E. U. Frequency analysis of low flows in intermittent and non-intermittent rivers from hydrological basins in Turkey. Water Supply, 19(1), 30-39, 2019
  • [16] Du, J., Fang, J., Xu, W., & Shi, P. Analysis of dry/wet conditions using the standardized precipitation index and its potential usefulness for drought/flood monitoring in Hunan Province, China. Stochastic environmental research and risk assessment, 27(2), 377-387, 2013
  • [17] Çetin, M., Aksoy, H., Önöz, B., Eriş, E., İshak, M., Yüce, B. S., ... & Orta, S. Deriving Accumulated Precipitation Deficits from Drought Severity-Duration-Frequency Curves: A Case Study in Adana Province, Turkey. SCIENTIFIC COMMITTEE-BİLİM KURULU, 39, 2018
  • [18] Aksoy, H., Onoz, B., Cetin, M., Yuce, M. I., Eris, E., Selek, B., ... & Cavus, Y. SPI-based drought severity-duration-frequency analysis. In Proceedings of the 13th International Congress on Advances in Civil Engineering, Izmır, Turkey (pp. 12-14), September 2018
  • [19] Tsakiris, G., Kordalis, N., Tigkas, D., Tsakiris, V., & Vangelis, H. Analysing drought severity and areal extent by 2D Archimedean copulas. Water Resources Management, 30(15), 5723-5735, 2016
  • [20] Shiau, J. T. Fitting drought duration and severity with two-dimensional copulas. Water resources management, 20(5), 795-815, 2006
  • [21] Cancelliere, A., & Salas, J. D. Drought length properties for periodic‐stochastic hydrologic data. Water resources research, 40(2), 2004
  • [22] Song, S., & Singh, V. P. Frequency analysis of droughts using the Plackett copula and parameter estimation by genetic algorithm. Stochastic Environmental Research and Risk Assessment, 24(5), 783-805, 2010
  • [23] Salvadori, G., De Michele, C., Kottegoda, N. T., & Rosso, R. Extremes in nature: an approach using copulas (Vol. 56). Springer Science & Business Media, 2007
  • [24] Kuhn, G., Khan, S., Ganguly, A. R., & Branstetter, M. L. Geospatial–temporal dependence among weekly precipitation extremes with applications to observations and climate model simulations in South America. Advances in Water Resources, 30(12), 2401-2423, 2007
  • [25] Nelsen, R. B. An introduction to copulas. Springer Science & Business Media, 2007
  • [26] Mirakbari, M., Ganji, A., & Fallah, S. R. Regional bivariate frequency analysis of meteorological droughts. Journal of Hydrologic Engineering, 15(12), 985-1000, 2010
  • [27] Tosunoglu, F., & Can, I. Application of copulas for regional bivariate frequency analysis of meteorological droughts in Turkey. Natural Hazards, 82(3), 1457-1477, 2016
  • [28] Mirabbasi, R., Fakheri-Fard, A., & Dinpashoh, Y. Bivariate drought frequency analysis using the copula method. Theoretical and Applied Climatology, 108(1-2), 191-206, 2012
  • [29] Shiau, J. T., & Modarres, R. Copula‐based drought severity‐duration‐frequency analysis in Iran. Meteorological Applications: A journal of forecasting, practical applications, training techniques and modelling, 16(4), 481-489, 2009
  • [30] Lee, T., Modarres, R., & Ouarda, T. B. Data‐based analysis of bivariate copula tail dependence for drought duration and severity. Hydrological Processes, 27(10), 1454-1463, 2013
  • [31] Yusof, F., Hui-Mean, F., Suhaila, J., & Yusof, Z. Characterization of drought properties with bivariate copula analysis. Water resources management, 27(12), 4183-4207, 2013
  • [32] Sklar, A., SKLAR, A., & Sklar, C. A. Fonctions de reprtition an dimensions et leursmarges, 1959
  • [33] Salvadori, G., & De Michele, C. Frequency analysis via copulas: Theoretical aspects and applications to hydrological events. Water resources research, 40(12), 2004
  • [34] Poulin, A., Huard, D., Favre, A. C., & Pugin, S. Importance of tail dependence in bivariate frequency analysis. Journal of Hydrologic Engineering, 12(4), 394-403, 2007

Kopula Yöntemi ile Osmaniye Bölgesinin İki Değişkenli Kuraklık Frekans Analizi

Year 2021, Volume: 9 Issue: 3, 388 - 396, 30.09.2021
https://doi.org/10.21541/apjes.728959

Abstract

Çok değişkenli frekans dağılımları, hidrolojik tasarım ve risk yönetimi için giderek daha fazla önem kazanmaktadır. Geleneksel çok değişkenli dağılımlar, tüm bileşen marjinallerinin aynı dağılım ailesinden olması gerektiği için ciddi şekilde sınırlamalara sahiptir. Kopula yöntemi, bu sınırlamanın üstesinden gelen çok değişkenli dağılımların türetilmesi için yeni ortaya çıkan bir yaklaşımdır. Bu çalışmada, Osmaniye ilinin yağış istasyonu uzun dönem veriler ile kuraklık analizi kopula fonksiyonu kullanılarak hesaplanmıştır. İlk olarak, kuraklık parametreleri olan kuraklık süresi ve şiddeti SPI metodu kullanılarak elde edilmiştir. Gözlemlenen kuraklık süresi için Lognormal, kuraklık şiddeti için ise Weibull en uygun marjinal dağılım olarak bulunmuştur. Her bir kuraklık parametresi için tek değişkenli dağılım fonksiyonu elde edildikten sonra, Gumbel kopulası belirlenen 10 kopula fonksiyonu arasında Akaike Bilgi Kriteri (AIC), Bayes Bilgi Kriteri (BIC), Maksimum olabilirlik (MLE) yöntemleri ve kuyruk bağımlılığı da dikkate alınarak seçilmiştir. En son olarak Osmaniye ili kuraklık ortak dönüş periyodu hesaplanmış olup, muhtemel yapılması düşünülen su temini sistemi, hidrolik tasarım ve su yönetimi gibi konularda yararlı bilgiler sağlamaktadır.

References

  • [1] Kao, S. C., & Govindaraju, R. S. A copula-based joint deficit index for droughts. Journal of Hydrology, 380(1-2), 121-134, 2010
  • [2] Heim Jr, R. R. A review of twentieth-century drought indices used in the United States. Bulletin of the American Meteorological Society, 83(8), 1149-1166, 2002
  • [3] Sheffield, J., Wood, E. F., & Roderick, M. L. Little change in global drought over the past 60 years. Nature, 491(7424), 435-438, 2012
  • [4] McKee, T. B., Doesken, N. J., & Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology (Vol. 17, No. 22, pp. 179-183), January 1993
  • [5] Below, R., Grover-Kopec, E., & Dilley, M. Documenting drought-related disasters: A global reassessment. The Journal of Environment & Development, 16(3), 328-344, 2007
  • [6] Wilhite, D. A. Drought as a natural hazard: concepts and definitions, 2000
  • [7] Shiau, J. T., Feng, S., & Nadarajah, S. Assessment of hydrological droughts for the Yellow River, China, using copulas. Hydrological Processes: An International Journal, 21(16), 2157-2163, 2007
  • [8] Mishra, A. K., & Singh, V. P. A review of drought concepts. Journal of hydrology, 391(1-2), 202-216, 2010
  • [9] Kogan, F. N. Droughts of the late 1980s in the United States as derived from NOAA polar-orbiting satellite data. Bulletin of the American Meteorological Society, 76(5), 655-668, 1995
  • [10] Guttman, N. B. Accepting the standardized precipitation index: a calculation algorithm 1. JAWRA Journal of the American Water Resources Association, 35(2), 311-322, 1999
  • [11] Guttman, N. B. Comparing the palmer drought index and the standardized precipitation index 1. JAWRA Journal of the American Water Resources Association, 34(1), 113-121, 1998
  • [12] Ray, K. S., & Shewale, M. P. Probability of occurrence of drought in various sub-divisions of India. Mausam, 52(3), 541-546, 2001
  • [13] Efstathiou, M. N., & Varotsos, C. A. Intrinsic properties of Sahel precipitation anomalies and rainfall. Theoretical and applied climatology, 109(3-4), 627-633, 2012
  • [14] McKee, T. B. Drought monitoring with multiple time scales. In Proceedings of 9th Conference on Applied Climatology, Boston, 1995, 1995
  • [15] Eris, E., Aksoy, H., Onoz, B., Cetin, M., Yuce, M. I., Selek, B., ... & Karakus, E. U. Frequency analysis of low flows in intermittent and non-intermittent rivers from hydrological basins in Turkey. Water Supply, 19(1), 30-39, 2019
  • [16] Du, J., Fang, J., Xu, W., & Shi, P. Analysis of dry/wet conditions using the standardized precipitation index and its potential usefulness for drought/flood monitoring in Hunan Province, China. Stochastic environmental research and risk assessment, 27(2), 377-387, 2013
  • [17] Çetin, M., Aksoy, H., Önöz, B., Eriş, E., İshak, M., Yüce, B. S., ... & Orta, S. Deriving Accumulated Precipitation Deficits from Drought Severity-Duration-Frequency Curves: A Case Study in Adana Province, Turkey. SCIENTIFIC COMMITTEE-BİLİM KURULU, 39, 2018
  • [18] Aksoy, H., Onoz, B., Cetin, M., Yuce, M. I., Eris, E., Selek, B., ... & Cavus, Y. SPI-based drought severity-duration-frequency analysis. In Proceedings of the 13th International Congress on Advances in Civil Engineering, Izmır, Turkey (pp. 12-14), September 2018
  • [19] Tsakiris, G., Kordalis, N., Tigkas, D., Tsakiris, V., & Vangelis, H. Analysing drought severity and areal extent by 2D Archimedean copulas. Water Resources Management, 30(15), 5723-5735, 2016
  • [20] Shiau, J. T. Fitting drought duration and severity with two-dimensional copulas. Water resources management, 20(5), 795-815, 2006
  • [21] Cancelliere, A., & Salas, J. D. Drought length properties for periodic‐stochastic hydrologic data. Water resources research, 40(2), 2004
  • [22] Song, S., & Singh, V. P. Frequency analysis of droughts using the Plackett copula and parameter estimation by genetic algorithm. Stochastic Environmental Research and Risk Assessment, 24(5), 783-805, 2010
  • [23] Salvadori, G., De Michele, C., Kottegoda, N. T., & Rosso, R. Extremes in nature: an approach using copulas (Vol. 56). Springer Science & Business Media, 2007
  • [24] Kuhn, G., Khan, S., Ganguly, A. R., & Branstetter, M. L. Geospatial–temporal dependence among weekly precipitation extremes with applications to observations and climate model simulations in South America. Advances in Water Resources, 30(12), 2401-2423, 2007
  • [25] Nelsen, R. B. An introduction to copulas. Springer Science & Business Media, 2007
  • [26] Mirakbari, M., Ganji, A., & Fallah, S. R. Regional bivariate frequency analysis of meteorological droughts. Journal of Hydrologic Engineering, 15(12), 985-1000, 2010
  • [27] Tosunoglu, F., & Can, I. Application of copulas for regional bivariate frequency analysis of meteorological droughts in Turkey. Natural Hazards, 82(3), 1457-1477, 2016
  • [28] Mirabbasi, R., Fakheri-Fard, A., & Dinpashoh, Y. Bivariate drought frequency analysis using the copula method. Theoretical and Applied Climatology, 108(1-2), 191-206, 2012
  • [29] Shiau, J. T., & Modarres, R. Copula‐based drought severity‐duration‐frequency analysis in Iran. Meteorological Applications: A journal of forecasting, practical applications, training techniques and modelling, 16(4), 481-489, 2009
  • [30] Lee, T., Modarres, R., & Ouarda, T. B. Data‐based analysis of bivariate copula tail dependence for drought duration and severity. Hydrological Processes, 27(10), 1454-1463, 2013
  • [31] Yusof, F., Hui-Mean, F., Suhaila, J., & Yusof, Z. Characterization of drought properties with bivariate copula analysis. Water resources management, 27(12), 4183-4207, 2013
  • [32] Sklar, A., SKLAR, A., & Sklar, C. A. Fonctions de reprtition an dimensions et leursmarges, 1959
  • [33] Salvadori, G., & De Michele, C. Frequency analysis via copulas: Theoretical aspects and applications to hydrological events. Water resources research, 40(12), 2004
  • [34] Poulin, A., Huard, D., Favre, A. C., & Pugin, S. Importance of tail dependence in bivariate frequency analysis. Journal of Hydrologic Engineering, 12(4), 394-403, 2007
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Musa Eşit 0000-0003-4509-7283

Mehmet Yüce This is me 0000-0002-6267-9528

Publication Date September 30, 2021
Submission Date April 29, 2020
Published in Issue Year 2021 Volume: 9 Issue: 3

Cite

IEEE M. Eşit and M. Yüce, “Kopula Yöntemi ile Osmaniye Bölgesinin İki Değişkenli Kuraklık Frekans Analizi”, APJES, vol. 9, no. 3, pp. 388–396, 2021, doi: 10.21541/apjes.728959.