Research Article
BibTex RIS Cite

Evaluation of different scale-up strategies for Haematococcus pluvialis cultivation in airlift photobioreactor

Year 2022, , 131 - 141, 11.06.2022
https://doi.org/10.26650/ASE202211036078

Abstract

Large scale algal biomass production can be very challenging due to the potential issues of sustain-ability, environmental ethics, and economic concerns. A strategic approach to the transition from the laboratory to the industrial scale allows the prediction of process characteristics, design and analysis of large scale systems, and reduction of extra costs. In this study, a scale-up procedure that consid-ered different approaches was carried out by selecting the Haematococcus pluvialis as a model or-ganism. Three scale-up parameters (constant mixing time (tm), volumetric power consumption rate (P/V), and oxygen mass transfer coefficient (kLa)) were tested for biomass production in a 2-L airlift photobioreactor and they were compared with those obtained from a 1-L aerated cultivation bottle. Among three strategies, the maximum cell concentration, 4.60±0.20×105 cells/mL, was obtained in a constant volumetric power consumption rate experiment. Also, total carotenoid amount showed similar changes with the cell concentration and reached the maximum concentration of 2.02±0.11 mg/L under constant P/V experiment. However, the cultivation bottle presented the highest biomass amount of 0.62 g/L and specific growth rate of 0.38 day-1 of all of the photobioreactors. This result might be attributed to the low aeration rates or improper configuration of the system, which created a non-homogenous culture medium and led to ineffective mass transfer.

Supporting Institution

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TUBİTAK)

Project Number

115M014

Thanks

This study was a part of Cost action ES1408 and the authors would like to thank the Scientific and Technological Research Council of Turkey (TUBITAK) with the project number of 115M014 for the financial support.

References

  • Aslanbay Guler, B., Deniz, I., Demirel, Z. & Imamoglu, E. (2020). Evaluation of scale-up methodologies and computational fluid dynamics simulation for fucoxanthin production in airlift photobioreactor. Asia-Pacific Journal of Chemical Engineering, 15:e2532. [CrossRef] google scholar
  • Aslanbay Guler, B., Deniz, I., Demirel, Z., Oncel, S. S. & Imamoglu, E. (2019). Transition from start-up to scale-up for fucoxanthin production in flat plate photobioreactor. Journal of Applied Phycology, 31:1525-1533. [CrossRef] google scholar
  • Azhand, N., Sadeghizadeh, A. & Rahimi, R. (2020). Effect of superficial gas velocity on CO2 capture from air by Chlorella vulgaris microalgae in an Airlift photobioreactor with external sparger. Journal of Environmental Chemical Engineering, 8, 1040222. [CrossRef] google scholar
  • Bailey, J. E. & Ollis, D. F. (1986). Biochemical engineering fundamentals. New York: McGraw-Hill Chemical Engineering Series, 984. google scholar
  • Bendetti, M., Vecchi, V., Barera, S. & Dall’Osto, L. (2018). Biomass from microalgae: the potential of domestication towards sustainable biofactories. Microbial Cell Factories, 17, 173. [CrossRef] google scholar
  • Chisti, Y. & Jauregui-Haza, U. J. (2002). Oxygen transfer and mixing in mechanically agitated airlift bioreactors. Biochemical Engineering Journal, 10(2), 143-153. [CrossRef] google scholar
  • Choi, Y. Y., Hong, M. E., Jin, E. S., Woo, H. M. & Sim, S. J. (2018). Improvement in modular scalability of polymeric thin-film photobioreactor for autotrophic culturing of Haematococcus pluvialis using industrial flue gas. Bioresource Technology, 249, 519526. [CrossRef] google scholar
  • Deniz, I. (2020). Scaling-up of Haematococcus pluvialis production in stirred tank photobioreactor. Bioresource Technology, 310, 123434. [CrossRef] google scholar
  • Ding, N., Li, C., Wang, T., Guo, M., Mohsin A. & Zhang, S. (2021). Evaluation of an enclosed air-lift photobioreactor (ALPBR) for biomass and lipid biosynthesis of microalgal cells grown under fluid-induced shear stress, Biotechnology & Biotechnological Equipment, 35(1):139-149. [CrossRef] google scholar
  • Haque, F., Dutta, A., Thimmanagari, M. & Chiang, Y. W. (2017). Integrated Haematococcus pluvialis biomass production and nutrient removal using bioethanol plant waste effluent. Process Safety and Environmental Protection, 111, 128-137. [CrossRef] google scholar
  • Mazumdar, N., Novis, P. M., Visnovsky, G. & Gostomski, P. (2019). Effect of culturing parameters on the vegetative growth of Haematococcus alpinus (strain lcr-cc-261f) and modeling of its growth kinetics. Journal of Phycology, 55(5), 1071-1081. [CrossRef] google scholar
  • Ranjbar, R., Inoue, R., Katsuda, T., Yamaji, H. & Katoh, S. (2008). High Efficiency Production of Astaxanthin in an Airlift Photobioreactor. Journal of Bioscience and Bioengineering, 106(2), 204-207. [CrossRef] google scholar
  • Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology, 111, 1-61. [CrossRef] google scholar
  • Shah, M. M. R., Liang, Y., Cheng, J. J. & Daroch, M. (2016). Astaxanthin-Producing Green Microalga Haematococcus pluvialis: From Single Cell to High Value Commercial Products. Frontiers in Plant Science, 7, 531. [CrossRef] google scholar
  • Shuler, M. L. & Kargi, F. (2002). Bioprocess engineering: Basic concepts. NJ: Prentice Hall. google scholar
  • Van’t Riet, K. & Tramper, J. (1991). Basic bioreactor design. New York: Marcel Dekker. [CrossRef] google scholar
  • Vega-Estrada, J., Montes-Horcasitas, M. C., Dominguez-Bocanegra, A. R. & Canizares-Villanueva, R. O. (2005). Haematococcus pluvialis cultivation in split-cylinder internal-loop airlift photobioreactor under aeration conditions avoiding cell damage. Biotechnological Products and Process Engineering, 68, 31-35. [CrossRef] google scholar
  • Wang, H., Zhang, W., Chen, L., Wang, J. & Liu, T. (2013). The contamination and control of biological pollutants in mass cultivation of microalgae. Bioresource Technology, 128, 745-750. [CrossRef] google scholar
  • Wellburn, A. R. (1994). The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144, 307-313. [CrossRef] google scholar
  • Zhu, J., Chen, W., Chen, H., Zhang, X., He, C., Rong, J., Wang, Q. (2016). Improved Productivity of Neutral Lipids in Chlorella sp. A2 by Minimal Nitrogen Supply. Frontiers in Microbiology, 7, 557. [CrossRef] google scholar
Year 2022, , 131 - 141, 11.06.2022
https://doi.org/10.26650/ASE202211036078

Abstract

Project Number

115M014

References

  • Aslanbay Guler, B., Deniz, I., Demirel, Z. & Imamoglu, E. (2020). Evaluation of scale-up methodologies and computational fluid dynamics simulation for fucoxanthin production in airlift photobioreactor. Asia-Pacific Journal of Chemical Engineering, 15:e2532. [CrossRef] google scholar
  • Aslanbay Guler, B., Deniz, I., Demirel, Z., Oncel, S. S. & Imamoglu, E. (2019). Transition from start-up to scale-up for fucoxanthin production in flat plate photobioreactor. Journal of Applied Phycology, 31:1525-1533. [CrossRef] google scholar
  • Azhand, N., Sadeghizadeh, A. & Rahimi, R. (2020). Effect of superficial gas velocity on CO2 capture from air by Chlorella vulgaris microalgae in an Airlift photobioreactor with external sparger. Journal of Environmental Chemical Engineering, 8, 1040222. [CrossRef] google scholar
  • Bailey, J. E. & Ollis, D. F. (1986). Biochemical engineering fundamentals. New York: McGraw-Hill Chemical Engineering Series, 984. google scholar
  • Bendetti, M., Vecchi, V., Barera, S. & Dall’Osto, L. (2018). Biomass from microalgae: the potential of domestication towards sustainable biofactories. Microbial Cell Factories, 17, 173. [CrossRef] google scholar
  • Chisti, Y. & Jauregui-Haza, U. J. (2002). Oxygen transfer and mixing in mechanically agitated airlift bioreactors. Biochemical Engineering Journal, 10(2), 143-153. [CrossRef] google scholar
  • Choi, Y. Y., Hong, M. E., Jin, E. S., Woo, H. M. & Sim, S. J. (2018). Improvement in modular scalability of polymeric thin-film photobioreactor for autotrophic culturing of Haematococcus pluvialis using industrial flue gas. Bioresource Technology, 249, 519526. [CrossRef] google scholar
  • Deniz, I. (2020). Scaling-up of Haematococcus pluvialis production in stirred tank photobioreactor. Bioresource Technology, 310, 123434. [CrossRef] google scholar
  • Ding, N., Li, C., Wang, T., Guo, M., Mohsin A. & Zhang, S. (2021). Evaluation of an enclosed air-lift photobioreactor (ALPBR) for biomass and lipid biosynthesis of microalgal cells grown under fluid-induced shear stress, Biotechnology & Biotechnological Equipment, 35(1):139-149. [CrossRef] google scholar
  • Haque, F., Dutta, A., Thimmanagari, M. & Chiang, Y. W. (2017). Integrated Haematococcus pluvialis biomass production and nutrient removal using bioethanol plant waste effluent. Process Safety and Environmental Protection, 111, 128-137. [CrossRef] google scholar
  • Mazumdar, N., Novis, P. M., Visnovsky, G. & Gostomski, P. (2019). Effect of culturing parameters on the vegetative growth of Haematococcus alpinus (strain lcr-cc-261f) and modeling of its growth kinetics. Journal of Phycology, 55(5), 1071-1081. [CrossRef] google scholar
  • Ranjbar, R., Inoue, R., Katsuda, T., Yamaji, H. & Katoh, S. (2008). High Efficiency Production of Astaxanthin in an Airlift Photobioreactor. Journal of Bioscience and Bioengineering, 106(2), 204-207. [CrossRef] google scholar
  • Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology, 111, 1-61. [CrossRef] google scholar
  • Shah, M. M. R., Liang, Y., Cheng, J. J. & Daroch, M. (2016). Astaxanthin-Producing Green Microalga Haematococcus pluvialis: From Single Cell to High Value Commercial Products. Frontiers in Plant Science, 7, 531. [CrossRef] google scholar
  • Shuler, M. L. & Kargi, F. (2002). Bioprocess engineering: Basic concepts. NJ: Prentice Hall. google scholar
  • Van’t Riet, K. & Tramper, J. (1991). Basic bioreactor design. New York: Marcel Dekker. [CrossRef] google scholar
  • Vega-Estrada, J., Montes-Horcasitas, M. C., Dominguez-Bocanegra, A. R. & Canizares-Villanueva, R. O. (2005). Haematococcus pluvialis cultivation in split-cylinder internal-loop airlift photobioreactor under aeration conditions avoiding cell damage. Biotechnological Products and Process Engineering, 68, 31-35. [CrossRef] google scholar
  • Wang, H., Zhang, W., Chen, L., Wang, J. & Liu, T. (2013). The contamination and control of biological pollutants in mass cultivation of microalgae. Bioresource Technology, 128, 745-750. [CrossRef] google scholar
  • Wellburn, A. R. (1994). The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144, 307-313. [CrossRef] google scholar
  • Zhu, J., Chen, W., Chen, H., Zhang, X., He, C., Rong, J., Wang, Q. (2016). Improved Productivity of Neutral Lipids in Chlorella sp. A2 by Minimal Nitrogen Supply. Frontiers in Microbiology, 7, 557. [CrossRef] google scholar
There are 20 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Bahar Aslanbay Güler 0000-0002-0113-4823

İrem Deniz 0000-0002-1171-8259

Zeliha Demirel 0000-0003-3675-7315

Esra İmamoğlu 0000-0001-8759-7388

Project Number 115M014
Publication Date June 11, 2022
Submission Date December 14, 2021
Published in Issue Year 2022

Cite

APA Aslanbay Güler, B., Deniz, İ., Demirel, Z., İmamoğlu, E. (2022). Evaluation of different scale-up strategies for Haematococcus pluvialis cultivation in airlift photobioreactor. Aquatic Sciences and Engineering, 37(3), 131-141. https://doi.org/10.26650/ASE202211036078
AMA Aslanbay Güler B, Deniz İ, Demirel Z, İmamoğlu E. Evaluation of different scale-up strategies for Haematococcus pluvialis cultivation in airlift photobioreactor. Aqua Sci Eng. June 2022;37(3):131-141. doi:10.26650/ASE202211036078
Chicago Aslanbay Güler, Bahar, İrem Deniz, Zeliha Demirel, and Esra İmamoğlu. “Evaluation of Different Scale-up Strategies for Haematococcus Pluvialis Cultivation in Airlift Photobioreactor”. Aquatic Sciences and Engineering 37, no. 3 (June 2022): 131-41. https://doi.org/10.26650/ASE202211036078.
EndNote Aslanbay Güler B, Deniz İ, Demirel Z, İmamoğlu E (June 1, 2022) Evaluation of different scale-up strategies for Haematococcus pluvialis cultivation in airlift photobioreactor. Aquatic Sciences and Engineering 37 3 131–141.
IEEE B. Aslanbay Güler, İ. Deniz, Z. Demirel, and E. İmamoğlu, “Evaluation of different scale-up strategies for Haematococcus pluvialis cultivation in airlift photobioreactor”, Aqua Sci Eng, vol. 37, no. 3, pp. 131–141, 2022, doi: 10.26650/ASE202211036078.
ISNAD Aslanbay Güler, Bahar et al. “Evaluation of Different Scale-up Strategies for Haematococcus Pluvialis Cultivation in Airlift Photobioreactor”. Aquatic Sciences and Engineering 37/3 (June 2022), 131-141. https://doi.org/10.26650/ASE202211036078.
JAMA Aslanbay Güler B, Deniz İ, Demirel Z, İmamoğlu E. Evaluation of different scale-up strategies for Haematococcus pluvialis cultivation in airlift photobioreactor. Aqua Sci Eng. 2022;37:131–141.
MLA Aslanbay Güler, Bahar et al. “Evaluation of Different Scale-up Strategies for Haematococcus Pluvialis Cultivation in Airlift Photobioreactor”. Aquatic Sciences and Engineering, vol. 37, no. 3, 2022, pp. 131-4, doi:10.26650/ASE202211036078.
Vancouver Aslanbay Güler B, Deniz İ, Demirel Z, İmamoğlu E. Evaluation of different scale-up strategies for Haematococcus pluvialis cultivation in airlift photobioreactor. Aqua Sci Eng. 2022;37(3):131-4.

openaccess.jpgOpen Access Statement:

This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.