Review
BibTex RIS Cite

The effect of surface temperature on module efficiency in photovoltaic modules

Year 2021, Volume: 4 Issue: 1, 1 - 13, 30.06.2021

Abstract

Photovoltaic (PV) modules generate electrical energy by using solar energy as a source. The electrical energy generated by the modules is converted into direct current or alternating current depending on the structure of the receiver system. PV modules can be connected to or independent from the grid. It requires system components for this. For this reason, there are many parameters in PV systems that cause a decrease in efficiency due to modules or system components. One of the parameters affecting the performance and efficiency of PV modules is the change of module temperature. The operating temperature above the test conditions adversely affects the efficiency of the modules. A lot of research has been done on modules in recent years to control the temperature of PV modules and keep them close to test conditions. Based on these studies, module temperatures and temperature-dependent module efficiencies were examined in our study. The changes of module temperatures according to the methods applied and the module efficiency according to the change of temperature were examined using the literature review method. As a result, decreasing the module temperature increases the module efficiency. Reducing the module operating temperature increases the efficiency of the modules between 3% and 15%. Some of the methods applied to lower the module temperature of PV modules are empirically applicable, but it is known that it is not economical to apply commercially. Therefore, the method chosen for temperature control in PV modules is economical and does not affect system costs negatively, determining the feasibility of the method.

References

  • Abdelrazik, A. S., Saidur, R., & Al-Sulaiman, F. A. (2020). Thermal regulation and performance assessment of a hybrid photovoltaic/thermal system using different combinations of nano-enhanced phase change materials. Solar Energy Materials and Solar Cells, 215.
  • Ahmad, T., & Zhang, D. (2020). A critical review of comparative global historical energy consumption and future demand: The story told so far. Energy Reports, 6, 1973-1991.
  • Al-Waeli, A. H. A., Sopian, K., Chaichan, M. T., Kazem, H. A., Ibrahim, A., Mat, S., & Ruslan, M. H. (2017). Evaluation of the nanofluid and nano-PCM based photovoltaic thermal (PVT) system: An experimental study. Energy Conversion and Management, 151, 693-708.
  • Atkin, P., & Farid, M. M. (2015). Improving the efficiency of photovoltaic cells using PCM infused graphite and aluminium fins. Solar Energy, 114, 217-228.
  • Bouzguenda, I., Alalouch, C., & Fava, N. (2019). Towards smart sustainable cities: A review of the role digital citizen participation could play in advancing social sustainability. Sustainable Cities and Society, 50.
  • Crisostomo, F., Hjerrild, N., Mesgari, S., Li, Q., & Taylor, R. A. (2017). A hybrid PV/T collector using spectrally selective absorbing nanofluids. Applied Energy, 193, 1-14.
  • Du, D., Darkwa, J., & Kokogiannakis, G. (2013). Thermal management systems for Photovoltaics (PV) installations: A critical review. Solar Energy, 97, 238-254.
  • Dubey, S., Sarvaiya, J. N., & Seshadri, B. (2013). Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World – A Review. Energy Procedia, 33, 311-321. Ferrer, G., Solé, A., Barreneche, C., Martorell, I., & Cabeza, L. F. (2015). Review on the methodology used in thermal stability characterization of phase change materials. Renewable and Sustainable Energy Reviews, 50, 665-685.
  • Fouad, M. M., Shihata, L. A., & Morgan, E. I. (2017). An integrated review of factors influencing the perfomance of photovoltaic panels. Renewable and Sustainable Energy Reviews, 80, 1499-1511.
  • Gül, M., & Akyüz, E. (2019). Fotovoltaik-termal (PV/T) bir sistemin deneysel performansının incelenmesi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(1), 444-458.
  • Hachem, F., Abdulhay, B., Ramadan, M., El Hage, H., El Rab, M. G., & Khaled, M. (2017). Improving the performance of photovoltaic cells using pure and combined phase change materials – Experiments and transient energy balance. Renewable Energy, 107, 567-575.
  • Hasan, A., McCormack, S. J., Huang, M. J., Sarwar, J., & Norton, B. (2015). Increased photovoltaic performance through temperature regulation by phase change materials: Materials comparison in different climates. Solar Energy, 115, 264-276.
  • Hasan, A., Sarwar, J., Alnoman, H., Abdelbaqi, S. (2017). Yearly energy performance of a photovoltaic-phase change material (PV-PCM) system in hot climate. Solar Energy, 146, 417-429.
  • Karthikeyan, V., Sirisamphanwong, C., Sukchai, S., Sahoo, S. K., Wongwuttanasatian, T. (2020). Reducing PV module temperature with radiation based PV module incorporating composite phase change material. Journal of Energy Storage, 29.
  • Kayabaşı, R., & Kaya, M. (2020). Fotovoltaik Modüllerde Faz Değiştiren Madde Kullanımı ve Verimlerine Etkisi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 8(2), 262-278.
  • Kerem, A., Atik, M., & Bayram, A. (2020). Experimental Investigation of The Effect of Surface Cooling on Photovoltaic (PV) Panel System for Electricity Production. International Journal of Engineering Research and Development, 12(2), 1-14. Kober, T., Schiffer, H. W., Densing, M., & Panos, E. (2020). Global energy perspectives to 2060 – WEC's World Energy Scenarios 2019. Energy Strategy Reviews, 31.
  • Li, Z., Ma, T., Zhao, J., Song, A., Cheng, Y. (2019). Experimental study and performance analysis on solar photovoltaic panel integrated with phase change material. Energy, 178, 471-486.
  • Ma, T., Li, Z., & Zhao, J. (2019). Photovoltaic panel integrated with phase change materials (PV-PCM): technology overview and materials selection. Renewable and Sustainable Energy Reviews, 116.
  • Ma, T., Yang, H., Zhang, Y., Lu, L., Wang, X. (2015). Using phase change materials in photovoltaic systems for thermal regulation and electrical efficiency improvement: A review and outlook. Renewable and Sustainable Energy Reviews, 43, 1273-1284.
  • Machniewicz, A., Knera, D., Heim, D. (2015). Effect of Transition Temperature on Efficiency of PV/PCM Panels. Energy Procedia, 78, 1684-1689.
  • Munceer, T., Asif, M., Kubie, J. (2003). Generation and transmission prospects for solarelectricity: UK and global markets. Energy Conversion and Management, 44, 33-52. Nada, S. A., El-Nagar, D. H., Hussein, H. M. S. (2018). Improving the thermal regulation and efficiency enhancement of PCM-Integrated PV modules using nano particles. Energy Conversion and Management, 166, 735-743.
  • Preet, S., Bhushan, B., Mahajan, T. (2017). Experimental investigation of water based photovoltaic/thermal (PV/T) system with and without phase change material (PCM). Solar Energy, 155, 1104-1120.
  • Senthil Kumar, K., Revanth, S., Sanjeev, D., Sabesh Kumar, P., & Surya, P. (2020). Experimental investigation of improving the energy conversion efficiency of PV cell by integrating with PCM. Materials Today: Proceedings.
  • Shastry, D. M. C., Arunachala, U. C. (2020). Thermal management of photovoltaic module with metal matrix embedded PCM. Journal of Energy Storage, 28.
  • Stropnik, R., & Stritih, U. (2016). Increasing the efficiency of PV panel with the use of PCM. Renewable Energy, 97, 671-679.
  • Tian, Y., Zhao, C. Y. (2013). A review of solar collectors and thermal energy storage in solar thermal applications. Applied Energy, 104, 538-553.
  • Velmurugan, K., Karthikeyan, V., Korukonda, T. B., Poongavanam, P., Nadarajan, S., Kumarasamy, S., Sandeep, D. (2020). Experimental studies on photovoltaic module temperature reduction using eutectic cold phase change material. Solar Energy, 209, 302-315.
  • Xing, M., Zhang, Y., Shen, Q., Wang, R. (2020). Temperature dependent photovoltaic performance of TiO2/PbS heterojunction quantum dot solar cells. Solar Energy, 195, 1-5.
  • Yazdanifard, F., Ameri, M., Taylor, R. A. (2020). Numerical modeling of a concentrated photovoltaic/thermal system which utilizes a PCM and nanofluid spectral splitting. Energy Conversion and Management, 215.
  • Zhang, J., Zhai, H., Wu, Z., Wang, Y., Xie, H. (2020). Experimental investigation of novel integrated photovoltaic-thermoelectric hybrid devices with enhanced performance. Solar Energy Materials and Solar Cells, 215.

Fotovoltaik modüllerde yüzey sıcaklığının modül verimliliğine etkisi

Year 2021, Volume: 4 Issue: 1, 1 - 13, 30.06.2021

Abstract

Fotovoltaik (PV) modüller güneş enerjisini kaynak olarak kullanarak elektrik enerjisi üretmektedirler. Modüllerin üretmiş olduğu elektrik enerjisi alıcı sistemin yapısına bağlı doğru akım veya alternatif akıma dönüştürülmektedir. PV modüller şebekeye bağlı veya şebekeden bağımsız çalışabilmektedir. Bunun için sistem bileşenlerine ihtiyaç duymaktadır. Bu nedenle PV sistemlerde modüllerden kaynaklı veya sistem bileşenlerinden kaynaklı verim düşüşüne neden olan birçok parametre bulunmaktadır. PV modüllerin performanslarını ve verimlerini etkileyen parametrelerden biri de modül sıcaklığının değişimidir. Test koşullarının üzerine çıkan çalışma sıcaklığı modüllerin verimlerini olumsuz etkilemektedir. Son yıllarda PV modüllerinin sıcaklığını kontrol etmek ve onları test koşullarına yakın tutmak için modüller üzerinde çok sayıda araştırma yapılmıştır. Bu çalışmalardan yola çıkarak çalışmamızda modül sıcaklıkları ve sıcaklığa bağlı modül verimleri incelenmiştir. Uygulanan yöntemlere göre modül sıcaklıklarının değişimleri ve sıcaklığın değişimine göre modül verimleri literatür taraması yöntemi kullanılarak incelenmiştir. Sonuç olarak modül sıcaklığının düşürülmesi modül verimini arttırmaktadır. Modül çalışma sıcaklığının azaltılması modüllerde verimliliği %3 ile %15 arasında artırmaktadır. PV modüllerin modül sıcaklığını düşürmek için uygulanan yöntemlerin bir kısmı deneysel olarak uygulanabilir, fakat ticari olarak uygulanmasının ekonomik olmadığı bilinmektedir. Bu nedenle PV modüllerde sıcaklık kontrolü için seçilen yöntemin ekonomik olması ve sistem maliyetlerini olumsuz etkilememesi, yöntemin uygulanabilirliğini belirlemektedir.

References

  • Abdelrazik, A. S., Saidur, R., & Al-Sulaiman, F. A. (2020). Thermal regulation and performance assessment of a hybrid photovoltaic/thermal system using different combinations of nano-enhanced phase change materials. Solar Energy Materials and Solar Cells, 215.
  • Ahmad, T., & Zhang, D. (2020). A critical review of comparative global historical energy consumption and future demand: The story told so far. Energy Reports, 6, 1973-1991.
  • Al-Waeli, A. H. A., Sopian, K., Chaichan, M. T., Kazem, H. A., Ibrahim, A., Mat, S., & Ruslan, M. H. (2017). Evaluation of the nanofluid and nano-PCM based photovoltaic thermal (PVT) system: An experimental study. Energy Conversion and Management, 151, 693-708.
  • Atkin, P., & Farid, M. M. (2015). Improving the efficiency of photovoltaic cells using PCM infused graphite and aluminium fins. Solar Energy, 114, 217-228.
  • Bouzguenda, I., Alalouch, C., & Fava, N. (2019). Towards smart sustainable cities: A review of the role digital citizen participation could play in advancing social sustainability. Sustainable Cities and Society, 50.
  • Crisostomo, F., Hjerrild, N., Mesgari, S., Li, Q., & Taylor, R. A. (2017). A hybrid PV/T collector using spectrally selective absorbing nanofluids. Applied Energy, 193, 1-14.
  • Du, D., Darkwa, J., & Kokogiannakis, G. (2013). Thermal management systems for Photovoltaics (PV) installations: A critical review. Solar Energy, 97, 238-254.
  • Dubey, S., Sarvaiya, J. N., & Seshadri, B. (2013). Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World – A Review. Energy Procedia, 33, 311-321. Ferrer, G., Solé, A., Barreneche, C., Martorell, I., & Cabeza, L. F. (2015). Review on the methodology used in thermal stability characterization of phase change materials. Renewable and Sustainable Energy Reviews, 50, 665-685.
  • Fouad, M. M., Shihata, L. A., & Morgan, E. I. (2017). An integrated review of factors influencing the perfomance of photovoltaic panels. Renewable and Sustainable Energy Reviews, 80, 1499-1511.
  • Gül, M., & Akyüz, E. (2019). Fotovoltaik-termal (PV/T) bir sistemin deneysel performansının incelenmesi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(1), 444-458.
  • Hachem, F., Abdulhay, B., Ramadan, M., El Hage, H., El Rab, M. G., & Khaled, M. (2017). Improving the performance of photovoltaic cells using pure and combined phase change materials – Experiments and transient energy balance. Renewable Energy, 107, 567-575.
  • Hasan, A., McCormack, S. J., Huang, M. J., Sarwar, J., & Norton, B. (2015). Increased photovoltaic performance through temperature regulation by phase change materials: Materials comparison in different climates. Solar Energy, 115, 264-276.
  • Hasan, A., Sarwar, J., Alnoman, H., Abdelbaqi, S. (2017). Yearly energy performance of a photovoltaic-phase change material (PV-PCM) system in hot climate. Solar Energy, 146, 417-429.
  • Karthikeyan, V., Sirisamphanwong, C., Sukchai, S., Sahoo, S. K., Wongwuttanasatian, T. (2020). Reducing PV module temperature with radiation based PV module incorporating composite phase change material. Journal of Energy Storage, 29.
  • Kayabaşı, R., & Kaya, M. (2020). Fotovoltaik Modüllerde Faz Değiştiren Madde Kullanımı ve Verimlerine Etkisi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 8(2), 262-278.
  • Kerem, A., Atik, M., & Bayram, A. (2020). Experimental Investigation of The Effect of Surface Cooling on Photovoltaic (PV) Panel System for Electricity Production. International Journal of Engineering Research and Development, 12(2), 1-14. Kober, T., Schiffer, H. W., Densing, M., & Panos, E. (2020). Global energy perspectives to 2060 – WEC's World Energy Scenarios 2019. Energy Strategy Reviews, 31.
  • Li, Z., Ma, T., Zhao, J., Song, A., Cheng, Y. (2019). Experimental study and performance analysis on solar photovoltaic panel integrated with phase change material. Energy, 178, 471-486.
  • Ma, T., Li, Z., & Zhao, J. (2019). Photovoltaic panel integrated with phase change materials (PV-PCM): technology overview and materials selection. Renewable and Sustainable Energy Reviews, 116.
  • Ma, T., Yang, H., Zhang, Y., Lu, L., Wang, X. (2015). Using phase change materials in photovoltaic systems for thermal regulation and electrical efficiency improvement: A review and outlook. Renewable and Sustainable Energy Reviews, 43, 1273-1284.
  • Machniewicz, A., Knera, D., Heim, D. (2015). Effect of Transition Temperature on Efficiency of PV/PCM Panels. Energy Procedia, 78, 1684-1689.
  • Munceer, T., Asif, M., Kubie, J. (2003). Generation and transmission prospects for solarelectricity: UK and global markets. Energy Conversion and Management, 44, 33-52. Nada, S. A., El-Nagar, D. H., Hussein, H. M. S. (2018). Improving the thermal regulation and efficiency enhancement of PCM-Integrated PV modules using nano particles. Energy Conversion and Management, 166, 735-743.
  • Preet, S., Bhushan, B., Mahajan, T. (2017). Experimental investigation of water based photovoltaic/thermal (PV/T) system with and without phase change material (PCM). Solar Energy, 155, 1104-1120.
  • Senthil Kumar, K., Revanth, S., Sanjeev, D., Sabesh Kumar, P., & Surya, P. (2020). Experimental investigation of improving the energy conversion efficiency of PV cell by integrating with PCM. Materials Today: Proceedings.
  • Shastry, D. M. C., Arunachala, U. C. (2020). Thermal management of photovoltaic module with metal matrix embedded PCM. Journal of Energy Storage, 28.
  • Stropnik, R., & Stritih, U. (2016). Increasing the efficiency of PV panel with the use of PCM. Renewable Energy, 97, 671-679.
  • Tian, Y., Zhao, C. Y. (2013). A review of solar collectors and thermal energy storage in solar thermal applications. Applied Energy, 104, 538-553.
  • Velmurugan, K., Karthikeyan, V., Korukonda, T. B., Poongavanam, P., Nadarajan, S., Kumarasamy, S., Sandeep, D. (2020). Experimental studies on photovoltaic module temperature reduction using eutectic cold phase change material. Solar Energy, 209, 302-315.
  • Xing, M., Zhang, Y., Shen, Q., Wang, R. (2020). Temperature dependent photovoltaic performance of TiO2/PbS heterojunction quantum dot solar cells. Solar Energy, 195, 1-5.
  • Yazdanifard, F., Ameri, M., Taylor, R. A. (2020). Numerical modeling of a concentrated photovoltaic/thermal system which utilizes a PCM and nanofluid spectral splitting. Energy Conversion and Management, 215.
  • Zhang, J., Zhai, H., Wu, Z., Wang, Y., Xie, H. (2020). Experimental investigation of novel integrated photovoltaic-thermoelectric hybrid devices with enhanced performance. Solar Energy Materials and Solar Cells, 215.
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Derleme
Authors

Ramazan Kayabaşı 0000-0001-6195-7445

Publication Date June 30, 2021
Published in Issue Year 2021 Volume: 4 Issue: 1

Cite

APA Kayabaşı, R. (2021). Fotovoltaik modüllerde yüzey sıcaklığının modül verimliliğine etkisi. Artıbilim: Adana Alparslan Türkeş Bilim Ve Teknoloji Üniversitesi Fen Bilimleri Dergisi, 4(1), 1-13.
AMA Kayabaşı R. Fotovoltaik modüllerde yüzey sıcaklığının modül verimliliğine etkisi. Artıbilim: Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi. June 2021;4(1):1-13.
Chicago Kayabaşı, Ramazan. “Fotovoltaik modüllerde yüzey sıcaklığının modül verimliliğine Etkisi”. Artıbilim: Adana Alparslan Türkeş Bilim Ve Teknoloji Üniversitesi Fen Bilimleri Dergisi 4, no. 1 (June 2021): 1-13.
EndNote Kayabaşı R (June 1, 2021) Fotovoltaik modüllerde yüzey sıcaklığının modül verimliliğine etkisi. Artıbilim: Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi 4 1 1–13.
IEEE R. Kayabaşı, “Fotovoltaik modüllerde yüzey sıcaklığının modül verimliliğine etkisi”, Artıbilim: Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi, vol. 4, no. 1, pp. 1–13, 2021.
ISNAD Kayabaşı, Ramazan. “Fotovoltaik modüllerde yüzey sıcaklığının modül verimliliğine Etkisi”. Artıbilim: Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi 4/1 (June 2021), 1-13.
JAMA Kayabaşı R. Fotovoltaik modüllerde yüzey sıcaklığının modül verimliliğine etkisi. Artıbilim: Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi. 2021;4:1–13.
MLA Kayabaşı, Ramazan. “Fotovoltaik modüllerde yüzey sıcaklığının modül verimliliğine Etkisi”. Artıbilim: Adana Alparslan Türkeş Bilim Ve Teknoloji Üniversitesi Fen Bilimleri Dergisi, vol. 4, no. 1, 2021, pp. 1-13.
Vancouver Kayabaşı R. Fotovoltaik modüllerde yüzey sıcaklığının modül verimliliğine etkisi. Artıbilim: Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi. 2021;4(1):1-13.