Research Article
BibTex RIS Cite

Effect of quantum barrier height on the linear and nonlinear optical properties of GaAs/AlGaAs Quantum Well

Year 2022, Volume: 1 Issue: 1, 27 - 30, 30.07.2022

Abstract

In this paper, we have considered the electronic and optical properties of GaAs/AlxGa1-xAs quantum well for different quantum barrier heights (QB). Under effective mass approximation, the finite element method is used to simulate wavefunctions and corresponding energy eigenvalues for two different quantum barrier heights in the absence of external fields. We have shown that except for the ground state, the first and second excited energy states have shifted up with increased QB heights which results in slight blue shifts in transition energies. It is shown that QB heights have no effect on the refractive index change of the (1-2) transition but the refractive index change of the (2-3) transition is decreasing with higher QB heights. In addition, it is seen that QB has a negligible effect on in absorption properties of both (1-2) and (2-3) transition but the intensity of the (2-3) transition is 2.5 times higher than (1-2) transition that makes (2-3) transition more suitable for any device application to have more efficient devices.

References

  • Alaydin, B. O. (2020). "Effect of high bandgap AlAs quantum barrier on electronic and optical properties of In0.70Ga0.30As/Al0.60In0.40As superlattice under applied electric field for laser and detector applications." International Journal of Modern Physics B 35(02): 2150027.
  • Alaydin, B. O., E. Ozturk and S. Elagoz (2017). "Interband transitions dependent on indium concentration in Ga1−xInxAs/GaAs asymmetric triple quantum wells." International Journal of Modern Physics B 32(05): 1850052.
  • Baser, P., I. Altuntas, S. J. S. Elagoz and Microstructures (2016). "The hydrostatic pressure and temperature effects on hydrogenic impurity binding energies in GaAs/InxGa1-xAs/GaAs square quantum well." 92: 210-216.
  • Durmuslar, A. S., C. A. Billur, A. Turkoglu and F. Ungan (2021). "Optical properties of a GaAs quantum well with new type of hyperbolic confinement potential: Effect of structure parameters and intense laser field." Optics Communications 499: 127266.
  • Hanna, S., D. Eich, K. M. Mahlein, W. Fick, W. Schirmacher, R. Thöt, J. Wendler and H. Figgemeier (2016). "MCT-Based LWIR and VLWIR 2D Focal Plane Detector Arrays for Low Dark Current Applications at AIM." Journal of Electronic Materials 45(9): 4542-4551.
  • Harrer, A., B. Schwarz, S. Schuler, P. Reininger, A. Wirthmüller, H. Detz, D. MacFarland, T. Zederbauer, A. M. Andrews, M. Rothermund, H. Oppermann, W. Schrenk and G. Strasser (2016). "4.3 μm quantum cascade detector in pixel configuration." Optics Express 24(15): 17041-17049.
  • Jiang, M., H. Y. Xiao, S. M. Peng, G. X. Yang, Z. J. Liu and X. T. Zu (2018). "A comparative study of low energy radiation response of AlAs, GaAs and GaAs/AlAs superlattice and the damage effects on their electronic structures." Scientific Reports 8(1): 2012.
  • Karabulut, I. (2010). "Laser field effect on the nonlinear optical properties of a square quantum well under the applied electric field." Applied Surface Science 256(24): 7570-7574.
  • Karabulut, İ., Ü. Atav, H. Şafak and M. Tomak (2007). "Second harmonic generation in an asymmetric rectangular quantum well under hydrostatic pressure." Physica B: Condensed Matter 393(1): 133-138.
  • Karki, H. D., S. Elagoz and P. Baser (2011). "The high hydrostatic pressure effect on shallow donor binding energies in GaAs–(Ga, Al)As cylindrical quantum well wires at selected temperatures." Physica B: Condensed Matter 406(11): 2116-2120.
  • Ozturk, E. (2017). "Depending on the electric and magnetic field of the linear optical absorption and rectification coefficient in triple quantum well." Optical and Quantum Electronics 49(8): 270.
  • Vitiello, M. S., G. Scalari, B. Williams and P. De Natale (2015). "Quantum cascade lasers: 20 years of challenges." Optics Express 23(4): 5167-5182.
  • Wang, F., S. Slivken and M. Razeghi (2021). "High-brightness LWIR quantum cascade lasers." Optics Letters 46(20): 5193-5196.
  • Yıldırım, H. and M. Tomak (2005). "Nonlinear optical properties of a Poschl-Teller quantum well." Physical Review B 72(11): 115340.

Effect of quantum barrier height on the linear and nonlinear optical properties of GaAs/AlGaAs Quantum Well

Year 2022, Volume: 1 Issue: 1, 27 - 30, 30.07.2022

Abstract

In this paper, we have considered the electronic and optical properties of GaAs/AlxGa1-xAs quantum well for different quantum barrier heights (QB). Under effective mass approximation, the finite element method is used to simulate wavefunctions and corresponding energy eigenvalues for two different quantum barrier heights in the absence of external fields. We have shown that except for the ground state, the first and second excited energy states have shifted up with increased QB heights which results in slight blue shifts in transition energies. It is shown that QB heights have no effect on the refractive index change of the (1-2) transition but the refractive index change of the (2-3) transition is decreasing with higher QB heights. In addition, it is seen that QB has a negligible effect on in absorption properties of both (1-2) and (2-3) transition but the intensity of the (2-3) transition is 2.5 times higher than (1-2) transition that makes (2-3) transition more suitable for any device application to have more efficient devices.

References

  • Alaydin, B. O. (2020). "Effect of high bandgap AlAs quantum barrier on electronic and optical properties of In0.70Ga0.30As/Al0.60In0.40As superlattice under applied electric field for laser and detector applications." International Journal of Modern Physics B 35(02): 2150027.
  • Alaydin, B. O., E. Ozturk and S. Elagoz (2017). "Interband transitions dependent on indium concentration in Ga1−xInxAs/GaAs asymmetric triple quantum wells." International Journal of Modern Physics B 32(05): 1850052.
  • Baser, P., I. Altuntas, S. J. S. Elagoz and Microstructures (2016). "The hydrostatic pressure and temperature effects on hydrogenic impurity binding energies in GaAs/InxGa1-xAs/GaAs square quantum well." 92: 210-216.
  • Durmuslar, A. S., C. A. Billur, A. Turkoglu and F. Ungan (2021). "Optical properties of a GaAs quantum well with new type of hyperbolic confinement potential: Effect of structure parameters and intense laser field." Optics Communications 499: 127266.
  • Hanna, S., D. Eich, K. M. Mahlein, W. Fick, W. Schirmacher, R. Thöt, J. Wendler and H. Figgemeier (2016). "MCT-Based LWIR and VLWIR 2D Focal Plane Detector Arrays for Low Dark Current Applications at AIM." Journal of Electronic Materials 45(9): 4542-4551.
  • Harrer, A., B. Schwarz, S. Schuler, P. Reininger, A. Wirthmüller, H. Detz, D. MacFarland, T. Zederbauer, A. M. Andrews, M. Rothermund, H. Oppermann, W. Schrenk and G. Strasser (2016). "4.3 μm quantum cascade detector in pixel configuration." Optics Express 24(15): 17041-17049.
  • Jiang, M., H. Y. Xiao, S. M. Peng, G. X. Yang, Z. J. Liu and X. T. Zu (2018). "A comparative study of low energy radiation response of AlAs, GaAs and GaAs/AlAs superlattice and the damage effects on their electronic structures." Scientific Reports 8(1): 2012.
  • Karabulut, I. (2010). "Laser field effect on the nonlinear optical properties of a square quantum well under the applied electric field." Applied Surface Science 256(24): 7570-7574.
  • Karabulut, İ., Ü. Atav, H. Şafak and M. Tomak (2007). "Second harmonic generation in an asymmetric rectangular quantum well under hydrostatic pressure." Physica B: Condensed Matter 393(1): 133-138.
  • Karki, H. D., S. Elagoz and P. Baser (2011). "The high hydrostatic pressure effect on shallow donor binding energies in GaAs–(Ga, Al)As cylindrical quantum well wires at selected temperatures." Physica B: Condensed Matter 406(11): 2116-2120.
  • Ozturk, E. (2017). "Depending on the electric and magnetic field of the linear optical absorption and rectification coefficient in triple quantum well." Optical and Quantum Electronics 49(8): 270.
  • Vitiello, M. S., G. Scalari, B. Williams and P. De Natale (2015). "Quantum cascade lasers: 20 years of challenges." Optics Express 23(4): 5167-5182.
  • Wang, F., S. Slivken and M. Razeghi (2021). "High-brightness LWIR quantum cascade lasers." Optics Letters 46(20): 5193-5196.
  • Yıldırım, H. and M. Tomak (2005). "Nonlinear optical properties of a Poschl-Teller quantum well." Physical Review B 72(11): 115340.
There are 14 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Didem Altun 0000-0002-1964-3538

Kenan Altun 0000-0001-7419-1901

Behçet Özgür Alaydin 0000-0003-0935-4836

Publication Date July 30, 2022
Published in Issue Year 2022 Volume: 1 Issue: 1

Cite

APA Altun, D., Altun, K., & Alaydin, B. Ö. (2022). Effect of quantum barrier height on the linear and nonlinear optical properties of GaAs/AlGaAs Quantum Well. Teknik Meslek Yüksekokulları Akademik Araştırma Dergisi, 1(1), 27-30.

ISSN: 2822-5880



Bu ürün Creative Commons Attribution 4.0 tarafından lisanslanmıştır.

Türk Akademik Sosyal Bilimler Araştırma Dergisi (TURAJAS) aşağıda verilen Alan Endeksleri tarafından taranmaktadır;