Research Article
BibTex RIS Cite
Year 2022, , 46 - 52, 01.01.2022
https://doi.org/10.26650/ASE2021972678

Abstract

References

  • Ahmad, M. T., Shariff, M., Md. Yusoff, F., Goh, Y. M. & Banerjee, S. (2020). Applications of microalga Chlorella vulgaris in aquaculture. Reviews in Aquaculture, 12(1), 328-346. [CrossRef] google scholar
  • Araujo, G. S., Silva, J. W., Viana, C. A. & Fernandes, F. A. (2020). Effect of sodium nitrate concentration on biomass and oil production of four microalgae species. International Journal of Sustainable Energy, 39(1), 41-50. [CrossRef] google scholar
  • Bartley, M. L., Boeing, W. J., Daniel, D., Dungan, B. N. & Schaub, T. (2016). Optimization of environmental parameters for Nannochloropsis salina growth and lipid content using the response surface method and invading organisms. Journal of applied phycology, 28, 15-24. [CrossRef] google scholar
  • Butcher, R. W. (1959). An introductory account of the smaller algae of British coastal waters Part I. Introduction and Chlorophyceae. Fish Investig, 4, 1-74. google scholar
  • Cai, T., Park, S. Y. & Li, Y. (2013). Nutrient recovery from wastewater streams by microalgae: status and prospects. Renewable and Sustainable Energy Reviews, 19, 360-369. [CrossRef] google scholar
  • Clesceri, L. S., Greenberg, A. E. & Trussel, R. R. (1989). Standard methods for the examination of water and wastewater, Published by the Am. Publ. Health Assoc., Am. Water Works Assoc. and Water Pollution Control Fed. google scholar
  • Darvehei, P., Bahri, P. A. & Moheimani, N. R. (2018). Model development for the growth of microalgae: A review. Renewable and Sustainable Energy Reviews, 97, 233-258. [CrossRef] google scholar
  • Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T. & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical chemistry, 28(3), 350-356. [CrossRef] google scholar
  • El-Kassas, H. Y. (2013). Growth and fatty acid profile of the marine microalga Picochlorum sp. grown under nutrient stress conditions. The Egyptian Journal of Aquatic Research, 39(4), 233-239. [CrossRef] google scholar
  • Ghezelbash, F., Farboodnia, T., Heidari, R. & Agh, N. (2008). Biochemical effects of different salinities and luminance on green microalgae Tetraselmis chuii. Research Journal of Biological Sciences, 3(2), 217221. google scholar
  • Gu, H., Nagle, N., Pienkos, P. T. & Posewitz, M. C. (2015). Nitrogen recycling from fuel-extracted algal biomass: residuals as the sole nitrogen source for culturing Scenedesmus acutus. Bioresource technology, 184, 153-160. [CrossRef] google scholar
  • Guiheneuf, F. & Stengel, D. B. (2015). Towards the biorefinery concept: Interaction of light, temperature and nitrogen for optimizing the co-production of high-value compounds in Porphyridium purpureum. Algal research, 10, 152-163. [CrossRef] google scholar
  • Hibberd, D. J. (1981). Notes on the taxonomy and nomenclature of the algal classes Eustigmatophyceae and Tribophyceae (synonym Xanthophyceae). Botanical journal of the linnean society. [CrossRef] google scholar
  • Ho, S. H., Ye, X., Hasunuma, T., Chang, J. S. & Kondo, A. (2014). Perspectives on engineering strategies for improving biofuel production from microalgae—a critical review. Biotechnology advances, 32(8), 1448-1459. [CrossRef] google scholar
  • Huang, X., Huang, Z., Wen, W. & Yan, J. (2013). Effects of nitrogen supplementation of the culture medium on the growth, total lipid content and fatty acid profiles of three microalgae (Tetraselmis subcordiformis, Nannochloropsis oculata and Pavlova viridis). Journal of Applied Phycology. [CrossRef] google scholar
  • James, D. B. (1996). Inception report on sea cucumber culture in Laamu Atoll, Maldives. Food and Agriculture Organization of the United Nations, Bangkok, TCP/MDV/4452 Field Document 1. google scholar
  • Khatoon, H., Banerjee, S., Yusoff, F. M. & Shariff, M. (2013). Use of microalgal - enriched D iaphanosoma celebensis S tingelin, 1900 for rearing L itopenaeus vannamei (B oone, 1931) postlarvae. Aquaculture Nutrition, 19, 163-171. [CrossRef] google scholar
  • Khatoon, H., Haris, H., Rahman, N. A., Zakaria, M. N., Begum, H. & Mian, S. (2018). Growth, proximate composition and pigment production of Tetraselmis chuii cultured with aquaculture wastewater. Journal of Ocean University of China, 17 (3), 641-646. [CrossRef] google scholar
  • Khatoon, H., Rahman, N. A., Banerjee, S., Harun, N., Suleiman, S. S., Zakaria, N. H. & Endut, A. (2014). Effects of different salinities and pH on the growth and proximate composition of Nannochloropsis sp. and Tetraselmis sp. isolated from South China Sea cultured under control and natural condition. International Biodeterioration & Biodegradation, 95, 11-18. [CrossRef] google scholar
  • Kim, G., Mujtaba, G. & Lee, K. (2016). Effects of nitrogen sources on cell growth and biochemical composition of marine chlorophyte Tetraselmis sp. for lipid production. Algae, 31(3), 257-266. [CrossRef] google scholar
  • Lavens, P. & Sorgeloos, P. (1996). Manual on the production and use of live food for aquaculture (No. 361). Food and Agriculture Organization (FAO). google scholar
  • Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of biological chemistry, 193, 265-275. [CrossRef] google scholar
  • Mohsenpour, S. F. & Willoughby, N. (2016). Effect of CO2 aeration on cultivation of microalgae in luminescent photobioreactors. Biomass and Bioenergy, 85, 168-177. [CrossRef] google scholar
  • Mostafa, S. S. (2012). Microalgal biotechnology: prospects and applications. Plant science, 12, 276-314. google scholar
  • Nigam, P. S. & Singh, A. (2011). Production of liquid biofuels from renewable resources. Progress in energy and combustion science, 37(1), 52-68. [CrossRef] google scholar
  • Ördög, V., Stirk, W. A., Bâlint, P., van Staden, J. & Lovâsz, C. (2012). Changes in lipid, protein and pigment concentrations in nitrogen-stressed Chlorella minutissima cultures. Journal of Applied Phycology, 24(4), 907-914. [CrossRef] google scholar
  • Pancha, I., Chokshi, K., George, B., Ghosh, T., Paliwal, C., Maurya, R. & Mishra, S. (2014). Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077. Bioresource technology, 156, 146-154. [CrossRef] google scholar
  • Ramanna, L., Rawat, I. & Bux, F. (2017). Light enhancement strategies improve microalgal biomass productivity. Renewable and Sustainable Energy Reviews, 80, 765-773. [CrossRef] google scholar
  • Razaghi, A., Godhe, A. & Albers, E. (2014). Effects of nitrogen on growth and carbohydrate formation in Porphyridium cruentum. Open Life Sciences, 9(2), 156-162. [CrossRef] google scholar
  • Rizwan, M., Mujtaba, G., Rashid, N. & Lee, K. (2017). Enhancing lipid production of Dunaliella tertiolecta by manipulating the interactive effect of salinity and nitrogen. Chemical and Biochemical Engineering Quarterly, 31(3), 199-207. [CrossRef] google scholar
  • Sathasivam, R., Radhakrishnan, R., Hashem, A. & Abd_Allah, E. F. (2019). Microalgae metabolites: A rich source for food and medicine. Saudi journal of biological sciences, 26(4), 709-722. [CrossRef] google scholar
  • Teo, C. L., Atta, M., Bukhari, A., Taisir, M., Yusuf, A. M. & Idris, A. (2014). Enhancing growth and lipid production of marine microalgae for biodiesel production via the use of different LED wavelengths. Bioresource technology, 162, 38-44. [CrossRef] google scholar
  • Tseng, C. K., Jiaofen, C. & Zhefu, Z. (1992). On a new species of Pavlova (Prymnesiophyceae) from China. Chinese Journal of Oceanology and Limnology, 10(1), 23-30. [CrossRef] google scholar
  • Uggetti, E., Sialve, B., Hamelin, J., Bonnafous, A. & Steyer, J. P. (2018). CO2 addition to increase biomass production and control microalgae species in high rate algal ponds treating wastewater. Journal of CO2 Utilization, 28, 292-298. [CrossRef] google scholar
  • Wu, H. & Miao, X. (2014). Biodiesel quality and biochemical changes of microalgae Chlorella pyrenoidosa and Scenedesmus obliquus in response to nitrate levels. Bioresource Technology, 170, 421-427. [CrossRef] google scholar
  • Xia, S., Wan, L., Li, A., Sang, M. & Zhang, C. (2013). Effects of nutrients and light intensity on the growth and biochemical composition of a marine microalga Odontella aurita. Chinese Journal of Oceanology and Limnology, 31(6), 1163-1173. [CrossRef] google scholar
  • Yeh, K. L. & Chang, J. S. (2012). Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Bioresource technology, 105, 120-127. [CrossRef] google scholar
  • Yusof, N. S., Yeong, Y. S., Zakeri, H. A., Wahid, M. E. A., Ab, N. & Ghafar, N. Y. (2021). Photoperiod influenced the growth and antioxidative responses of Chlorella vulgaris, Isochrysis galbana, and Tetraselmis chuii. J Appl Pharm Sci, 11(4), 125-134. google scholar
  • Zarrinmehr, M. J., Farhadian, O., Heyrati, F. P., Keramat, J., Koutra, E., Kornaros, M. & Daneshvar, E. (2020). Effect of nitrogen concentration on the growth rate and biochemical composition of the microalga, Isochrysis galbana. The Egyptian Journal of Aquatic Research, [CrossRef] google scholar
  • Zhu, S., Huang, W., Xu, J., Wang, Z., Xu, J. & Yuan, Z. (2014). Metabolic changes of starch and lipid triggered by nitrogen starvation in the microalga Chlorella zofingiensis. Bioresource Technology, 152, 292298. [CrossRef] google scholar

Effects of sodium nitrate on the growth and proximate composition of the indigenous marine microalgae Tetraselmis chuii (Butcher, 1959)

Year 2022, , 46 - 52, 01.01.2022
https://doi.org/10.26650/ASE2021972678

Abstract

Nitrogen is one of the fundamental nutrients for algal growth, underpinning the microalgal bio-chemical composition. Therefore, this study compared the growth and proximate compositions of Tetraselmis chuii (Butcher, 1959), cultured in different nitrate (NaNO3) concentrations (25, 50, 100, 200 and 500 mg L-1). Thus, the cell density, optical density, specific growth rate and division rate of T. chuii were measured daily. Furthermore, protein and carbohydrate contents were also deter-mined in the stationary phase. The results showed that T. chuii cultivated in a NaNO3 concentration of 500 mg L-1 had significantly (p<0.05) higher growth in terms of cell density, biomass, optical density, specific growth rate and division rates compared with other concentrations. Likewise, pro-tein content was also significantly higher under the NaNO3 concentration of 500 mg L-1, whereas significantly (p<0.05) higher carbohydrate content was found at 25 mg L-1 NaNO3 compared with the other concentrations, showing a contrary trend between protein and carbohydrate concentra-tions, respectively. Since the primary focus has been on improving the quality of microalgal bio-mass in order to develop novel processes and products, this is the first study to use higher concen-trations of modified nitrate on T. chuii isolated from the coastal area of Bangladesh. Thus the indigenous marine T. chuii had significantly utilised NaNO3 concentrations with higher growth and proximate contents in this study. However, further study is needed on microalgal genetics and metabolic engineering to create a new molecular era of the indigenous marine microalgae isolated from the coastal water of Bengal.

References

  • Ahmad, M. T., Shariff, M., Md. Yusoff, F., Goh, Y. M. & Banerjee, S. (2020). Applications of microalga Chlorella vulgaris in aquaculture. Reviews in Aquaculture, 12(1), 328-346. [CrossRef] google scholar
  • Araujo, G. S., Silva, J. W., Viana, C. A. & Fernandes, F. A. (2020). Effect of sodium nitrate concentration on biomass and oil production of four microalgae species. International Journal of Sustainable Energy, 39(1), 41-50. [CrossRef] google scholar
  • Bartley, M. L., Boeing, W. J., Daniel, D., Dungan, B. N. & Schaub, T. (2016). Optimization of environmental parameters for Nannochloropsis salina growth and lipid content using the response surface method and invading organisms. Journal of applied phycology, 28, 15-24. [CrossRef] google scholar
  • Butcher, R. W. (1959). An introductory account of the smaller algae of British coastal waters Part I. Introduction and Chlorophyceae. Fish Investig, 4, 1-74. google scholar
  • Cai, T., Park, S. Y. & Li, Y. (2013). Nutrient recovery from wastewater streams by microalgae: status and prospects. Renewable and Sustainable Energy Reviews, 19, 360-369. [CrossRef] google scholar
  • Clesceri, L. S., Greenberg, A. E. & Trussel, R. R. (1989). Standard methods for the examination of water and wastewater, Published by the Am. Publ. Health Assoc., Am. Water Works Assoc. and Water Pollution Control Fed. google scholar
  • Darvehei, P., Bahri, P. A. & Moheimani, N. R. (2018). Model development for the growth of microalgae: A review. Renewable and Sustainable Energy Reviews, 97, 233-258. [CrossRef] google scholar
  • Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T. & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical chemistry, 28(3), 350-356. [CrossRef] google scholar
  • El-Kassas, H. Y. (2013). Growth and fatty acid profile of the marine microalga Picochlorum sp. grown under nutrient stress conditions. The Egyptian Journal of Aquatic Research, 39(4), 233-239. [CrossRef] google scholar
  • Ghezelbash, F., Farboodnia, T., Heidari, R. & Agh, N. (2008). Biochemical effects of different salinities and luminance on green microalgae Tetraselmis chuii. Research Journal of Biological Sciences, 3(2), 217221. google scholar
  • Gu, H., Nagle, N., Pienkos, P. T. & Posewitz, M. C. (2015). Nitrogen recycling from fuel-extracted algal biomass: residuals as the sole nitrogen source for culturing Scenedesmus acutus. Bioresource technology, 184, 153-160. [CrossRef] google scholar
  • Guiheneuf, F. & Stengel, D. B. (2015). Towards the biorefinery concept: Interaction of light, temperature and nitrogen for optimizing the co-production of high-value compounds in Porphyridium purpureum. Algal research, 10, 152-163. [CrossRef] google scholar
  • Hibberd, D. J. (1981). Notes on the taxonomy and nomenclature of the algal classes Eustigmatophyceae and Tribophyceae (synonym Xanthophyceae). Botanical journal of the linnean society. [CrossRef] google scholar
  • Ho, S. H., Ye, X., Hasunuma, T., Chang, J. S. & Kondo, A. (2014). Perspectives on engineering strategies for improving biofuel production from microalgae—a critical review. Biotechnology advances, 32(8), 1448-1459. [CrossRef] google scholar
  • Huang, X., Huang, Z., Wen, W. & Yan, J. (2013). Effects of nitrogen supplementation of the culture medium on the growth, total lipid content and fatty acid profiles of three microalgae (Tetraselmis subcordiformis, Nannochloropsis oculata and Pavlova viridis). Journal of Applied Phycology. [CrossRef] google scholar
  • James, D. B. (1996). Inception report on sea cucumber culture in Laamu Atoll, Maldives. Food and Agriculture Organization of the United Nations, Bangkok, TCP/MDV/4452 Field Document 1. google scholar
  • Khatoon, H., Banerjee, S., Yusoff, F. M. & Shariff, M. (2013). Use of microalgal - enriched D iaphanosoma celebensis S tingelin, 1900 for rearing L itopenaeus vannamei (B oone, 1931) postlarvae. Aquaculture Nutrition, 19, 163-171. [CrossRef] google scholar
  • Khatoon, H., Haris, H., Rahman, N. A., Zakaria, M. N., Begum, H. & Mian, S. (2018). Growth, proximate composition and pigment production of Tetraselmis chuii cultured with aquaculture wastewater. Journal of Ocean University of China, 17 (3), 641-646. [CrossRef] google scholar
  • Khatoon, H., Rahman, N. A., Banerjee, S., Harun, N., Suleiman, S. S., Zakaria, N. H. & Endut, A. (2014). Effects of different salinities and pH on the growth and proximate composition of Nannochloropsis sp. and Tetraselmis sp. isolated from South China Sea cultured under control and natural condition. International Biodeterioration & Biodegradation, 95, 11-18. [CrossRef] google scholar
  • Kim, G., Mujtaba, G. & Lee, K. (2016). Effects of nitrogen sources on cell growth and biochemical composition of marine chlorophyte Tetraselmis sp. for lipid production. Algae, 31(3), 257-266. [CrossRef] google scholar
  • Lavens, P. & Sorgeloos, P. (1996). Manual on the production and use of live food for aquaculture (No. 361). Food and Agriculture Organization (FAO). google scholar
  • Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of biological chemistry, 193, 265-275. [CrossRef] google scholar
  • Mohsenpour, S. F. & Willoughby, N. (2016). Effect of CO2 aeration on cultivation of microalgae in luminescent photobioreactors. Biomass and Bioenergy, 85, 168-177. [CrossRef] google scholar
  • Mostafa, S. S. (2012). Microalgal biotechnology: prospects and applications. Plant science, 12, 276-314. google scholar
  • Nigam, P. S. & Singh, A. (2011). Production of liquid biofuels from renewable resources. Progress in energy and combustion science, 37(1), 52-68. [CrossRef] google scholar
  • Ördög, V., Stirk, W. A., Bâlint, P., van Staden, J. & Lovâsz, C. (2012). Changes in lipid, protein and pigment concentrations in nitrogen-stressed Chlorella minutissima cultures. Journal of Applied Phycology, 24(4), 907-914. [CrossRef] google scholar
  • Pancha, I., Chokshi, K., George, B., Ghosh, T., Paliwal, C., Maurya, R. & Mishra, S. (2014). Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077. Bioresource technology, 156, 146-154. [CrossRef] google scholar
  • Ramanna, L., Rawat, I. & Bux, F. (2017). Light enhancement strategies improve microalgal biomass productivity. Renewable and Sustainable Energy Reviews, 80, 765-773. [CrossRef] google scholar
  • Razaghi, A., Godhe, A. & Albers, E. (2014). Effects of nitrogen on growth and carbohydrate formation in Porphyridium cruentum. Open Life Sciences, 9(2), 156-162. [CrossRef] google scholar
  • Rizwan, M., Mujtaba, G., Rashid, N. & Lee, K. (2017). Enhancing lipid production of Dunaliella tertiolecta by manipulating the interactive effect of salinity and nitrogen. Chemical and Biochemical Engineering Quarterly, 31(3), 199-207. [CrossRef] google scholar
  • Sathasivam, R., Radhakrishnan, R., Hashem, A. & Abd_Allah, E. F. (2019). Microalgae metabolites: A rich source for food and medicine. Saudi journal of biological sciences, 26(4), 709-722. [CrossRef] google scholar
  • Teo, C. L., Atta, M., Bukhari, A., Taisir, M., Yusuf, A. M. & Idris, A. (2014). Enhancing growth and lipid production of marine microalgae for biodiesel production via the use of different LED wavelengths. Bioresource technology, 162, 38-44. [CrossRef] google scholar
  • Tseng, C. K., Jiaofen, C. & Zhefu, Z. (1992). On a new species of Pavlova (Prymnesiophyceae) from China. Chinese Journal of Oceanology and Limnology, 10(1), 23-30. [CrossRef] google scholar
  • Uggetti, E., Sialve, B., Hamelin, J., Bonnafous, A. & Steyer, J. P. (2018). CO2 addition to increase biomass production and control microalgae species in high rate algal ponds treating wastewater. Journal of CO2 Utilization, 28, 292-298. [CrossRef] google scholar
  • Wu, H. & Miao, X. (2014). Biodiesel quality and biochemical changes of microalgae Chlorella pyrenoidosa and Scenedesmus obliquus in response to nitrate levels. Bioresource Technology, 170, 421-427. [CrossRef] google scholar
  • Xia, S., Wan, L., Li, A., Sang, M. & Zhang, C. (2013). Effects of nutrients and light intensity on the growth and biochemical composition of a marine microalga Odontella aurita. Chinese Journal of Oceanology and Limnology, 31(6), 1163-1173. [CrossRef] google scholar
  • Yeh, K. L. & Chang, J. S. (2012). Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Bioresource technology, 105, 120-127. [CrossRef] google scholar
  • Yusof, N. S., Yeong, Y. S., Zakeri, H. A., Wahid, M. E. A., Ab, N. & Ghafar, N. Y. (2021). Photoperiod influenced the growth and antioxidative responses of Chlorella vulgaris, Isochrysis galbana, and Tetraselmis chuii. J Appl Pharm Sci, 11(4), 125-134. google scholar
  • Zarrinmehr, M. J., Farhadian, O., Heyrati, F. P., Keramat, J., Koutra, E., Kornaros, M. & Daneshvar, E. (2020). Effect of nitrogen concentration on the growth rate and biochemical composition of the microalga, Isochrysis galbana. The Egyptian Journal of Aquatic Research, [CrossRef] google scholar
  • Zhu, S., Huang, W., Xu, J., Wang, Z., Xu, J. & Yuan, Z. (2014). Metabolic changes of starch and lipid triggered by nitrogen starvation in the microalga Chlorella zofingiensis. Bioresource Technology, 152, 292298. [CrossRef] google scholar
There are 40 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Sanzib Kumar Barman 0000-0002-9011-1067

Helena Khatoon 0000-0001-5896-0213

Mohammad Redwanur Rahman 0000-0002-2607-8223

Sabuj Kanti Mazumder 0000-0002-3604-2363

Shanur Hasan 0000-0002-8000-0275

Publication Date January 1, 2022
Submission Date July 17, 2021
Published in Issue Year 2022

Cite

APA Barman, S. K., Khatoon, H., Rahman, M. R., Mazumder, S. K., et al. (2022). Effects of sodium nitrate on the growth and proximate composition of the indigenous marine microalgae Tetraselmis chuii (Butcher, 1959). Aquatic Sciences and Engineering, 37(1), 46-52. https://doi.org/10.26650/ASE2021972678
AMA Barman SK, Khatoon H, Rahman MR, Mazumder SK, Hasan S. Effects of sodium nitrate on the growth and proximate composition of the indigenous marine microalgae Tetraselmis chuii (Butcher, 1959). Aqua Sci Eng. January 2022;37(1):46-52. doi:10.26650/ASE2021972678
Chicago Barman, Sanzib Kumar, Helena Khatoon, Mohammad Redwanur Rahman, Sabuj Kanti Mazumder, and Shanur Hasan. “Effects of Sodium Nitrate on the Growth and Proximate Composition of the Indigenous Marine Microalgae Tetraselmis Chuii (Butcher, 1959)”. Aquatic Sciences and Engineering 37, no. 1 (January 2022): 46-52. https://doi.org/10.26650/ASE2021972678.
EndNote Barman SK, Khatoon H, Rahman MR, Mazumder SK, Hasan S (January 1, 2022) Effects of sodium nitrate on the growth and proximate composition of the indigenous marine microalgae Tetraselmis chuii (Butcher, 1959). Aquatic Sciences and Engineering 37 1 46–52.
IEEE S. K. Barman, H. Khatoon, M. R. Rahman, S. K. Mazumder, and S. Hasan, “Effects of sodium nitrate on the growth and proximate composition of the indigenous marine microalgae Tetraselmis chuii (Butcher, 1959)”, Aqua Sci Eng, vol. 37, no. 1, pp. 46–52, 2022, doi: 10.26650/ASE2021972678.
ISNAD Barman, Sanzib Kumar et al. “Effects of Sodium Nitrate on the Growth and Proximate Composition of the Indigenous Marine Microalgae Tetraselmis Chuii (Butcher, 1959)”. Aquatic Sciences and Engineering 37/1 (January 2022), 46-52. https://doi.org/10.26650/ASE2021972678.
JAMA Barman SK, Khatoon H, Rahman MR, Mazumder SK, Hasan S. Effects of sodium nitrate on the growth and proximate composition of the indigenous marine microalgae Tetraselmis chuii (Butcher, 1959). Aqua Sci Eng. 2022;37:46–52.
MLA Barman, Sanzib Kumar et al. “Effects of Sodium Nitrate on the Growth and Proximate Composition of the Indigenous Marine Microalgae Tetraselmis Chuii (Butcher, 1959)”. Aquatic Sciences and Engineering, vol. 37, no. 1, 2022, pp. 46-52, doi:10.26650/ASE2021972678.
Vancouver Barman SK, Khatoon H, Rahman MR, Mazumder SK, Hasan S. Effects of sodium nitrate on the growth and proximate composition of the indigenous marine microalgae Tetraselmis chuii (Butcher, 1959). Aqua Sci Eng. 2022;37(1):46-52.

openaccess.jpgOpen Access Statement:

This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.