Research Article
BibTex RIS Cite

İçme Suyu Arıtma Çamuruna Çinkonun Adsorpsiyonu

Year 2022, Volume: 1 Issue: 1, 22 - 26, 30.07.2022

Abstract

Bu çalışmada, Sivas içme suyu arıtma çamuru kullanılarak çinko (Zn+2) iyonunun giderimi amaçlanmıştır. Çalışmada optimum koşullar belirlenerek; proseslere ait denge, pH ve sorbent miktarı ve metal konsantrasyonu gibi parametrelerin farklı durumlarda etkileri incelenmiştir. Zn+2 iyonlarının içme suyu arıma çamuru ile adsorpsiyonunda, optimum başlangıç pH’sı 5.0, dengeye süresi 60 dk., sorbent dozu 0,3 g/L ve başlangıç iyon derişimi 25 mg/L olarak belirlendi. Sorbent miktarı 0,1 g/L iken giderim verimi %73,2 ve qe 18,3 mg/g olarak gerçekleşti. 0,5 g/L sorbent için % 90,8, 4,54 mg/g ve 1 g/L sorbent için %92,4 ve 2,31 mg/g olarak hesaplandı. Zn +2 5 mg/L konsantrasyonunda giderim verimi %1,53 ve qe 92 mg/g olarak gerçekleşti. 50 mg/L Zn+2 konsantrasyonunda ise giderim verimi %70 ve qe 11,67 mg/g olarak hesaplandı. Çalışmada içme suyu arıtma çamurunun sulu çözeltiden Zn+2 iyonlarının uzaklaştırılması için umut verici bir adsorbent olarak kullanılabileceği kanıtlanmıştır.

References

  • 1. Abbas A. Al-Amer AM. Laoui T. Al-Marri MJ. Nasser MS. Khraisheh M. Atieh MA. 2016. Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications, Separation and Purification Technology, 157: 141-161.
  • 2. Anitha T. Senthil Kumar P. Sathish Kumar K. Sriram K. Feroze Ahmed J. 2016. Biosorption of Lead(II) İons Onto Nano-Sized Chitosan Particle Blended Polyvinyl Alcohol (PVA): Adsorption İsotherms, Kinetics, and Equilibrium Studies, Desalination and Water Treatment, 57:13711–13721.
  • 3. Çokadar H, İleri R, Ateş A, İzgi B. 1999. Bakır (II) İyonunun Sulu Ortamdan Granül Aktif Karbon İle Giderilmesi, Arıtım Dünyası, 13: 77-83.
  • 4. Dessouki HA. Ibrahiem SS. 2011. Removal OF Zn(II), Cd(II), and Mn(II) From Aqueous Solutıons By Adsorptıon On Maıze Stalks, The Malaysian Journal of Analytical Sciences, 15(1): 8-21. 5. Gürbüz MG. 2006. Bakır(II) ve Nikel(II) İyonlarının Enteromorpha prolifera’ ya Biyosorpsiyonunda Denge, Kinetik ve Termodinamik Parametrelerin Belirlenmesi, Yüksek Lisans Tezi, Mersin Üniversitesi Fen Bilimleri Enstitüsü Kimya Mühendisliği ABD, ss.149, Mersin, Türkiye.
  • 6. Hebbar RS. Isloor AM. Ananda K. and Ismail AF. 2015. Fabrication of polydopamine functionalized halloysite nanotube/polyetherimide membranes for heavy metal removal, J. Mater. Chem. A. 4: 764-774.
  • 7. Huang Y. Wu D. Wang X. Huang W. Lawless D. and Feng X. 2016. Removal of heavy metals from water using polyvinyl amine by polymer-enhanced ultrafiltration and flocculation, Sep. Purif. Technol. 158: 124–136.
  • 8. Krishnan KA. Sreejalekshmi KG. Vimexen V. Dev VV. 2016. Evaluation of adsorption properties of sulphurised activated carbon for the effective and economically viable removal of Zn(II) from aqueous solutions, Ecotoxicol. Environ. Saf. 124: 418– 425.
  • 9. Lodeiro P. Cordero B. Barriada JL. Herrero R. Sastre de Vicente ME. 2005. Biosorption of Cadmium by Biomass of Brown Marine Macroalgae, Bioresource Technology, 96: 1796-1803.
  • 10. Munagapati VS. Kim DS. 2017. Equilibrium İsotherms, Kinetics, and Thermodynamics Studies for Congo Red Adsorption Using Calcium Alginate Beads İmpregnated with Nano-Goethite, Ecotoxicology and Environmental Safety, 141:226–234.
  • 11. Oliveira WE. Franca AS. Oliveira LS. and Rocha SD. 2008. Untreated coffee husks as biosorbents for the removal of heavy metals from aqueous solutions, Journal of Hazardous Materials, 152: 1073-108.
  • 12. Ozer C. Boysan F. and Imamoglu M. 2015. Adsorption of Cu(II), Ni(II) and Pb(II) ions onto polyamine-polyurea polymer modified with pyromellitic dianhydride: kinetic, isotherm, and thermodynamic studies, Desalin. Water Treat. 57(24): 11173-11183.
  • 13. Perez Marın AB. Ortuno JF. Aguilar MI. Meseguer VF. Saez J. Lloréns M. 2010. Use of chemical modification to determine the binding of Cd(II), Zn(II), and Cr(III) ions by orange waste, Biochemical Engineering Journal, 53: 2–6.
  • 14. Sivrikaya S. Albayrak S. Imamoglu M. Gundogdu A. Duran C. and Yildiz H. 2012. Dehydrated hazelnut husk carbon: a novel sorbent for removal of Ni(II) ions from aqueous solution, Desalin. Water Treat. 50: 2–13.
  • 15. Sigword EA, Smith SB 1972, Adsorption of Inorganic Compounds by Activated Carbon. Journal AWWA, 386-391.
  • 16. Taha G. Arifien A. El-Nahas S. 2011. Removal Effıcıency Of Potato Peels As A New Bıosorbent Materıal For Uptake Of Pb(Iı) Cd(Iı) And Zn(Iı) From Theır Aqueous Solutıons. The Journal of Solid Waste Technology and Management, 2: 128-140.
  • 17. Sen TK. and Gomez D. 2011. Adsorption of zinc (Zn2+) from aqueous solution on natural bentonite, Desalination. 267: 286– 294.
  • 18. Vilar VJP. Botelho CMS. Boaventura RAR. 2005. Influence of pH, ionic strength and temperature on lead biosorption by Gelidium anda gar extraction algal waste, Process Biochemistry, 40: 3267–3275.
  • 19. Willis G. Tinashe M. Phillip N. Nhamo C. Allen C. and Sharron M. 2014. Adsorption of Zn2‏ and Ni2‏ in a binary aqueous solution by biosorbents derived from sawdust and water hyacinth. Water Science & Technology, 70(8): 1419-1427.
  • 20. Wan Z. Xu L. and Wang J. 2016. Treatment of spent radioactive anionic exchange resins using Fenton-like oxidation process, Chem. Eng. J. 284: 733–740.
  • 21. Yıldız S. 2017a. Artificial neural network (ANN) approach for modeling Zn (II) adsorption in batch process, Korean Journal of Chemical Engineering, 34(9): 2423-2434.
  • 22. Yıldız S. 2017b. Kinetic and isotherm analysis of Cu (II) adsorption onto almond shell (Prunus dulcis), Ecological Chemistry and Engineering S, 24(1): 87-106.
  • 23. Yıldız S. Sevinç S. 2018. Heavy metal adsorption by dewatered iron-containing waste sludge, Ecological Chemistry and Engineering S, 25(3): 431-456.
  • 24. Yıldız S. 2018. Artificial neural network approach for modeling of Ni (II) adsorption from aqueous solution by peanut Shell, Ecological Chemistry and Engineering S, 25(4): 581-604.
  • 25. Yun Z. Siqing X. Jiao Z. Zhiqiang Z. Slawomir WH. 2016. Adsorption characterizations of biosorbent extracted from waste-activated sludge for Pb(II) and Zn(II), Desalination and Water Treatment, 57: 9343-9353.

Adsorption of Zinc into Drinking Water Treatment Sludge

Year 2022, Volume: 1 Issue: 1, 22 - 26, 30.07.2022

Abstract

In this study, the removal of zinc ion by use of wastewater sludge was aimed. By determining the optimum conditions in the study; The effects of parameters such as balance, pH, sorbent amount and metal concentration of the processes in different situations were investigated. In the adsorption of Zn+2 ions with drinking water treatment sludge, optimum initial pH was determined as 5.0, time to equilibrium was 60 minutes, sorbent dose was 0.3 g/L, and initial ion concentration was 25 mg/L. While sorbent amount was 0.1 g/L, removal efficiency was 73.2% and qe was 18.3 mg/g. It was calculated as 90.8%, 4.54 mg/g for 0.5 g/L sorbent and 92.4% and 2.31 mg/g for 1 g/L sorbent. At the Zn +2 5 mg/L concentration, the removal efficiency was 1.53% and qe was 92 mg/g. At 50 mg/L Zn+2 concentration, the removal efficiency was calculated as 70% and qe was calculated as 11.67 mg/g. In the study, it has been proven that drinking water treatment sludge can be used as a promising adsorbent for the removal of Zn+2 ions from the aqueous solution.

References

  • 1. Abbas A. Al-Amer AM. Laoui T. Al-Marri MJ. Nasser MS. Khraisheh M. Atieh MA. 2016. Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications, Separation and Purification Technology, 157: 141-161.
  • 2. Anitha T. Senthil Kumar P. Sathish Kumar K. Sriram K. Feroze Ahmed J. 2016. Biosorption of Lead(II) İons Onto Nano-Sized Chitosan Particle Blended Polyvinyl Alcohol (PVA): Adsorption İsotherms, Kinetics, and Equilibrium Studies, Desalination and Water Treatment, 57:13711–13721.
  • 3. Çokadar H, İleri R, Ateş A, İzgi B. 1999. Bakır (II) İyonunun Sulu Ortamdan Granül Aktif Karbon İle Giderilmesi, Arıtım Dünyası, 13: 77-83.
  • 4. Dessouki HA. Ibrahiem SS. 2011. Removal OF Zn(II), Cd(II), and Mn(II) From Aqueous Solutıons By Adsorptıon On Maıze Stalks, The Malaysian Journal of Analytical Sciences, 15(1): 8-21. 5. Gürbüz MG. 2006. Bakır(II) ve Nikel(II) İyonlarının Enteromorpha prolifera’ ya Biyosorpsiyonunda Denge, Kinetik ve Termodinamik Parametrelerin Belirlenmesi, Yüksek Lisans Tezi, Mersin Üniversitesi Fen Bilimleri Enstitüsü Kimya Mühendisliği ABD, ss.149, Mersin, Türkiye.
  • 6. Hebbar RS. Isloor AM. Ananda K. and Ismail AF. 2015. Fabrication of polydopamine functionalized halloysite nanotube/polyetherimide membranes for heavy metal removal, J. Mater. Chem. A. 4: 764-774.
  • 7. Huang Y. Wu D. Wang X. Huang W. Lawless D. and Feng X. 2016. Removal of heavy metals from water using polyvinyl amine by polymer-enhanced ultrafiltration and flocculation, Sep. Purif. Technol. 158: 124–136.
  • 8. Krishnan KA. Sreejalekshmi KG. Vimexen V. Dev VV. 2016. Evaluation of adsorption properties of sulphurised activated carbon for the effective and economically viable removal of Zn(II) from aqueous solutions, Ecotoxicol. Environ. Saf. 124: 418– 425.
  • 9. Lodeiro P. Cordero B. Barriada JL. Herrero R. Sastre de Vicente ME. 2005. Biosorption of Cadmium by Biomass of Brown Marine Macroalgae, Bioresource Technology, 96: 1796-1803.
  • 10. Munagapati VS. Kim DS. 2017. Equilibrium İsotherms, Kinetics, and Thermodynamics Studies for Congo Red Adsorption Using Calcium Alginate Beads İmpregnated with Nano-Goethite, Ecotoxicology and Environmental Safety, 141:226–234.
  • 11. Oliveira WE. Franca AS. Oliveira LS. and Rocha SD. 2008. Untreated coffee husks as biosorbents for the removal of heavy metals from aqueous solutions, Journal of Hazardous Materials, 152: 1073-108.
  • 12. Ozer C. Boysan F. and Imamoglu M. 2015. Adsorption of Cu(II), Ni(II) and Pb(II) ions onto polyamine-polyurea polymer modified with pyromellitic dianhydride: kinetic, isotherm, and thermodynamic studies, Desalin. Water Treat. 57(24): 11173-11183.
  • 13. Perez Marın AB. Ortuno JF. Aguilar MI. Meseguer VF. Saez J. Lloréns M. 2010. Use of chemical modification to determine the binding of Cd(II), Zn(II), and Cr(III) ions by orange waste, Biochemical Engineering Journal, 53: 2–6.
  • 14. Sivrikaya S. Albayrak S. Imamoglu M. Gundogdu A. Duran C. and Yildiz H. 2012. Dehydrated hazelnut husk carbon: a novel sorbent for removal of Ni(II) ions from aqueous solution, Desalin. Water Treat. 50: 2–13.
  • 15. Sigword EA, Smith SB 1972, Adsorption of Inorganic Compounds by Activated Carbon. Journal AWWA, 386-391.
  • 16. Taha G. Arifien A. El-Nahas S. 2011. Removal Effıcıency Of Potato Peels As A New Bıosorbent Materıal For Uptake Of Pb(Iı) Cd(Iı) And Zn(Iı) From Theır Aqueous Solutıons. The Journal of Solid Waste Technology and Management, 2: 128-140.
  • 17. Sen TK. and Gomez D. 2011. Adsorption of zinc (Zn2+) from aqueous solution on natural bentonite, Desalination. 267: 286– 294.
  • 18. Vilar VJP. Botelho CMS. Boaventura RAR. 2005. Influence of pH, ionic strength and temperature on lead biosorption by Gelidium anda gar extraction algal waste, Process Biochemistry, 40: 3267–3275.
  • 19. Willis G. Tinashe M. Phillip N. Nhamo C. Allen C. and Sharron M. 2014. Adsorption of Zn2‏ and Ni2‏ in a binary aqueous solution by biosorbents derived from sawdust and water hyacinth. Water Science & Technology, 70(8): 1419-1427.
  • 20. Wan Z. Xu L. and Wang J. 2016. Treatment of spent radioactive anionic exchange resins using Fenton-like oxidation process, Chem. Eng. J. 284: 733–740.
  • 21. Yıldız S. 2017a. Artificial neural network (ANN) approach for modeling Zn (II) adsorption in batch process, Korean Journal of Chemical Engineering, 34(9): 2423-2434.
  • 22. Yıldız S. 2017b. Kinetic and isotherm analysis of Cu (II) adsorption onto almond shell (Prunus dulcis), Ecological Chemistry and Engineering S, 24(1): 87-106.
  • 23. Yıldız S. Sevinç S. 2018. Heavy metal adsorption by dewatered iron-containing waste sludge, Ecological Chemistry and Engineering S, 25(3): 431-456.
  • 24. Yıldız S. 2018. Artificial neural network approach for modeling of Ni (II) adsorption from aqueous solution by peanut Shell, Ecological Chemistry and Engineering S, 25(4): 581-604.
  • 25. Yun Z. Siqing X. Jiao Z. Zhiqiang Z. Slawomir WH. 2016. Adsorption characterizations of biosorbent extracted from waste-activated sludge for Pb(II) and Zn(II), Desalination and Water Treatment, 57: 9343-9353.
There are 24 citations in total.

Details

Primary Language Turkish
Journal Section Research Articles
Authors

Sayiter Yıldız 0000-0002-3382-2487

Can Bülent Karakuş 0000-0002-7373-9960

Publication Date July 30, 2022
Published in Issue Year 2022 Volume: 1 Issue: 1

Cite

APA Yıldız, S., & Karakuş, C. B. (2022). İçme Suyu Arıtma Çamuruna Çinkonun Adsorpsiyonu. Teknik Meslek Yüksekokulları Akademik Araştırma Dergisi, 1(1), 22-26.

ISSN: 2822-5880



Bu ürün Creative Commons Attribution 4.0 tarafından lisanslanmıştır.

Türk Akademik Sosyal Bilimler Araştırma Dergisi (TURAJAS) aşağıda verilen Alan Endeksleri tarafından taranmaktadır;