Evaluation of Food Wastes in Chlorella vulgaris Cultivation for Remazol Brilliant Blue R Biosorption
Year 2024,
, 1 - 7, 09.01.2024
Safiye Büşra Nazlı
,
Nazlıhan Tekin
,
Sevgi Ertuğrul Karatay
,
Gönül Dönmez
Abstract
The current study demonstrates the biosorption efficiency of Chlorella vulgaris for the removal of Remazol Brilliant Blue R (RBBR), which is often used in the textile industry. For this, optimization of microalgal growth was investigated under photoautotrophic conditions including only BG-11 medium and photoheterotrophic conditions containing 0.5 g/L of pumpkin waste, apple pomace, or glucose. Some critical parameters for RBBR biosorption onto dry C. vulgaris biomass, such as pH (2-10), initial concentration of RBBR (100-800 mg/L), biosorbent concentration (1-3 g/L), and biosorption time (0-120 min) were optimized. As a result of the study, the best growth of microalgae was determined as 0.502 g/L under photoheterotrophic cultivation condition, including 0.5 g/L of pumpkin waste sugar. The highest dye removal was calculated as 99.49% in the presence of 3 g/L microalgal biosorbent and 103.38 mg/L RBBR concentration at pH 4. These results indicate that C. vulgaris has a promising biosorbent for waste management and dye removal.
Thanks
Nazlıhan TEKİN was awarded a PhD Scholarship by Council of Higher Education (YOK) and the Scientific and Technological Research Council of Turkey (TUBITAK).
References
- Aksu, Z., & Tezer, S. (2005). Biosorption of reactive dyes on the green alga Chlorella vulgaris. Process Biochemistry, 40(3-4), 1347-1361. google scholar
- Al-Tohamy, R., Ali, S. S., Li, F., Okasha, K. M., Mahmoud, Y. A. G., Elsamahy, T., ... & Sun, J. (2022). A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicology and Environmental Safety, 231, 113160. google scholar
- Aracagök, Y. D. (2022). Biosorption of remazol Brilliant Blue R dye onto chemically modified and unmodified Yarrowia lipolytica biomass. Archives of Microbiology, 204(2), 128. google scholar
- Behl, K., Sinha, S., Sharma, M., Singh, R., Joshi, M., Bhatnagar, A., & Nigam, S. (2019). One-time cultivation of Chlorella pyrenoidosa in aqueous dye solution supplemented with biochar for microalgal growth, dye decolorization and lipid production. Chemical Engineering Journal, 364, 552-561. google scholar
- Benkhaya, S., M’rabet, S., & El Harfi, A. (2020). A review on classifications, recent synthesis and applications of textile dyes. Inorganic Chemistry Communications, 115, 107891. google scholar
- Chu, W. L., & Phang, S. M. (2019). Biosorption of heavy metals and dyes from industrial effluents by microalgae. Microalgae biotechnology for development of biofuel and wastewater treatment, 599-634. google scholar
- da Rosa, A. L. D., Carissimi, E., Dotto, G. L., Sander, H., & Feris, L. A. (2018). Biosorption of rhodamine B dye from dyeing stones effluents using the green microalgae Chlorella pyrenoidosa. Journal of Cleaner Production, 198, 1302-1310. google scholar
- El Amri, R., Elkacmi, R., & Boudouch, O. (2023). Removal of Methyl Orange from Water Using Microalgae: Effect of Operating Parameters, Equilibrium, Kinetic and Thermodynamic Studies. Chemistry Africa, 1-12. google scholar
- Ergene, A., Ada, K., Tan, S., & Katırcıoğlu, H. (2009). Removal of Remazol Brilliant Blue R dye from aqueous solutions by adsorption onto immobilized Scenedesmus quadricauda: Equilibrium and kinetic modeling studies. Desalination, 249(3), 1308-1314. google scholar
- FAOSTAT (2021) Crops and livestock products. Retrieved from https:// www.fao.org/faostat/en/#data/QCL (accessed 14.05.23) google scholar
- Gadd, G. M. (2009). Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 84(1), 13-28. google scholar
- Germec, M., & Turhan, I. (2018). Ethanol production from acid-pretreated and detoxified tea processing waste and its modeling. Fuel, 231, 101-109. google scholar
- Golub, N. B., & Voyevoda, D. V. (2013). Effect of sulphur compounds on cultivation process of microalgae Chlorella vulgaris. Chem. Technol. Appl. Subst, 761, 151-158. google scholar
- Goud, B. S., Cha, H. L., Koyyada, G., & Kim, J. H. (2020). Augmented biodegradation of textile azo dye effluents by plant endophytes: a sustainable, eco-friendly alternative. Current Microbiology, 77, 3240-3255. google scholar
- Gunasundari, E., Kumar, P. S., Rajamohan, N., & Vellaichamy, P. (2020). Feasibility of naphthol green-b dye adsorption using microalgae: Thermodynamic and kinetic analysis. Desalination and Water Treatment, 192, 358-370. google scholar
- Gül, U. D. (2022). Utilization of Surfactants to Augment Decolorization Process by Biosorbent. NanoWorld J, 8(4), 107-112. google scholar
- Hernândez-Zamora, M., Cristiani-Urbina, E., Martınez-Jeronimo, F., Perales-Vela, H. V., Ponce-Noyola, T., Montes-Horcasitas, M. D. C., & Canizares-Villanueva, R. O. (2015). Bioremoval of the azo dye Congo Red by the microalga Chlorella vulgaris. Environmental Science and Pollution Research, 22, 10811-10823. google scholar
- Isleten-Hosoglu, M., Ayyıldız-Tamis, D., Zengin, G., & Elibol, M. (2013). Enhanced growth and lipid accumulation by a new Ettlia texensis isolate under optimized photoheterotrophic condition. Bioresource technology, 131, 258-265. google scholar
- Joo, G., Lee, W., & Choi, Y. (2021). Heavy metal adsorption capacity of powdered Chlorella vulgaris biosorbent: effect of chemical modification and growth media. Environmental Science and Pollution Research, 28, 25390-25399. google scholar
- Kassim, M. A., Ramli, S. H., & Meng, T. K. (2022). Analysis of microalgal growth kinetic model and carbohydrate biosynthesis cultivated using agro-industrial waste residuals as carbon source. Preparative biochemistry & biotechnology, 52(5), 514-524. google scholar
- Khataee, A. R., Vafaei, F., & Jannatkhah, M. (2013). Biosorption of three textile dyes from contaminated water by filamentous green algal Spirogyra sp.: Kinetic, isotherm and thermodynamic studies. International Biodeterioration & Biodegradation, 83, 33-40. google scholar
- Kidon, M., & Uwineza, P. A. (2022). New Smoothie Products Based on Pumpkin, Banana, and Purple Carrot as a Source of Bioactive Compounds. Molecules, 27(10), 3049. google scholar
- Kumar, S., Ahluwalia, A. S., & Charaya, M. U. (2019). Adsorption of Orange-G dye by the dried powdered biomass of Chlorella vulgaris Beijerinck. Current Science, 116(4), 604-611. google scholar
- Lai, H. J. (2021). Adsorption of remazol brilliant violet 5R (RBV-5R) and remazol brilliant blue R (RBBR) from aqueous solution by using agriculture waste. Tropical Aquatic and Soil Pollution, 1(1), 11-23. google scholar
- Manzoor, M., Ahmad, Q. U. A., Aslam, A., Jabeen, F., Rasul, A., Schenk, P. M., & Qazi, J. I. (2020). Mixotrophic cultivation of Scenedesmus dimorphus in sugarcane bagasse hydrolysate. Environmental Progress & Sustainable Energy, 39(2), e13334. google scholar
- Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical chemistry, 31(3), 426-428. google scholar
- Mohammad Mirzaie, M. A., Kalbasi, M., Mousavi, S. M., & Ghobadian, B. (2016). Investigation of mixotrophic, heterotrophic, and autotrophic growth of Chlorella vulgaris under agricultural waste medium. Preparative Biochemistry & Biotechnology, 46(2), 150-156. google scholar
- Mohd Khori, N. K. E., Hadibarata, T., Elshikh, M. S., Al-Ghamdi, A. A., & Yusop, Z. (2018). Triclosan removal by adsorption using activated carbon derived from waste biomass: Isotherms and kinetic studies. Journal of the Chinese Chemical Society, 65(8), 951-959. google scholar
- Mustafa, S., Bhatti, H. N., Maqbool, M., & Iqbal, M. (2021). Microalgae biosorption, bioaccumulation and biodegradation efficiency for the remediation of wastewater and carbon dioxide mitigation: Prospects, challenges and opportunities. Journal of Water Process Engineering, 41, 102009. google scholar
- Park, W. K., Moon, M., Kwak, M. S., Jeon, S., Choi, G. G., Yang, J. W., & Lee, B. (2014). Use of orange peel extract for mixotrophic cultivation of Chlorella vulgaris: increased production of biomass and FAMEs. Bioresource technology, 171, 343-349. google scholar
- Premaratne, M., Nishshanka, G. K. S. H., Liyanaarachchi, V. C., Nimarshana, P. H. V., & Ariyadasa, T. U. (2021). Bioremediation of textile dye wastewater using microalgae: current trends and future perspectives. Journal of Chemical Technology & Biotechnology, 96(12), 3249-3258. google scholar
- Radwan, E. K., Abdel-Aty, A. M., El-Wakeel, S. T., & Abdel Ghafar, H. H. (2020). Bioremediation of potentially toxic metal and reactive dye-contaminated water by pristine and modified Chlorella vulgaris. Environmental Science and Pollution Research, 27, 21777-21789. google scholar
- Revathi, S., Kumar, S. M., Santhanam, P., Kumar, S. D., Son, N., & Kim, M. K. (2017). Bioremoval of the indigo blue dye by immobilized microalga Chlorella vulgaris (PSBDU06). Journal of Scientific & Industrial Research, 76:50-56. google scholar
- Rippka, R. (1988). [1] Isolation and purification of cyanobacteria. Methods in enzymology, 167, 3-27. google scholar
- Salleh, M. A. M., Mahmoud, D. K., Karim, W. A. W. A., & Idris, A. (2011). Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review. Desalination, 280(1-3), 1-13. google scholar
- Saratale, R. G., Ponnusamy, V., Sirohi, R., Piechota, G., Shobana, S., Dharmaraja, J., ... & Veermuthu, A. (2022). Microalgae cultivation strategies using cost-effective nutrient sources: recent updates and progress towards biofuel production. Bioresource Technology, 127691. google scholar
- Seth, B. M., Uniyal, V., Kumar, D., & Singh, A. (2021). Sorption of cationic and anionic dyes by dead biomass of filamentous green alga Cladophora sp.(Chlorophyceae). International Journal of Environmental Science and Technology, 19:12079-12090. google scholar
- Shabir, M., Yasin, M., Hussain, M., Shafiq, I., Akhter, P., Nizami, A. S., ... & Park, Y. K. (2022). A review on recent advances in the treatment of dye-polluted wastewater. Journal of Industrial and Engineering Chemistry, 112:1-19. google scholar
- Sharma, A. K., Sahoo, P. K., Singhal, S., & Patel, A. (2016). Impact of various media and organic carbon sources on biofuel production potential from Chlorella spp. 3 Biotech, 6, 1-12. google scholar
- V aldez-Arjona, L. P., & Ramırez-Mella, M. (2019). Pumpkin waste as livestock feed: Impact on nutrition and animal health and on quality of meat, milk, and egg. Animals, 9 (10), 769. google scholar
- V erma, R. K., Sankhla, M. S., Rathod, N. V., Sonone, S. S., Parihar, K., & Singh, G. K. (2021). Eradication of fatal textile industrial dyes by wastewater treatment. Biointerface Res. Appl. Chem, 12, 567-587. google scholar
- W ang, Y., Guo, W., Cheng, C. L., Ho, S. H., Chang, J. S., & Ren, N. (2016). Enhancing bio-butanol production from biomass of Chlorella vulgaris JSC-6 with sequential alkali pretreatment and acid hydrolysis. Bioresource technology, 200, 557-564. google scholar
- Y u, J., Zhang, X., Wang, D., & Li, P. (2018). Adsorption of methyl orange dye onto biochar adsorbent prepared from chicken manure. Water Science and Technology, 77(5), 1303-1312. google scholar
- Y u, K. L., Lee, X. J., Ong, H. C., Chen, W. H., Chang, J. S., Lin, C. S., ... & Ling, T. C. (2021). Adsorptive removal of cationic methylene blue and anionic Congo red dyes using wet-torrefied microalgal biochar: Equilibrium, kinetic and mechanism modeling. Environmental pollution, 272, 115986. google scholar
- Zohoorian, H., Ahmadzadeh, H., Molazadeh, M., Shourian, M., & Lyon, S. (2020). Microalgal bioremediation of heavy metals and dyes. In Handbook of algal science, technology and medicine (pp. 659-674). Academic Press. google scholar
Year 2024,
, 1 - 7, 09.01.2024
Safiye Büşra Nazlı
,
Nazlıhan Tekin
,
Sevgi Ertuğrul Karatay
,
Gönül Dönmez
References
- Aksu, Z., & Tezer, S. (2005). Biosorption of reactive dyes on the green alga Chlorella vulgaris. Process Biochemistry, 40(3-4), 1347-1361. google scholar
- Al-Tohamy, R., Ali, S. S., Li, F., Okasha, K. M., Mahmoud, Y. A. G., Elsamahy, T., ... & Sun, J. (2022). A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicology and Environmental Safety, 231, 113160. google scholar
- Aracagök, Y. D. (2022). Biosorption of remazol Brilliant Blue R dye onto chemically modified and unmodified Yarrowia lipolytica biomass. Archives of Microbiology, 204(2), 128. google scholar
- Behl, K., Sinha, S., Sharma, M., Singh, R., Joshi, M., Bhatnagar, A., & Nigam, S. (2019). One-time cultivation of Chlorella pyrenoidosa in aqueous dye solution supplemented with biochar for microalgal growth, dye decolorization and lipid production. Chemical Engineering Journal, 364, 552-561. google scholar
- Benkhaya, S., M’rabet, S., & El Harfi, A. (2020). A review on classifications, recent synthesis and applications of textile dyes. Inorganic Chemistry Communications, 115, 107891. google scholar
- Chu, W. L., & Phang, S. M. (2019). Biosorption of heavy metals and dyes from industrial effluents by microalgae. Microalgae biotechnology for development of biofuel and wastewater treatment, 599-634. google scholar
- da Rosa, A. L. D., Carissimi, E., Dotto, G. L., Sander, H., & Feris, L. A. (2018). Biosorption of rhodamine B dye from dyeing stones effluents using the green microalgae Chlorella pyrenoidosa. Journal of Cleaner Production, 198, 1302-1310. google scholar
- El Amri, R., Elkacmi, R., & Boudouch, O. (2023). Removal of Methyl Orange from Water Using Microalgae: Effect of Operating Parameters, Equilibrium, Kinetic and Thermodynamic Studies. Chemistry Africa, 1-12. google scholar
- Ergene, A., Ada, K., Tan, S., & Katırcıoğlu, H. (2009). Removal of Remazol Brilliant Blue R dye from aqueous solutions by adsorption onto immobilized Scenedesmus quadricauda: Equilibrium and kinetic modeling studies. Desalination, 249(3), 1308-1314. google scholar
- FAOSTAT (2021) Crops and livestock products. Retrieved from https:// www.fao.org/faostat/en/#data/QCL (accessed 14.05.23) google scholar
- Gadd, G. M. (2009). Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 84(1), 13-28. google scholar
- Germec, M., & Turhan, I. (2018). Ethanol production from acid-pretreated and detoxified tea processing waste and its modeling. Fuel, 231, 101-109. google scholar
- Golub, N. B., & Voyevoda, D. V. (2013). Effect of sulphur compounds on cultivation process of microalgae Chlorella vulgaris. Chem. Technol. Appl. Subst, 761, 151-158. google scholar
- Goud, B. S., Cha, H. L., Koyyada, G., & Kim, J. H. (2020). Augmented biodegradation of textile azo dye effluents by plant endophytes: a sustainable, eco-friendly alternative. Current Microbiology, 77, 3240-3255. google scholar
- Gunasundari, E., Kumar, P. S., Rajamohan, N., & Vellaichamy, P. (2020). Feasibility of naphthol green-b dye adsorption using microalgae: Thermodynamic and kinetic analysis. Desalination and Water Treatment, 192, 358-370. google scholar
- Gül, U. D. (2022). Utilization of Surfactants to Augment Decolorization Process by Biosorbent. NanoWorld J, 8(4), 107-112. google scholar
- Hernândez-Zamora, M., Cristiani-Urbina, E., Martınez-Jeronimo, F., Perales-Vela, H. V., Ponce-Noyola, T., Montes-Horcasitas, M. D. C., & Canizares-Villanueva, R. O. (2015). Bioremoval of the azo dye Congo Red by the microalga Chlorella vulgaris. Environmental Science and Pollution Research, 22, 10811-10823. google scholar
- Isleten-Hosoglu, M., Ayyıldız-Tamis, D., Zengin, G., & Elibol, M. (2013). Enhanced growth and lipid accumulation by a new Ettlia texensis isolate under optimized photoheterotrophic condition. Bioresource technology, 131, 258-265. google scholar
- Joo, G., Lee, W., & Choi, Y. (2021). Heavy metal adsorption capacity of powdered Chlorella vulgaris biosorbent: effect of chemical modification and growth media. Environmental Science and Pollution Research, 28, 25390-25399. google scholar
- Kassim, M. A., Ramli, S. H., & Meng, T. K. (2022). Analysis of microalgal growth kinetic model and carbohydrate biosynthesis cultivated using agro-industrial waste residuals as carbon source. Preparative biochemistry & biotechnology, 52(5), 514-524. google scholar
- Khataee, A. R., Vafaei, F., & Jannatkhah, M. (2013). Biosorption of three textile dyes from contaminated water by filamentous green algal Spirogyra sp.: Kinetic, isotherm and thermodynamic studies. International Biodeterioration & Biodegradation, 83, 33-40. google scholar
- Kidon, M., & Uwineza, P. A. (2022). New Smoothie Products Based on Pumpkin, Banana, and Purple Carrot as a Source of Bioactive Compounds. Molecules, 27(10), 3049. google scholar
- Kumar, S., Ahluwalia, A. S., & Charaya, M. U. (2019). Adsorption of Orange-G dye by the dried powdered biomass of Chlorella vulgaris Beijerinck. Current Science, 116(4), 604-611. google scholar
- Lai, H. J. (2021). Adsorption of remazol brilliant violet 5R (RBV-5R) and remazol brilliant blue R (RBBR) from aqueous solution by using agriculture waste. Tropical Aquatic and Soil Pollution, 1(1), 11-23. google scholar
- Manzoor, M., Ahmad, Q. U. A., Aslam, A., Jabeen, F., Rasul, A., Schenk, P. M., & Qazi, J. I. (2020). Mixotrophic cultivation of Scenedesmus dimorphus in sugarcane bagasse hydrolysate. Environmental Progress & Sustainable Energy, 39(2), e13334. google scholar
- Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical chemistry, 31(3), 426-428. google scholar
- Mohammad Mirzaie, M. A., Kalbasi, M., Mousavi, S. M., & Ghobadian, B. (2016). Investigation of mixotrophic, heterotrophic, and autotrophic growth of Chlorella vulgaris under agricultural waste medium. Preparative Biochemistry & Biotechnology, 46(2), 150-156. google scholar
- Mohd Khori, N. K. E., Hadibarata, T., Elshikh, M. S., Al-Ghamdi, A. A., & Yusop, Z. (2018). Triclosan removal by adsorption using activated carbon derived from waste biomass: Isotherms and kinetic studies. Journal of the Chinese Chemical Society, 65(8), 951-959. google scholar
- Mustafa, S., Bhatti, H. N., Maqbool, M., & Iqbal, M. (2021). Microalgae biosorption, bioaccumulation and biodegradation efficiency for the remediation of wastewater and carbon dioxide mitigation: Prospects, challenges and opportunities. Journal of Water Process Engineering, 41, 102009. google scholar
- Park, W. K., Moon, M., Kwak, M. S., Jeon, S., Choi, G. G., Yang, J. W., & Lee, B. (2014). Use of orange peel extract for mixotrophic cultivation of Chlorella vulgaris: increased production of biomass and FAMEs. Bioresource technology, 171, 343-349. google scholar
- Premaratne, M., Nishshanka, G. K. S. H., Liyanaarachchi, V. C., Nimarshana, P. H. V., & Ariyadasa, T. U. (2021). Bioremediation of textile dye wastewater using microalgae: current trends and future perspectives. Journal of Chemical Technology & Biotechnology, 96(12), 3249-3258. google scholar
- Radwan, E. K., Abdel-Aty, A. M., El-Wakeel, S. T., & Abdel Ghafar, H. H. (2020). Bioremediation of potentially toxic metal and reactive dye-contaminated water by pristine and modified Chlorella vulgaris. Environmental Science and Pollution Research, 27, 21777-21789. google scholar
- Revathi, S., Kumar, S. M., Santhanam, P., Kumar, S. D., Son, N., & Kim, M. K. (2017). Bioremoval of the indigo blue dye by immobilized microalga Chlorella vulgaris (PSBDU06). Journal of Scientific & Industrial Research, 76:50-56. google scholar
- Rippka, R. (1988). [1] Isolation and purification of cyanobacteria. Methods in enzymology, 167, 3-27. google scholar
- Salleh, M. A. M., Mahmoud, D. K., Karim, W. A. W. A., & Idris, A. (2011). Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review. Desalination, 280(1-3), 1-13. google scholar
- Saratale, R. G., Ponnusamy, V., Sirohi, R., Piechota, G., Shobana, S., Dharmaraja, J., ... & Veermuthu, A. (2022). Microalgae cultivation strategies using cost-effective nutrient sources: recent updates and progress towards biofuel production. Bioresource Technology, 127691. google scholar
- Seth, B. M., Uniyal, V., Kumar, D., & Singh, A. (2021). Sorption of cationic and anionic dyes by dead biomass of filamentous green alga Cladophora sp.(Chlorophyceae). International Journal of Environmental Science and Technology, 19:12079-12090. google scholar
- Shabir, M., Yasin, M., Hussain, M., Shafiq, I., Akhter, P., Nizami, A. S., ... & Park, Y. K. (2022). A review on recent advances in the treatment of dye-polluted wastewater. Journal of Industrial and Engineering Chemistry, 112:1-19. google scholar
- Sharma, A. K., Sahoo, P. K., Singhal, S., & Patel, A. (2016). Impact of various media and organic carbon sources on biofuel production potential from Chlorella spp. 3 Biotech, 6, 1-12. google scholar
- V aldez-Arjona, L. P., & Ramırez-Mella, M. (2019). Pumpkin waste as livestock feed: Impact on nutrition and animal health and on quality of meat, milk, and egg. Animals, 9 (10), 769. google scholar
- V erma, R. K., Sankhla, M. S., Rathod, N. V., Sonone, S. S., Parihar, K., & Singh, G. K. (2021). Eradication of fatal textile industrial dyes by wastewater treatment. Biointerface Res. Appl. Chem, 12, 567-587. google scholar
- W ang, Y., Guo, W., Cheng, C. L., Ho, S. H., Chang, J. S., & Ren, N. (2016). Enhancing bio-butanol production from biomass of Chlorella vulgaris JSC-6 with sequential alkali pretreatment and acid hydrolysis. Bioresource technology, 200, 557-564. google scholar
- Y u, J., Zhang, X., Wang, D., & Li, P. (2018). Adsorption of methyl orange dye onto biochar adsorbent prepared from chicken manure. Water Science and Technology, 77(5), 1303-1312. google scholar
- Y u, K. L., Lee, X. J., Ong, H. C., Chen, W. H., Chang, J. S., Lin, C. S., ... & Ling, T. C. (2021). Adsorptive removal of cationic methylene blue and anionic Congo red dyes using wet-torrefied microalgal biochar: Equilibrium, kinetic and mechanism modeling. Environmental pollution, 272, 115986. google scholar
- Zohoorian, H., Ahmadzadeh, H., Molazadeh, M., Shourian, M., & Lyon, S. (2020). Microalgal bioremediation of heavy metals and dyes. In Handbook of algal science, technology and medicine (pp. 659-674). Academic Press. google scholar