Review
BibTex RIS Cite

Application of the IMTA (Integrated Multi-Trophic Aquaculture) System in Freshwater, Brackish and Marine Aquaculture

Year 2023, , 101 - 121, 15.05.2023
https://doi.org/10.26650/ASE20231252136

Abstract

Aquaculture activities that have been carried out intensively for several decades have made this sector grow rapidly compared to other food sectors. However, intensive activities have negative impacts, one of which is on the environment. To respond to these problems, aquaculture activities have now focused on environmentally friendly aquaculture by implementing various ecosys-tem-based cultivation systems and improving aquaculture management based on the principle of sustainable aquaculture. The IMTA (Integrated Multi-trophic Aquaculture) system is a cultivation system that uses species with different trophic levels to reuse wasted nutrients to be used as bio-mass. Currently, the IMTA system has begun to be developed in various countries in fresh, brackish, and marine water cultivation with multiple approaches according to environmental, social, and economic conditions. This review study discusses different IMTA systems and their applications.

Supporting Institution

This work was supported by the Scientific Research Projects Coordination Unit of Istanbul University

Project Number

FDK-2022-39219

References

  • Amalia, R., Rejeki, S., Widowati, L. L. L., Ariyati, R. W. (2022). The growth of tiger shrimp (Penaeus monodon) and its dynamics of water quality in integrated culture. Biodiversitas, 23 (1), 593-600. doi: 10.13057/ biodiv/d230164 google scholar
  • Azhar, M. H., Suciyono, S., Budi, D. S., Ulkhaq, M. F., Anugrahwati, M., & Ekasari, J. (2020). Biofloc-based co-culture systems of Nile tilapia (Oreochromis niloticus) and redclaw crayfish (Cherax quadricarinatus) with different carbon-nitrogen ratios. Aquaculture International, 28(3), 1293-1304. doi: 10.1007/s10499-020-00526-z google scholar
  • Badiola, M., Mendiola, D., & Bostock, J. (2012). Recirculating Aquaculture Systems (RAS) analysis: Main issues on management and future challenges. Aquacultural Engineering, 51, 26-35. doi: 10.1016/j. aquaeng.2012.07.004 google scholar
  • Bakhsh, H. K., & Chopin, T. (2012). A variation on the IMTA theme: a land-based, closed-containment freshwater IMTA system for tilapia and lettuce. Aquaculture Canada, 22, 57-60. google scholar
  • Bakhsh, H., Chopin, T., Murray, S., Hamer, E., & Belyea, A. (2015). Adapting tropical integrated aquaponic systems to temperate cold freshwater integrated multi-trophic aquaculture (FIMTA) systems. Aquaculture Canada 2014, Proceedings of Contributed Papers; Bulletin of the Aquaculture Association of Canada, pp. 17-25. google scholar
  • Barrington, K., Chopin, T., & Robinson, S. (2009). Integrated multi-trophic aquaculture (IMTA) in marine temperate waters. Integrated Mariculture - A Global Review - FAO Fisheries and Aquaculture Technical Paper N0. 529, (December), 7-46. doi: 10.1016/S0044-8486(03)00469-1 google scholar
  • Biswas, G., Kumar, P., Kailasam, M., Ghoshal, T. K., Bera, A., & Vijayan, K. K. (2019). Application of Integrated Multi Trophic Aquaculture (IMTA) Concept in Brackishwater Ecosystem: The First Exploratory Trial in the Sundarban, India. Journal of Coastal Research, 86(sp1), 49-55. doi: 10.2112/SI86-007.1 google scholar
  • Borges, B. A. A., Rocha, J. L., Pinto, P. H. O., Zacheu, T., Chede, A. C., Magnotti, C. C. F., Arana, L. A. V. (2020). Integrated culture of white shrimp Litopenaeus vannamei and mullet Mugil liza on biofloc technology: Zootechnical performance, sludge generation, and Vibrio spp. Reduction. Aquaculture, 524, 735234. doi: 10.1016/j. aquaculture.2020.735234 google scholar
  • Brito, L. O., Chagas, A. M., da Silva, E. P., Soares, R. B., Severi, W., & Galvez, A. O. (2016). Water quality, Vibrio density and growth of Pacific white shrimp Litopenaeus vannamei (Boone) in an integrated biofloc system with red seaweed Gracilaria birdiae (Greville). Aquaculture Research, 47(3), 940-950. doi: 10.1111/are.12552 google scholar
  • Buck, B., Troell, M., Krause, G., Angel, D., Grote, B., & Chopin, T. (2018). State of the Art and Challenges for Offshore Integrated Multi-Trophic Aquaculture (IMTA). Frontiers in Marine Science, 5(165), 1-21. google scholar Carras, M. A., Knowler, D., Pearce, C. M., Hamer, A., Chopin, T., & Weaire, T. (2020). A discounted cash-flow analysis of salmon monoculture and Integrated Multi-Trophic Aquaculture in eastern Canada. Aquaculture Economics and Management, 24(1), 43-63. doi:10.1080/13657305.2019.1641572 google scholar
  • Chopin, T., Robinson, S. M. C., Troell, M., Neori, A., Buschmann, A. H., & Fang, J. (2008). Multitrophic Integration for Sustainable Marine Aquaculture. Encyclopedia of Ecology, Five-Volume Set, (December), 2463-2475. doi: 10.1016/B978-008045405-4.00065-3 Chopin, T. (2006). Integrated Multi-Trophic Aquaculture What it is, and why you should care.... and don't confuse it with polyculture. Northern Aquaculture, (August), 2006. google scholar
  • Chopin, T. (2013a). Integrated Multi-Trophic Aquaculture Ancient, Adaptable Concept Focuses on Ecological Integration. Global Aquaculture Advocate, (March/ April), 16-19. google scholar
  • Chopin, T. (2013b). Aquaculture, Integrated Multi-trophic (IMTA) in Book: Sustainable Food Production (R.A. Meyers, Ed.). Springer, Dordrecht. doi: 10.1007/978-1-4614-5797-8 google scholar
  • Chopin, T., MacDonald, B., Robinson, S., Cross, S., Pearce, C., Knowler, D., & Hutchinson, M. (2013). The Canadian Integrated Multi-Trophic Aquaculture Network (CIMTAN)-A Network for a New Era of Ecosystem Responsible Aquaculture. Fisheries, 38(7), 297-308. google scholar
  • Chopin, T., Murray, S., & Bakhsh, H. K. (2016). Freshwater IMTA. Hatchery International: RECIRC IN ACTION, 31(April 2019), 1-3. google scholar
  • Cunha, M. E., Quental-Ferreira, H., Parejo, A., Gamito, S., Ribeiro, L., Moreira, M., Pousâo-Ferreira, P (2019). Understanding the individual role of fish, oyster, phytoplankton and macroalgae in the ecology of integrated production in earthen ponds. Aquaculture, 512(March), 734297. doi: 10.1016/j.aquaculture.2019.734297 google scholar
  • David, F. S., Proença, D. C., & Valenti, W. C. (2017). Phosphorus Budget in Integrated Multitrophic Aquaculture Systems with Nile Tilapia, Oreochromis niloticus, Amazon River Prawn, Macrobrachium amazonicum. Journal of the World Aquaculture Society, 48(3), 402-414. doi: 10.1111/jwas.12404 google scholar
  • Diana, J. S., Egna, H. S., Chopin, T., Peterson, M. S., Cao, L., Pomeroy, R., Cabello, F. (2013). Responsible aquaculture in 2050: Valuing local conditions and human innovations will be key to success. BioScience, 63(4), 255-262. doi: 10.1525/bio.2013.63.4.5 google scholar
  • Edwards, P. (2015). Aquaculture environment interactions: Past, present and likely future trends. Aquaculture, 447, 2-14. doi: 10.1016/j. aquaculture.2015.02.001 google scholar
  • FAO. (2018). The State of World Fisheries and Aquaculture 2018 -Meeting the sustainable development goals. In The State of The World series of the Food and Agriculture Organization of the United Nations. Aquaculture (Vol. 35). doi: ISSN 10 google scholar
  • FAO. (1995). Code of Conduct for Responsible Fisheries. Food And Agriculture Organization of The United Nations Rome, 1995. google scholar
  • FAO. (2022). Integrated multitrophic aquaculture: lessons from China. Bangkok. Food and Agriculture Organization of the United Nations, 1-8. google scholar
  • Flickinger, D. L., Costa, G. A., Dantas, D. P., Moraes-Valenti, P., & Valenti, W. C. (2019). The budget of nitrogen in the growHout of the Amazon river prawn (Macrobrachium amazonicum Heller) and tambaqui (Colossoma macropomum Cuvier) farmed in monoculture and in integrated multitrophic aquaculture systems. Aquaculture Research, 50, 444-3461. google scholar
  • Flickinger, D. L., Dantas, D. P., Proença, D. C., David, F. S., & Valenti, W. C. (2019a). Phosphorus in the culture of the Amazon River prawn (Macrobrachium amazonicum) and tambaqui (Colossoma macropomum) are farmed in monoculture and in integrated multitrophic systems. J World Aquacult Soc., 1-22. doi: 10.1111/ jwas.12655 google scholar
  • Flickinger, D. L., Costa, G. A., Dantas, D. P., Proença, D. C., David, F. S., Durborow, R. M., Valenti, W. C. (2020). The budget of carbon in the farming of the Amazon River prawn and tambaqui fish in earthen pond monoculture and integrated multitrophic systems. Aquaculture Reports, 17(September 2019), 100340. doi: 10.1016/j. google scholar
  • Franchini, A. C., Costa, G. A., Pereira, S. A., Valenti, W. C., & Moraes-Valenti, P. (2020). Improving production and diet assimilation in fish-prawn integrated aquaculture, using iliophagus species. Aquaculture, 521(January), 735048. doi: 10.1016/j.aquaculture.2020.735048 google scholar
  • Gaona, C. A. P., Poersch, L. H., Krummenauer, D., Foes, G. K., & Wasielesky, W. J. (2011). The Effect of Solids Removal on Water Quality, Growth and Survival of Litopenaeus vannamei in a Biofloc Technology Culture System. International Journal of Recirculating Aquaculture, 12(1). doi: 10.21061/ijra.v12i1.1354 google scholar
  • Giangrande, A., Pierri, C., Arduini, D., Borghese, J., Licciano, M., Trani, R., Longo, C. (2020). An innovative IMTA system: Polychaetes, sponges and macroalgae co-cultured in a Southern Italian in-shore mariculture plant (Ionian Sea). Journal of Marine Science and Engineering, 8(10), 1-24. doi: 10.3390/JMSE8100733 google scholar
  • Goada, A., Essa, M. A., Haassan, M., & Sharawy, Z. (2015). Bio Economic Features for Aquaponic Systems in Egypt. Turkish Journal of Fisheries and Aquatic Sciences, 15, 531-538. doi: 10.4194/1303-2712-v15_2_40 google scholar
  • Granada, L., Sousa, N., Lopes, S., & Lemos, M. F. L. (2016). is integrated multitrophic aquaculture the solution to the sector's significant challenges a review.pdf. Reviews in Aquaculture, 8, 283-300. doi: 10.1111/raq.12093 google scholar
  • Holanda, M., Santana, G., Furtado, P., Rodrigues, R. V., Cerqueira, V. R., Sampaio, L. A., Poersch, L. H. (2020). Evidence of total suspended solids control by Mugil liza reared in an integrated system with pacific white shrimp Litopenaeus vannamei using biofloc technology. Aquaculture Reports, 18(September). doi: 10.1016/j.aqrep.2020.100479 google scholar
  • Hu, F., Sun, M., Fang, J., Wang, G., Li, L., Gao, F., Guo, W. (2021). Carbon and nitrogen budget in fish-polychaete integrated aquaculture system. Journal of Oceanology and Limnology, 39(3), 1151-1159. doi: 10.1007/s00343-020-0218-z google scholar
  • Ibáñez Otazua, N., Blázquez Sánchez, M., Ruiz Yarritu, O., Unzueta Balmaseda, I., Aboseif, A. M., Abou Shabana, N. M., ... Goda, A. M. A. (2022). Integrated Multitrophic Aquaponics—A Promising Strategy for Cycling Plant Nutrients and Minimizing Water Consumption. 28. doi: 10.3390/iecho2022-12493 google scholar
  • Jaeger, C., & Aubin, J. (2018). Ecological intensification in multi-trophic aquaculture ponds: an experimental approach. Aquat. Living Resour., 31(36), 1-12. doi: 10.1051/alr/2018021 google scholar
  • Jaeger, C., Roucaute, M., Nahon, S., & Slembrouck, J. (2021). Effects of a lagoon on performances of a freshwater fishpond in a multi-trophic aquaculture system. Aquatic Living Resources, 34, 0-12. doi: 10.1051/ alr/2021004 google scholar
  • Jerónimo, D., Lilleb0, A. I., Santos, A., Cremades, J., & Calado, R. (2020). Performance of polychaete assisted sand filters under contrasting nutrient loads in an integrated multi-trophic aquaculture (IMTA) system. Scientific Reports, 10(1), 1-10. doi: 10.1038/s41598-020-77764-x google scholar
  • Kestemont, P (1995). Different systems of carp production and their impacts on the environment. Aquaculture, 129(1-4), 347-372. doi: 10.1016/0044-8486(94)00292-V google scholar
  • Khanjani, M. H., & Sharifinia, M. (2022). Biofloc technology with the addition of molasses as carbon sources applied to Litopenaeus vannamei juvenile production under the effects of different C/N ratios. Aquaculture International, 30(1), 383-397. doi: 10.1007/ s10499-021-00803-5 google scholar
  • Khanjani, M. H., Zahedi, S., & Mohammadi, A. (2022). Integrated multitrophic aquaculture (IMTA) as an environmentally friendly system for sustainable aquaculture: functionality, species, and application of biofloc technology (BFT). Environmental Science and Pollution Research, 29(45), 67513-67531. doi: 10.1007/s11356-022-22371-8 google scholar
  • Kibria, A. S. M., & Haque, M. M. (2018). Potentials of integrated multitrophic aquaculture (IMTA) in freshwater ponds in Bangladesh. Aquaculture Reports, 11(May), 8-16. doi: 10.1016/j.aqrep.2018.05.004 google scholar
  • Kodama, M. (2019). Overview and history of IMTA, from ancient to modern times in Understanding Current Challenges and Future Prospects in Integrated Multi-Trophic Aquaculture (IMTA) Research (Proceeding). Southeast Asian Fisheries Development Center Aquaculture Department and Japan International Research Center for Agricultural Sciences. google scholar
  • Largo, D. B., Diola, A. G., & Marababol, M. S. (2016). Development of an integrated multi-trophic aquaculture (IMTA) system for tropical marine species in southern Cebu, Central Philippines. Aquaculture Reports, 3, 67-76. doi: 10.1016/j.aqrep.2015.12.006 google scholar
  • Li, M., Callier, M. D., Blancheton, J. P, Galès, A., Nahon, S., Triplet, S., Roque d'orbcastel, E. (2019). Bioremediation of fishpond effluent and production of microalgae for an oyster farm in an innovative recirculating integrated multi-trophic aquaculture system. Aquaculture, 504(0ctober 2018), 314-325. doi: 10.1016/j.aquaculture.2019.02.013 google scholar
  • Lima, P. C. M., Silva, A. E. M., Silva, D. A., Silva, S. M. B. C., Brito, L. O., Gálvez, A. O. (2021). Effect of stocking density of Crassostrea sp. in a multitrophic biofloc system with Litopenaeus vannamei in nursery. Aquaculture, 530(June 2020), 735913. doi: 10.1016/j.aquaculture.2020.735913 google scholar
  • Magondu, E. W., Fulanda, B. M., Munguti, J. M., & Mlewa, C. M. (2022). Toward integration of sea cucumber and cockles with culture of shrimps in earthen ponds in Kenya. Journal of the World Aquaculture Society, 53(5), 948-962. doi: 10.1111/jwas.12861 google scholar
  • Martins, C. I. M., Eding, E. H., Verdegem, M. C. J., Heinsbroek, L. T. N., Schneider, O., Blancheton, J. P, Verreth, J. A. J. (2010). New developments in recirculating aquaculture systems in Europe: A perspective on environmental sustainability. Aquacultural Engineering, 43(3), 83-93. doi: 10.1016/j.aquaeng.2010.09.002 google scholar
  • Nath, K., Munilkumar, S., Patel, A. B., Kamilya, D., Pandey, P. K., & Banerjee Sawant, P. (2021). Lamellidens and Wolffia canopy improve growth, feed utilization and welfare of Labeo rohita (Hamilton,1822) in an integrated multi-trophic freshwater aquaculture system. Aquaculture, 534(July 2020), 736207. doi: 10.1016/j.aquaculture.2020.736207 google scholar
  • Naylor, R. L., Hardy, R. W., Buschmann, A. H., Bush, S. R., Cao, L., Klinger, D. H., Troell, M. (2021). A 20-year retrospective review of global aquaculture. Nature, 591(7851), 551-563. doi: 10.1038/s41586-021-03308-6 google scholar
  • Nederlof, M. A. J., Jansen, H. M., Dahlgren, T. G., Fang, J., Meier, S., Strand, 0., Smaal, A. C. (2019). Application of polychaetes in (de) coupled integrated aquaculture: Production of a high-quality marine resource. Aquaculture Environment Interactions, 11, 221-237. doi: 10.3354/AEI00309 google scholar
  • Neori, A., Chopin, T., Troell, M., Buschmann, A. H., Kraemer, G. P., Halling, C., Yarish, C. (2004). Integrated aquaculture: Rationale, evolution, and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture, 231(1-4), 361-391. doi: 10.1016/j.aquaculture.2003.11.015 google scholar
  • Nissar, S., Bakhtiyar, Y., Arafat, M. Y., Andrabi, S., Mir, Z. A., Khan, N. A., & Langer, S. (2023). The evolution of integrated multi-trophic aquaculture in context of its design and components paving way to valorisation via optimization and diversification. Aquaculture, 565(November 2022), 739074. doi: 10.1016/j.aquaculture.2022.739074 google scholar
  • Orellana, J., Waller, U., & Wecker, B. (2014). Culture of yellowtail kingfish (Seriola lalandi) in a marine recirculating aquaculture system (RAS) with artificial seawater. Aquacultural Engineering, 58, 20-28. doi: 10.1016/j.aquaeng.2013.09.004 google scholar
  • Otazua, N. I., Sanchez, M. B., Yarritu, O. R., Balmaseda, I. U., Aboseif, A. M., Abou Shabana, N. M., Taha, M. K. S., & Goda A. M. A. (2022). Integrated Multitrophic Aquaponics-A Promising Strategy for Cycling Plant Nutrients and Minimizing Water Consumption. Biol. Life Sci. Forum, 16(28). doi: 10.3390/IECHo2022-12493 google scholar
  • Oyinlola, M. A., Reygondeau, G., Wabnitz, C. C. C., Troell, M., & Cheung, W. W. L. (2018). Global estimation of areas with suitable environmental conditions for mariculture species. PLoS ONE, 13(1), 1-19. doi: 10.1371/journal.pone.0191086 google scholar
  • Paolacci, S., Stejskal, V., Toner, D., & Jansen, M. A. K. (2022). Wastewater valorisation in an integrated multitrophic aquaculture system; assessing nutrient removal and biomass production by duckweed species. Environmental Pollution, 302(February), 119059. doi: 10.1016/j.envpol.2022.119059 google scholar
  • Poli, M. A., Legarda, E. C., de Lorenzo, M. A., Martins, M. A., & do Nascimento Vieira, F. (2019). Pacific white shrimp and Nile tilapia integrated in a biofloc system under different fish-stocking densities. Aquaculture, 498(August 2018), 83-89. doi: 10.1016/j.aquaculture.2018.08.045 google scholar
  • Ray, A. J., Lewis, B. L., Browdy, C. L., & Leffler, J. W. (2010). Suspended solids removal to improve shrimp (Litopenaeus vannamei) production and an evaluation of a plant-based feed in minimal-exchange, superintensive culture systems. Aquaculture, 299(1-4), 89-98. doi: 10.1016/j.aquaculture.2009.11.021 google scholar
  • Reid, G. K., Lefebvre, S., Filgueira, R., Robinson, S. M. C., Broch, O. J., Dumas, A., & Chopin, T. B. R. (2018). Performance measures and models for open-water integrated multi-trophic aquaculture. Reviews in Aquaculture, 12(1), 47-75. doi: 10.1111/raq.12304 google scholar
  • Ren, J. S., Stenton-Dozey, J., Plew, D. R., Fang, J., & Gall, M. (2012). An ecosystem model for optimising production in integrated multitrophic aquaculture systems. Ecological Modelling, 246(C), 3446. doi: 10.1016/j.ecolmodel.2012.07.020 google scholar
  • Rosa, J., Lemos, M. F. L., Crespo, D., Nunes, M., Freitas, A., Ramos, F., Leston, S. (2020). Integrated multitrophic aquaculture systems -Potential risks for food safety. Trends in Food Science and Technology, 96(July 2019), 79-90. doi: 10.1016/j.tifs.2019.12.008 google scholar
  • Samocha, T. M., Fricker, J., Ali, A. M., Shpigel, M., & Neori, A. (2015). Growth and nutrient uptake of the macroalga Gracilaria tikvahiae cultured with the shrimp Litopenaeus vannamei in an Integrated Multi-Trophic Aquaculture (IMTA) system. Aquaculture, 446, 263-271. doi: 10.1016/j.aquaculture.2015.05.008 google scholar
  • Sanz-Lazaro, C., & Sanchez-Jerez, P. (2020). Regional Integrated Multi-Trophic Aquaculture (RIMTA): Spatially separated, ecologically linked. Journal of Environmental Management, 271(June), 110921. doi: 10.1016/j.jenvman.2020.110921 google scholar
  • Sarkar, S., Rekha, P. N., Panigrahi, A., Das, R. R., Rajamanickam, S., & Balasubramanian, C. P. (2021). Integrated brackishwater farming of red seaweed Agarophyton tenuistipitatum and Pacific white leg shrimp Litopenaeus vannamei (Boone) in biofloc system: a production and bioremediation way out. Aquaculture International, 29(5), 21452159. doi: 10.1007/s10499-021-00739-w google scholar
  • Sasikumar, G., & Viji, C. S. (2015). Integrated Multi-Trophic Aquaculture Systems (IMTA). In Winter School on Technological Advances in Mariculture for Production Enhancement and Sustainability, Course Manual. ICAR. google scholar
  • Schneider, O., Sereti, V., Eding, E. H., & Verreth, J. A. J. (2005). Analysis of nutrient flows in integrated intensive aquaculture systems. Aquacultural Engineering, 32(3-4), 379-401. doi: 10.1016/j.aquaeng.2004.09.001 google scholar
  • Shpigel, M., Ben Ari, T., Shauli, L., Odintsov, V., & Ben-Ezra, D. (2016). Nutrient recovery and sludge management in seabream and grey mullet co-culture in Integrated Multi-Trophic Aquaculture (IMTA). Aquaculture, 464, 316-322. doi: 10.1016/j.aquaculture.2016.07.007 google scholar
  • Shpigel, M., Guttman, L., Shauli, L., Odintsov, V., Ben-Ezra, D., & Harpaz, S. (2017). Ulva lactuca from an Integrated Multi-Trophic Aquaculture (IMTA) biofilter system as a protein supplement in the gilthead seabream (Sparus aurata) diet. Aquaculture, 481(January), 112-118. doi: 10.1016/j.aquaculture.2017.08.006 google scholar
  • Shpigel, M., Shauli, L., Odintsov, V., Ben-Ezra, D., Neori, A., & Guttman, L. (2018). The sea urchin, Paracentrotus lividus, in an Integrated Multi-Trophic Aquaculture (IMTA) system with fish (Sparus aurata) and seaweed (Ulva lactuca): Nitrogen partitioning and proportional configurations. Aquaculture, 490(February), 260-269. doi: 10.1016/j. aquaculture.2018.02.051 google scholar
  • Sumoharjo, & Maidie, A. (2013). Evaluation on Biofilter in Recirculating Integrated Multi-Trophic Aquaculture. International Journal of Science and Engineering, 4(April), 80-85. google scholar
  • Tacon, A. G. J., Metian, M., Turchini, G. M., & de Silva, S. S. (2010). Responsible aquaculture and trophic level implications to global fish supply. Reviews in Fisheries Science, 18(1), 94-105. doi:10.1080/10641260903325680 google scholar
  • Thomas, M., Pasquet, A., Aubin, J., Nahon, S., & Lecocq, T. (2020). When more is more: taking advantage of species diversity to move towards sustainable aquaculture. Biological Reviews, 96(2), 767-784. doi: 10.1111/brv.12677 google scholar
  • Troell, M., Kautsky N., Beveridge, M., Patrik, H., Primavera, J., Patrik, R., Folke Carl, J. M. (2017a). Aquaculture. Aquaculture Development and Practices. Reference Module in Life Sciences, (April 2016), 1-14. doi: 10.1016/B978-0-12-809633-8.02007-0 google scholar
  • Troell, M., Halling, C., Neori, A., Chopin, T., Buschmann, A. H., Kautsky, N., & Yarish, C. (2003). Integrated mariculture: Asking the right questions. Aquaculture, 226(1-4), 69-90. doi: 10.1016/S0044-8486(03)00469-1 google scholar
  • Troell, M. (2009). Integrated marine and brackishwater aquaculture in tropical regions. Integrated Mariculture - A Global Review - FAO Fisheries and Aquaculture Technical Paper No. 529, (October 2013), 47-132. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/ S0044848603004691 google scholar
  • Troell, M., Jonell, M., & Henriksson, P. J. G. (2017b). Ocean space for seafood. Nature Ecology and Evolution, 1(9), 1224-1225. doi:10.1038/s41559-017-0304-6 google scholar
  • Waite, R., Beveridge, M., Castine, S., & Chaiyawannakarn, N. (2014). Improving Productivity and Environmental. World Resource Institute, 160(January), 251-258. google scholar
  • Waller, U., Buhmann, A. K., Ernst, A., Hanke, V, Kulakowski, A., Wecker,B., ... Papenbrock, J. (2015). Integrated multi-trophic aquaculture in a zero-exchange recirculation aquaculture system for marine fish and hydroponic halophyte production. Aquaculture International, 23(6), 1473-1489. doi: 10.1007/s10499-015-9898-3 google scholar
  • Wei, Z., You, J., Wu, H., Yang, F., Long, L., Liu, Q., He, P. (2017). Bioremediation using Gracilaria lemaneiformis to manage the nitrogen and phosphorous balance in an integrated multi-trophic aquaculture system in Yantian Bay, China. Marine Pollution Bulletin, 121(1-2), 313-319. doi: 10.1016/j.marpolbul.2017.04.034 google scholar
  • White, K., O'Niell, B., & Tzankova, Z. (2004). At a Crossroads: Will Aquaculture Fulfill the Promise of the Blue Revolution ? A SeaWeb Aquaculture Clearinghouse Report, (January 2004), 17. Retrieved from www.AquacultureClearinghouse.org google scholar
  • Yokoyama, H. (2013). Suspended culture of the sea cucumber Apostichopus japonicus below a Pacific oyster raft - potential for integrated multi-trophic aquaculture. Aquaculture Research, 46(4), 825-832. doi: 10.1111/are.12234 google scholar
  • Zhang, J., Zhang, S., Kitazawa, D., Zhou, J., Park, S., Gao, S., & Shen, Y (2019). Bio-mitigation based on integrated multi-trophic aquaculture in temperate coastal waters: Practice, assessment, and challenges. Latin American Journal of Aquatic Research, 47(2), 212-223. doi: 10.3856/vol47-issue2-full text-1 google scholar
Year 2023, , 101 - 121, 15.05.2023
https://doi.org/10.26650/ASE20231252136

Abstract

Project Number

FDK-2022-39219

References

  • Amalia, R., Rejeki, S., Widowati, L. L. L., Ariyati, R. W. (2022). The growth of tiger shrimp (Penaeus monodon) and its dynamics of water quality in integrated culture. Biodiversitas, 23 (1), 593-600. doi: 10.13057/ biodiv/d230164 google scholar
  • Azhar, M. H., Suciyono, S., Budi, D. S., Ulkhaq, M. F., Anugrahwati, M., & Ekasari, J. (2020). Biofloc-based co-culture systems of Nile tilapia (Oreochromis niloticus) and redclaw crayfish (Cherax quadricarinatus) with different carbon-nitrogen ratios. Aquaculture International, 28(3), 1293-1304. doi: 10.1007/s10499-020-00526-z google scholar
  • Badiola, M., Mendiola, D., & Bostock, J. (2012). Recirculating Aquaculture Systems (RAS) analysis: Main issues on management and future challenges. Aquacultural Engineering, 51, 26-35. doi: 10.1016/j. aquaeng.2012.07.004 google scholar
  • Bakhsh, H. K., & Chopin, T. (2012). A variation on the IMTA theme: a land-based, closed-containment freshwater IMTA system for tilapia and lettuce. Aquaculture Canada, 22, 57-60. google scholar
  • Bakhsh, H., Chopin, T., Murray, S., Hamer, E., & Belyea, A. (2015). Adapting tropical integrated aquaponic systems to temperate cold freshwater integrated multi-trophic aquaculture (FIMTA) systems. Aquaculture Canada 2014, Proceedings of Contributed Papers; Bulletin of the Aquaculture Association of Canada, pp. 17-25. google scholar
  • Barrington, K., Chopin, T., & Robinson, S. (2009). Integrated multi-trophic aquaculture (IMTA) in marine temperate waters. Integrated Mariculture - A Global Review - FAO Fisheries and Aquaculture Technical Paper N0. 529, (December), 7-46. doi: 10.1016/S0044-8486(03)00469-1 google scholar
  • Biswas, G., Kumar, P., Kailasam, M., Ghoshal, T. K., Bera, A., & Vijayan, K. K. (2019). Application of Integrated Multi Trophic Aquaculture (IMTA) Concept in Brackishwater Ecosystem: The First Exploratory Trial in the Sundarban, India. Journal of Coastal Research, 86(sp1), 49-55. doi: 10.2112/SI86-007.1 google scholar
  • Borges, B. A. A., Rocha, J. L., Pinto, P. H. O., Zacheu, T., Chede, A. C., Magnotti, C. C. F., Arana, L. A. V. (2020). Integrated culture of white shrimp Litopenaeus vannamei and mullet Mugil liza on biofloc technology: Zootechnical performance, sludge generation, and Vibrio spp. Reduction. Aquaculture, 524, 735234. doi: 10.1016/j. aquaculture.2020.735234 google scholar
  • Brito, L. O., Chagas, A. M., da Silva, E. P., Soares, R. B., Severi, W., & Galvez, A. O. (2016). Water quality, Vibrio density and growth of Pacific white shrimp Litopenaeus vannamei (Boone) in an integrated biofloc system with red seaweed Gracilaria birdiae (Greville). Aquaculture Research, 47(3), 940-950. doi: 10.1111/are.12552 google scholar
  • Buck, B., Troell, M., Krause, G., Angel, D., Grote, B., & Chopin, T. (2018). State of the Art and Challenges for Offshore Integrated Multi-Trophic Aquaculture (IMTA). Frontiers in Marine Science, 5(165), 1-21. google scholar Carras, M. A., Knowler, D., Pearce, C. M., Hamer, A., Chopin, T., & Weaire, T. (2020). A discounted cash-flow analysis of salmon monoculture and Integrated Multi-Trophic Aquaculture in eastern Canada. Aquaculture Economics and Management, 24(1), 43-63. doi:10.1080/13657305.2019.1641572 google scholar
  • Chopin, T., Robinson, S. M. C., Troell, M., Neori, A., Buschmann, A. H., & Fang, J. (2008). Multitrophic Integration for Sustainable Marine Aquaculture. Encyclopedia of Ecology, Five-Volume Set, (December), 2463-2475. doi: 10.1016/B978-008045405-4.00065-3 Chopin, T. (2006). Integrated Multi-Trophic Aquaculture What it is, and why you should care.... and don't confuse it with polyculture. Northern Aquaculture, (August), 2006. google scholar
  • Chopin, T. (2013a). Integrated Multi-Trophic Aquaculture Ancient, Adaptable Concept Focuses on Ecological Integration. Global Aquaculture Advocate, (March/ April), 16-19. google scholar
  • Chopin, T. (2013b). Aquaculture, Integrated Multi-trophic (IMTA) in Book: Sustainable Food Production (R.A. Meyers, Ed.). Springer, Dordrecht. doi: 10.1007/978-1-4614-5797-8 google scholar
  • Chopin, T., MacDonald, B., Robinson, S., Cross, S., Pearce, C., Knowler, D., & Hutchinson, M. (2013). The Canadian Integrated Multi-Trophic Aquaculture Network (CIMTAN)-A Network for a New Era of Ecosystem Responsible Aquaculture. Fisheries, 38(7), 297-308. google scholar
  • Chopin, T., Murray, S., & Bakhsh, H. K. (2016). Freshwater IMTA. Hatchery International: RECIRC IN ACTION, 31(April 2019), 1-3. google scholar
  • Cunha, M. E., Quental-Ferreira, H., Parejo, A., Gamito, S., Ribeiro, L., Moreira, M., Pousâo-Ferreira, P (2019). Understanding the individual role of fish, oyster, phytoplankton and macroalgae in the ecology of integrated production in earthen ponds. Aquaculture, 512(March), 734297. doi: 10.1016/j.aquaculture.2019.734297 google scholar
  • David, F. S., Proença, D. C., & Valenti, W. C. (2017). Phosphorus Budget in Integrated Multitrophic Aquaculture Systems with Nile Tilapia, Oreochromis niloticus, Amazon River Prawn, Macrobrachium amazonicum. Journal of the World Aquaculture Society, 48(3), 402-414. doi: 10.1111/jwas.12404 google scholar
  • Diana, J. S., Egna, H. S., Chopin, T., Peterson, M. S., Cao, L., Pomeroy, R., Cabello, F. (2013). Responsible aquaculture in 2050: Valuing local conditions and human innovations will be key to success. BioScience, 63(4), 255-262. doi: 10.1525/bio.2013.63.4.5 google scholar
  • Edwards, P. (2015). Aquaculture environment interactions: Past, present and likely future trends. Aquaculture, 447, 2-14. doi: 10.1016/j. aquaculture.2015.02.001 google scholar
  • FAO. (2018). The State of World Fisheries and Aquaculture 2018 -Meeting the sustainable development goals. In The State of The World series of the Food and Agriculture Organization of the United Nations. Aquaculture (Vol. 35). doi: ISSN 10 google scholar
  • FAO. (1995). Code of Conduct for Responsible Fisheries. Food And Agriculture Organization of The United Nations Rome, 1995. google scholar
  • FAO. (2022). Integrated multitrophic aquaculture: lessons from China. Bangkok. Food and Agriculture Organization of the United Nations, 1-8. google scholar
  • Flickinger, D. L., Costa, G. A., Dantas, D. P., Moraes-Valenti, P., & Valenti, W. C. (2019). The budget of nitrogen in the growHout of the Amazon river prawn (Macrobrachium amazonicum Heller) and tambaqui (Colossoma macropomum Cuvier) farmed in monoculture and in integrated multitrophic aquaculture systems. Aquaculture Research, 50, 444-3461. google scholar
  • Flickinger, D. L., Dantas, D. P., Proença, D. C., David, F. S., & Valenti, W. C. (2019a). Phosphorus in the culture of the Amazon River prawn (Macrobrachium amazonicum) and tambaqui (Colossoma macropomum) are farmed in monoculture and in integrated multitrophic systems. J World Aquacult Soc., 1-22. doi: 10.1111/ jwas.12655 google scholar
  • Flickinger, D. L., Costa, G. A., Dantas, D. P., Proença, D. C., David, F. S., Durborow, R. M., Valenti, W. C. (2020). The budget of carbon in the farming of the Amazon River prawn and tambaqui fish in earthen pond monoculture and integrated multitrophic systems. Aquaculture Reports, 17(September 2019), 100340. doi: 10.1016/j. google scholar
  • Franchini, A. C., Costa, G. A., Pereira, S. A., Valenti, W. C., & Moraes-Valenti, P. (2020). Improving production and diet assimilation in fish-prawn integrated aquaculture, using iliophagus species. Aquaculture, 521(January), 735048. doi: 10.1016/j.aquaculture.2020.735048 google scholar
  • Gaona, C. A. P., Poersch, L. H., Krummenauer, D., Foes, G. K., & Wasielesky, W. J. (2011). The Effect of Solids Removal on Water Quality, Growth and Survival of Litopenaeus vannamei in a Biofloc Technology Culture System. International Journal of Recirculating Aquaculture, 12(1). doi: 10.21061/ijra.v12i1.1354 google scholar
  • Giangrande, A., Pierri, C., Arduini, D., Borghese, J., Licciano, M., Trani, R., Longo, C. (2020). An innovative IMTA system: Polychaetes, sponges and macroalgae co-cultured in a Southern Italian in-shore mariculture plant (Ionian Sea). Journal of Marine Science and Engineering, 8(10), 1-24. doi: 10.3390/JMSE8100733 google scholar
  • Goada, A., Essa, M. A., Haassan, M., & Sharawy, Z. (2015). Bio Economic Features for Aquaponic Systems in Egypt. Turkish Journal of Fisheries and Aquatic Sciences, 15, 531-538. doi: 10.4194/1303-2712-v15_2_40 google scholar
  • Granada, L., Sousa, N., Lopes, S., & Lemos, M. F. L. (2016). is integrated multitrophic aquaculture the solution to the sector's significant challenges a review.pdf. Reviews in Aquaculture, 8, 283-300. doi: 10.1111/raq.12093 google scholar
  • Holanda, M., Santana, G., Furtado, P., Rodrigues, R. V., Cerqueira, V. R., Sampaio, L. A., Poersch, L. H. (2020). Evidence of total suspended solids control by Mugil liza reared in an integrated system with pacific white shrimp Litopenaeus vannamei using biofloc technology. Aquaculture Reports, 18(September). doi: 10.1016/j.aqrep.2020.100479 google scholar
  • Hu, F., Sun, M., Fang, J., Wang, G., Li, L., Gao, F., Guo, W. (2021). Carbon and nitrogen budget in fish-polychaete integrated aquaculture system. Journal of Oceanology and Limnology, 39(3), 1151-1159. doi: 10.1007/s00343-020-0218-z google scholar
  • Ibáñez Otazua, N., Blázquez Sánchez, M., Ruiz Yarritu, O., Unzueta Balmaseda, I., Aboseif, A. M., Abou Shabana, N. M., ... Goda, A. M. A. (2022). Integrated Multitrophic Aquaponics—A Promising Strategy for Cycling Plant Nutrients and Minimizing Water Consumption. 28. doi: 10.3390/iecho2022-12493 google scholar
  • Jaeger, C., & Aubin, J. (2018). Ecological intensification in multi-trophic aquaculture ponds: an experimental approach. Aquat. Living Resour., 31(36), 1-12. doi: 10.1051/alr/2018021 google scholar
  • Jaeger, C., Roucaute, M., Nahon, S., & Slembrouck, J. (2021). Effects of a lagoon on performances of a freshwater fishpond in a multi-trophic aquaculture system. Aquatic Living Resources, 34, 0-12. doi: 10.1051/ alr/2021004 google scholar
  • Jerónimo, D., Lilleb0, A. I., Santos, A., Cremades, J., & Calado, R. (2020). Performance of polychaete assisted sand filters under contrasting nutrient loads in an integrated multi-trophic aquaculture (IMTA) system. Scientific Reports, 10(1), 1-10. doi: 10.1038/s41598-020-77764-x google scholar
  • Kestemont, P (1995). Different systems of carp production and their impacts on the environment. Aquaculture, 129(1-4), 347-372. doi: 10.1016/0044-8486(94)00292-V google scholar
  • Khanjani, M. H., & Sharifinia, M. (2022). Biofloc technology with the addition of molasses as carbon sources applied to Litopenaeus vannamei juvenile production under the effects of different C/N ratios. Aquaculture International, 30(1), 383-397. doi: 10.1007/ s10499-021-00803-5 google scholar
  • Khanjani, M. H., Zahedi, S., & Mohammadi, A. (2022). Integrated multitrophic aquaculture (IMTA) as an environmentally friendly system for sustainable aquaculture: functionality, species, and application of biofloc technology (BFT). Environmental Science and Pollution Research, 29(45), 67513-67531. doi: 10.1007/s11356-022-22371-8 google scholar
  • Kibria, A. S. M., & Haque, M. M. (2018). Potentials of integrated multitrophic aquaculture (IMTA) in freshwater ponds in Bangladesh. Aquaculture Reports, 11(May), 8-16. doi: 10.1016/j.aqrep.2018.05.004 google scholar
  • Kodama, M. (2019). Overview and history of IMTA, from ancient to modern times in Understanding Current Challenges and Future Prospects in Integrated Multi-Trophic Aquaculture (IMTA) Research (Proceeding). Southeast Asian Fisheries Development Center Aquaculture Department and Japan International Research Center for Agricultural Sciences. google scholar
  • Largo, D. B., Diola, A. G., & Marababol, M. S. (2016). Development of an integrated multi-trophic aquaculture (IMTA) system for tropical marine species in southern Cebu, Central Philippines. Aquaculture Reports, 3, 67-76. doi: 10.1016/j.aqrep.2015.12.006 google scholar
  • Li, M., Callier, M. D., Blancheton, J. P, Galès, A., Nahon, S., Triplet, S., Roque d'orbcastel, E. (2019). Bioremediation of fishpond effluent and production of microalgae for an oyster farm in an innovative recirculating integrated multi-trophic aquaculture system. Aquaculture, 504(0ctober 2018), 314-325. doi: 10.1016/j.aquaculture.2019.02.013 google scholar
  • Lima, P. C. M., Silva, A. E. M., Silva, D. A., Silva, S. M. B. C., Brito, L. O., Gálvez, A. O. (2021). Effect of stocking density of Crassostrea sp. in a multitrophic biofloc system with Litopenaeus vannamei in nursery. Aquaculture, 530(June 2020), 735913. doi: 10.1016/j.aquaculture.2020.735913 google scholar
  • Magondu, E. W., Fulanda, B. M., Munguti, J. M., & Mlewa, C. M. (2022). Toward integration of sea cucumber and cockles with culture of shrimps in earthen ponds in Kenya. Journal of the World Aquaculture Society, 53(5), 948-962. doi: 10.1111/jwas.12861 google scholar
  • Martins, C. I. M., Eding, E. H., Verdegem, M. C. J., Heinsbroek, L. T. N., Schneider, O., Blancheton, J. P, Verreth, J. A. J. (2010). New developments in recirculating aquaculture systems in Europe: A perspective on environmental sustainability. Aquacultural Engineering, 43(3), 83-93. doi: 10.1016/j.aquaeng.2010.09.002 google scholar
  • Nath, K., Munilkumar, S., Patel, A. B., Kamilya, D., Pandey, P. K., & Banerjee Sawant, P. (2021). Lamellidens and Wolffia canopy improve growth, feed utilization and welfare of Labeo rohita (Hamilton,1822) in an integrated multi-trophic freshwater aquaculture system. Aquaculture, 534(July 2020), 736207. doi: 10.1016/j.aquaculture.2020.736207 google scholar
  • Naylor, R. L., Hardy, R. W., Buschmann, A. H., Bush, S. R., Cao, L., Klinger, D. H., Troell, M. (2021). A 20-year retrospective review of global aquaculture. Nature, 591(7851), 551-563. doi: 10.1038/s41586-021-03308-6 google scholar
  • Nederlof, M. A. J., Jansen, H. M., Dahlgren, T. G., Fang, J., Meier, S., Strand, 0., Smaal, A. C. (2019). Application of polychaetes in (de) coupled integrated aquaculture: Production of a high-quality marine resource. Aquaculture Environment Interactions, 11, 221-237. doi: 10.3354/AEI00309 google scholar
  • Neori, A., Chopin, T., Troell, M., Buschmann, A. H., Kraemer, G. P., Halling, C., Yarish, C. (2004). Integrated aquaculture: Rationale, evolution, and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture, 231(1-4), 361-391. doi: 10.1016/j.aquaculture.2003.11.015 google scholar
  • Nissar, S., Bakhtiyar, Y., Arafat, M. Y., Andrabi, S., Mir, Z. A., Khan, N. A., & Langer, S. (2023). The evolution of integrated multi-trophic aquaculture in context of its design and components paving way to valorisation via optimization and diversification. Aquaculture, 565(November 2022), 739074. doi: 10.1016/j.aquaculture.2022.739074 google scholar
  • Orellana, J., Waller, U., & Wecker, B. (2014). Culture of yellowtail kingfish (Seriola lalandi) in a marine recirculating aquaculture system (RAS) with artificial seawater. Aquacultural Engineering, 58, 20-28. doi: 10.1016/j.aquaeng.2013.09.004 google scholar
  • Otazua, N. I., Sanchez, M. B., Yarritu, O. R., Balmaseda, I. U., Aboseif, A. M., Abou Shabana, N. M., Taha, M. K. S., & Goda A. M. A. (2022). Integrated Multitrophic Aquaponics-A Promising Strategy for Cycling Plant Nutrients and Minimizing Water Consumption. Biol. Life Sci. Forum, 16(28). doi: 10.3390/IECHo2022-12493 google scholar
  • Oyinlola, M. A., Reygondeau, G., Wabnitz, C. C. C., Troell, M., & Cheung, W. W. L. (2018). Global estimation of areas with suitable environmental conditions for mariculture species. PLoS ONE, 13(1), 1-19. doi: 10.1371/journal.pone.0191086 google scholar
  • Paolacci, S., Stejskal, V., Toner, D., & Jansen, M. A. K. (2022). Wastewater valorisation in an integrated multitrophic aquaculture system; assessing nutrient removal and biomass production by duckweed species. Environmental Pollution, 302(February), 119059. doi: 10.1016/j.envpol.2022.119059 google scholar
  • Poli, M. A., Legarda, E. C., de Lorenzo, M. A., Martins, M. A., & do Nascimento Vieira, F. (2019). Pacific white shrimp and Nile tilapia integrated in a biofloc system under different fish-stocking densities. Aquaculture, 498(August 2018), 83-89. doi: 10.1016/j.aquaculture.2018.08.045 google scholar
  • Ray, A. J., Lewis, B. L., Browdy, C. L., & Leffler, J. W. (2010). Suspended solids removal to improve shrimp (Litopenaeus vannamei) production and an evaluation of a plant-based feed in minimal-exchange, superintensive culture systems. Aquaculture, 299(1-4), 89-98. doi: 10.1016/j.aquaculture.2009.11.021 google scholar
  • Reid, G. K., Lefebvre, S., Filgueira, R., Robinson, S. M. C., Broch, O. J., Dumas, A., & Chopin, T. B. R. (2018). Performance measures and models for open-water integrated multi-trophic aquaculture. Reviews in Aquaculture, 12(1), 47-75. doi: 10.1111/raq.12304 google scholar
  • Ren, J. S., Stenton-Dozey, J., Plew, D. R., Fang, J., & Gall, M. (2012). An ecosystem model for optimising production in integrated multitrophic aquaculture systems. Ecological Modelling, 246(C), 3446. doi: 10.1016/j.ecolmodel.2012.07.020 google scholar
  • Rosa, J., Lemos, M. F. L., Crespo, D., Nunes, M., Freitas, A., Ramos, F., Leston, S. (2020). Integrated multitrophic aquaculture systems -Potential risks for food safety. Trends in Food Science and Technology, 96(July 2019), 79-90. doi: 10.1016/j.tifs.2019.12.008 google scholar
  • Samocha, T. M., Fricker, J., Ali, A. M., Shpigel, M., & Neori, A. (2015). Growth and nutrient uptake of the macroalga Gracilaria tikvahiae cultured with the shrimp Litopenaeus vannamei in an Integrated Multi-Trophic Aquaculture (IMTA) system. Aquaculture, 446, 263-271. doi: 10.1016/j.aquaculture.2015.05.008 google scholar
  • Sanz-Lazaro, C., & Sanchez-Jerez, P. (2020). Regional Integrated Multi-Trophic Aquaculture (RIMTA): Spatially separated, ecologically linked. Journal of Environmental Management, 271(June), 110921. doi: 10.1016/j.jenvman.2020.110921 google scholar
  • Sarkar, S., Rekha, P. N., Panigrahi, A., Das, R. R., Rajamanickam, S., & Balasubramanian, C. P. (2021). Integrated brackishwater farming of red seaweed Agarophyton tenuistipitatum and Pacific white leg shrimp Litopenaeus vannamei (Boone) in biofloc system: a production and bioremediation way out. Aquaculture International, 29(5), 21452159. doi: 10.1007/s10499-021-00739-w google scholar
  • Sasikumar, G., & Viji, C. S. (2015). Integrated Multi-Trophic Aquaculture Systems (IMTA). In Winter School on Technological Advances in Mariculture for Production Enhancement and Sustainability, Course Manual. ICAR. google scholar
  • Schneider, O., Sereti, V., Eding, E. H., & Verreth, J. A. J. (2005). Analysis of nutrient flows in integrated intensive aquaculture systems. Aquacultural Engineering, 32(3-4), 379-401. doi: 10.1016/j.aquaeng.2004.09.001 google scholar
  • Shpigel, M., Ben Ari, T., Shauli, L., Odintsov, V., & Ben-Ezra, D. (2016). Nutrient recovery and sludge management in seabream and grey mullet co-culture in Integrated Multi-Trophic Aquaculture (IMTA). Aquaculture, 464, 316-322. doi: 10.1016/j.aquaculture.2016.07.007 google scholar
  • Shpigel, M., Guttman, L., Shauli, L., Odintsov, V., Ben-Ezra, D., & Harpaz, S. (2017). Ulva lactuca from an Integrated Multi-Trophic Aquaculture (IMTA) biofilter system as a protein supplement in the gilthead seabream (Sparus aurata) diet. Aquaculture, 481(January), 112-118. doi: 10.1016/j.aquaculture.2017.08.006 google scholar
  • Shpigel, M., Shauli, L., Odintsov, V., Ben-Ezra, D., Neori, A., & Guttman, L. (2018). The sea urchin, Paracentrotus lividus, in an Integrated Multi-Trophic Aquaculture (IMTA) system with fish (Sparus aurata) and seaweed (Ulva lactuca): Nitrogen partitioning and proportional configurations. Aquaculture, 490(February), 260-269. doi: 10.1016/j. aquaculture.2018.02.051 google scholar
  • Sumoharjo, & Maidie, A. (2013). Evaluation on Biofilter in Recirculating Integrated Multi-Trophic Aquaculture. International Journal of Science and Engineering, 4(April), 80-85. google scholar
  • Tacon, A. G. J., Metian, M., Turchini, G. M., & de Silva, S. S. (2010). Responsible aquaculture and trophic level implications to global fish supply. Reviews in Fisheries Science, 18(1), 94-105. doi:10.1080/10641260903325680 google scholar
  • Thomas, M., Pasquet, A., Aubin, J., Nahon, S., & Lecocq, T. (2020). When more is more: taking advantage of species diversity to move towards sustainable aquaculture. Biological Reviews, 96(2), 767-784. doi: 10.1111/brv.12677 google scholar
  • Troell, M., Kautsky N., Beveridge, M., Patrik, H., Primavera, J., Patrik, R., Folke Carl, J. M. (2017a). Aquaculture. Aquaculture Development and Practices. Reference Module in Life Sciences, (April 2016), 1-14. doi: 10.1016/B978-0-12-809633-8.02007-0 google scholar
  • Troell, M., Halling, C., Neori, A., Chopin, T., Buschmann, A. H., Kautsky, N., & Yarish, C. (2003). Integrated mariculture: Asking the right questions. Aquaculture, 226(1-4), 69-90. doi: 10.1016/S0044-8486(03)00469-1 google scholar
  • Troell, M. (2009). Integrated marine and brackishwater aquaculture in tropical regions. Integrated Mariculture - A Global Review - FAO Fisheries and Aquaculture Technical Paper No. 529, (October 2013), 47-132. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/ S0044848603004691 google scholar
  • Troell, M., Jonell, M., & Henriksson, P. J. G. (2017b). Ocean space for seafood. Nature Ecology and Evolution, 1(9), 1224-1225. doi:10.1038/s41559-017-0304-6 google scholar
  • Waite, R., Beveridge, M., Castine, S., & Chaiyawannakarn, N. (2014). Improving Productivity and Environmental. World Resource Institute, 160(January), 251-258. google scholar
  • Waller, U., Buhmann, A. K., Ernst, A., Hanke, V, Kulakowski, A., Wecker,B., ... Papenbrock, J. (2015). Integrated multi-trophic aquaculture in a zero-exchange recirculation aquaculture system for marine fish and hydroponic halophyte production. Aquaculture International, 23(6), 1473-1489. doi: 10.1007/s10499-015-9898-3 google scholar
  • Wei, Z., You, J., Wu, H., Yang, F., Long, L., Liu, Q., He, P. (2017). Bioremediation using Gracilaria lemaneiformis to manage the nitrogen and phosphorous balance in an integrated multi-trophic aquaculture system in Yantian Bay, China. Marine Pollution Bulletin, 121(1-2), 313-319. doi: 10.1016/j.marpolbul.2017.04.034 google scholar
  • White, K., O'Niell, B., & Tzankova, Z. (2004). At a Crossroads: Will Aquaculture Fulfill the Promise of the Blue Revolution ? A SeaWeb Aquaculture Clearinghouse Report, (January 2004), 17. Retrieved from www.AquacultureClearinghouse.org google scholar
  • Yokoyama, H. (2013). Suspended culture of the sea cucumber Apostichopus japonicus below a Pacific oyster raft - potential for integrated multi-trophic aquaculture. Aquaculture Research, 46(4), 825-832. doi: 10.1111/are.12234 google scholar
  • Zhang, J., Zhang, S., Kitazawa, D., Zhou, J., Park, S., Gao, S., & Shen, Y (2019). Bio-mitigation based on integrated multi-trophic aquaculture in temperate coastal waters: Practice, assessment, and challenges. Latin American Journal of Aquatic Research, 47(2), 212-223. doi: 10.3856/vol47-issue2-full text-1 google scholar
There are 81 citations in total.

Details

Primary Language English
Subjects Hydrobiology
Journal Section Review
Authors

Muhammad Azhar 0000-0001-9620-5657

Devrim Memiş 0000-0001-7378-0165

Project Number FDK-2022-39219
Publication Date May 15, 2023
Submission Date February 17, 2023
Published in Issue Year 2023

Cite

APA Azhar, M., & Memiş, D. (2023). Application of the IMTA (Integrated Multi-Trophic Aquaculture) System in Freshwater, Brackish and Marine Aquaculture. Aquatic Sciences and Engineering, 38(2), 101-121. https://doi.org/10.26650/ASE20231252136
AMA Azhar M, Memiş D. Application of the IMTA (Integrated Multi-Trophic Aquaculture) System in Freshwater, Brackish and Marine Aquaculture. Aqua Sci Eng. May 2023;38(2):101-121. doi:10.26650/ASE20231252136
Chicago Azhar, Muhammad, and Devrim Memiş. “Application of the IMTA (Integrated Multi-Trophic Aquaculture) System in Freshwater, Brackish and Marine Aquaculture”. Aquatic Sciences and Engineering 38, no. 2 (May 2023): 101-21. https://doi.org/10.26650/ASE20231252136.
EndNote Azhar M, Memiş D (May 1, 2023) Application of the IMTA (Integrated Multi-Trophic Aquaculture) System in Freshwater, Brackish and Marine Aquaculture. Aquatic Sciences and Engineering 38 2 101–121.
IEEE M. Azhar and D. Memiş, “Application of the IMTA (Integrated Multi-Trophic Aquaculture) System in Freshwater, Brackish and Marine Aquaculture”, Aqua Sci Eng, vol. 38, no. 2, pp. 101–121, 2023, doi: 10.26650/ASE20231252136.
ISNAD Azhar, Muhammad - Memiş, Devrim. “Application of the IMTA (Integrated Multi-Trophic Aquaculture) System in Freshwater, Brackish and Marine Aquaculture”. Aquatic Sciences and Engineering 38/2 (May 2023), 101-121. https://doi.org/10.26650/ASE20231252136.
JAMA Azhar M, Memiş D. Application of the IMTA (Integrated Multi-Trophic Aquaculture) System in Freshwater, Brackish and Marine Aquaculture. Aqua Sci Eng. 2023;38:101–121.
MLA Azhar, Muhammad and Devrim Memiş. “Application of the IMTA (Integrated Multi-Trophic Aquaculture) System in Freshwater, Brackish and Marine Aquaculture”. Aquatic Sciences and Engineering, vol. 38, no. 2, 2023, pp. 101-2, doi:10.26650/ASE20231252136.
Vancouver Azhar M, Memiş D. Application of the IMTA (Integrated Multi-Trophic Aquaculture) System in Freshwater, Brackish and Marine Aquaculture. Aqua Sci Eng. 2023;38(2):101-2.

openaccess.jpgOpen Access Statement:

This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.