Research Article
BibTex RIS Cite
Year 2019, Volume: 34 Issue: 1, 29 - 38, 07.01.2019
https://doi.org/10.26650/ASE2019522326

Abstract

References

  • Almeida, V. L. S., Dantas, Ê. W., Melo-Júnior, M., Bittencourt-Oliveira, M. C., Moura, & A.N. (2009). Zooplanktonic community of six reservoirs in northeast Brazil. Brazilian Journal of Biology, 69 (1), 57-65.
  • Apaydın Yağcı, M., Yeğen, V., Yağcı, A., & Uysal, R. (2013). A preliminary investigation on zooplankton species in some of the dam lakes in Central Anatolia (Kütahya-Eskişehir/Turkey). Ege Journal of Fisheries and Aquatic Sciences, 30 (1), 37-40. (in Turkish with an abstract in English).
  • APHA (1989). APHA-AWWA WPCF 1989. Standard methods for the examination of water and wastewater. 17th ed. Washington DC.1391 p.
  • Arhonditsis, G. B., Winder, M., Bretta, M. T., & Schindler, D. E. (2004). Patterns and mechanisms of phytoplankton variability in Lake Washington (USA). Water Research, 38, 4013–4027.
  • Arora, J., & Mehra, N. K. (2003). Seasonal dynamics of rotifers in relation to physical and chemical conditions of the river Yamun (Delhi), India. Hydrobiologia, 491, 101-109.
  • Bekleyen, A. (2001). A Taxonomical Study on the Rotifera Fauna of Devegeçidi Dam Lake (Diyarbakır-Turkey). Turkish Journal of Zoology, 25, 251-255.
  • Bekleyen, A. (2006). Devegeçidi Baraj Gölü’nün (Diyarbakır) Cladocera ve Copepoda (Crustacea) Faunası. Ege Journal of Fisheries and Aquatic Sciences, 23 (3-4), 413–415.
  • Berzins, B., Pejler, B. (1987). Rotifer occurrence in relation to pH. Hydrobiologia, 147, 107–116.
  • Bray, J. R., & Curtis, J. T. (1957). An ordination of the upland forest communities of Southern Wisconsin. Ecological Monographies, 27,325-349.
  • Brito, S. L., Maia-Barbosa, P. M., & Pinto-Coelho, R. M. (2011). Zooplankton as an indicator of trophic conditions in two large reservoirs in Brazil. Lakes & Reservoirs: Research and Management, 16, 253–264.
  • Brock, M. A., Nielsen, D. L., & Crossle, K. (2005). Changes in biotic communities developing from freshwater wetland sediments under experimental salinity and water regimes. Freshwater Biology, 50, 1376–1390.
  • Carlson, R. E. (1977). A trophic state index for lakes. Limnology and Oceanography, 22 (2), 361-369.
  • Chen, L., Liu, Q., Peng, Z., Hu, Z., Xue, J., & Wang, W. (2012). Rotifer community structure and assessment of water quality in Yangcheng Lake. Chinese Journal of Oceanology and Limnology, 30 (1), 47-58.
  • Conde-Porcuna, J. M., Ramos-Rodriguez, E., & Pérez-Martinez, C. (2002). Correlations between nutrient concentrations and zooplankton populations in a mesotrophic reservoir. Freshwater Biology, 47, 1463–1473.
  • Davies, J. M., Roxborough, M., & Mazumder, A. (2004). Origins and implications of drinking water odours in lakes and reservoirs of British Columbia, Canada. Water Research, 38, 1900–1910.
  • Dussart, B. (1969). Les Copépodes Des Eaux Continentales D’Europe Occidentale. Tome II Cyclopoides et Biologie. Ed: N.Boubée and Cie 3. Place Saint-André-des-Arts. Paris 6º.
  • Gazonato Neto, A. J., Silva, L. C., Saggio, A. A., & Rocha, O. (2014). Zooplankton communities as eutrophication bioindicators in tropical reservoirs. Biota Neotropica, 14 (4), e20140018.  
  • Gilbert, J. J. (1996). Effect of temperature on the response of planktonic rotifers to a toxic cyanobacterium. Ecology, 77, 1174–1180.
  • Gołdyn, R., Joniak, T., Kowalczewska-Madura, K., & Kozak, A. (2003). Trophic state of a lowland reservoir during 10 years after restoration. Hydrobiologia, 506–509, 759–765.
  • Haberman, J., & Haldna, M. (2014). Indices of zooplankton community as valuable tools in assessing the trophic state and water quality of eutrophic lakes: long term study of Lake Võrtsjärv. Journal of Limnology, 73, 263–273.
  • Hanazato, T. (2001). Pesticide effects on freshwater zooplankton: an ecological perspective. Environmental Pollution, 112, 1–10.
  • Herzig, A. (1987).The analysis of planktonic rotifers populations. A plea for long-term investigations. Hydrobiologia, 147, 163-187.
  • Hutchinson, G.E. (1967). A Treatise on Limnology. II. Introduction to Lake Biology and the Limnoplankton. Wiley, New York.
  • Koste, W. (1978). Rotatoria. Überordnung Monogononta. Die Radertiere Mitteleuropas. I. Textband. Berlin. pp. 670.
  • Köker, L., Akçaalan, R., Oğuz, A., Gaygusuz, Ö., Gürevin, C,. Akat-Köse, C., ... Kınacı, C. (2017). Distribution of toxic cyanobacteria and cyanotoxins in Turkish waterbodies. Journal of Environmental Protection and Ecology, 18 (2), 425–432.
  • Lodi, S., Galli Vieira, L. C., Machado Velho, L. F., Costa Bonecker, C., de Carvalho, P., & Bini, L. M. (2011). Zooplankton Community Metrics as Indicators of Eutrophication in Urban Lakes. Natureza & Conservação, 9(1): 87-92.
  • Margaritora, F. G. (1983). Fauna d’Italia. Cladocera. Edizioni Calderini. Bologna. pp. 399.
  • Mason, C. F. (1983). Biology of Freshwater Pollution. Longman Group Limited. England. 250 p.
  • Montagud, D., Soria, J. M., Soria-Perpiñà, X., Alfonso, T., & Vicente, E. (2019). A comparative study of four indexes based on zooplankton as trophic state indicators in reservoirs. Limnetica, 38(1), 291-302.
  • Nandini, S., García, P. R., Sarma, S. S. S. (2016). Water quality indicators in Lake Xochimilco, Mexico: zooplankton and Vibrio cholerae. Journal of Limnology, 75(1), 91-100.
  • Nogueira, M. (2001). Zooplankton composition, dominance and abundance as indicators of environmental compartmentalization in Jurumirim Reservoir (Paranapanema River), Sao Paulo, Brazil. Hydrobiologia, 455, 1-18.
  • Nusch, E. A. (1980). Comparison of different methods for chlorophyll and phaeopigment determination. Archiv für Hydrobiologie–Beiheft Ergebnisse der Limnologie, 14,14-36.
  • Özdemir Mis, D., Aygen, C., Ustaoğlu, M. R., & Balık, S. (2009). Tahtalı Baraj Gölü (İzmir)’nün Zooplankton Kompozisyonu. Ege Journal of Fisheries and Aquatic Sciences, 26(2), 129-134.
  • Pace, M. L. (1986). An empirical analysis of zooplankton community size structure across lake trophic gradients. Limnology and Oceanography, 31(1), 45-55.
  • Palmstrom, N. S., Carlson, R. E., & Dennis Cooke, G. (1988). Potential Links Between Eutrophication and the Formation of Carcinogens in Drinking Water. Lake and Reservoir Management, 4(2), 1-15.
  • Pantle, R., & Buck, H. (1955). Die biologische Überwachung der Gewässer und die Darstellung der Ergebnisse. GWF-Wasser/Abwasser 96:604-620.
  • Pereira, R., Soares, A.M., Ribeiro, R., Goçalves, F. (2002). Assessing the trophic state of Linhos lake: a first step towards ecological rehabilitation. Journal of Environmental Management, 64: 285–297.
  • Pielou, E. C. (1966). The measurement of diversity in different types of biological collections. Journal of Theoretical Biology, 13, 131-144.
  • Reed, C. (1978). Species diversity in aquatic microecosystems. Ecology, 59(3), 481-488.
  • Ruttner-Kolisko, A. (1974). Plankton rotifers. Biology and taxonomy. Suppl. Die Binnengewässer. Schweizerbart’sch Verlagsbuchlandlung, Stuttgart, Germany.
  • Saksena, N. D. (1987). Rotifer as indicators of water quality. Acta hydrochimica et Hydrobiologica, 15, 481-485.
  • Sed’a, J., & Devetter, M. (2000). Zooplankton community structure along a trophic gradient in a canyon-shaped dam reservoir. Journal of Plankton Research, 22(10), 1829-1840.
  • Sendacz, S. (1984). A study of the zooplankton community of Billing Reservoir-Sao Paulo. Hydrobiologia, 113, 121–127.
  • Shannon, C.E., & Weaver, W. (1949). The Mathematical Theory of Communication. The University of Illinois Press. Urbana. IL.
  • Sladecek, V. (1983). Rotifers as indicators of water quality. Hydrobiologia, 100, 169– 201.
  • Smith, V. H., Sieber-Denlinger, J., deNoyelles, Jr. F., Campbell, S., Pan, S., Randtke, S.J., ..., Strasser, V.A., (2002). Managing Taste and Odor Problems in a Eutrophic Drinking Water Reservoir. Lake and Reservoir Management, 18(4), 319-323.
  • Špoljar, M. (2013). Microaquatic communities as indicators of environmental changes in lake ecosystems. Journal of Engineering Research, 1(1), 29-42.
  • Sørensen, T. (1948). A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons. Biologiske Skrifter, 5, 1-34.
  • Stemberger, R. S. (1995). The influence of mixing on rotifer assemblages of Michigan lakes. Hydrobiologia, 297, 149–161.
  • ter Braak, C. J. F., & Šmilauer, P. (1998). CANOCO Reference Manual and Users Guide to Canoco for Windows: Software for Community Ordination (Version 4.0). Microcomputer Power Ithaca, NY.
  • ter Braak, C. J. F., & Šmilauer, P. (2002). CANOCO Software for Canonical Comunity Ordination (Version 4.5). Biometris, Wageningen and Ceske Budejovice.
  • U.S. Environmental Protection Agency (2010). Standard operating procedure for zooplankton analysis (LG403). Revision 07. July 2016. in sampling and analytical procedures for GLNPO’s open lake water quality survey of the Great Lakes: U.S. Environmental Protection Agency EPA 905–R–001. 20 p.. accessed February 2017 at https://www.epa.gov/sites/production/files/2017-01/documents/sop-for-zooplankton-analysis201607-22pp.pdf.

Zooplankton Biodiversity in Reservoirs of Different Geographical Regions of Turkey: Composition and Distribution Related with Some Environmental Conditions

Year 2019, Volume: 34 Issue: 1, 29 - 38, 07.01.2019
https://doi.org/10.26650/ASE2019522326

Abstract

The zooplankton fauna and the relationship with their environmental variables were investigated on the epilimnion layer of the seven reservoirs (Demirdöven, Devegeçidi, Menzelet, Sır, Ömerli, Porsuk, Tahtalı) of different regions (Marmara, Aegean, Mediterranean, Central Anatolia, Eastern Anatolia, Southeastern Anatolia) throughout the summer months (2015) in Turkey. According to the trophic conditions reservoirs varied between oligo- and eutrophic status. Chlorophylla concentration, measured for the estimation of primary production, was determined considerably high along the investigation period. A total of 62 zooplankton species were identified with the contribution of 44 rotifers, nine cladocerans and nine copepods. Except one reservoir, all of the others were dominated by rotifera group, and also in each study site dominant taxa were changed at species level. On the other hand common dominant taxa for all reservoirs was the rotifer Polyarthra vulgaris Carlin, 1943 with 95 % frequency. In terms of zooplankton species, most of the studied reservoirs showed less than 50% similarities, due to their different limnological conditions and different geographic locations. Reservoirs in high trophic conditions in the present study were represented by low species diversity. Water quality in the reservoirs with respect to biological data were determined as ß-mesosaprobic. The using limnological and biological indices to determine water quality were consistent. Densities of main zooplankton groups, and also frequent species of the reservoirs correlated with epilimnion layer depths and total phoshorus concentrations significantly. On the other hand rotifera variation was affected mainly by physical variables (pH, temperature, dissolved oxygen concentration, conductivity), and crustacean variations were related with total phoshorus. The comperative assessment between limnological variables and zooplankton community in this reservoirs was studied for the first time.

References

  • Almeida, V. L. S., Dantas, Ê. W., Melo-Júnior, M., Bittencourt-Oliveira, M. C., Moura, & A.N. (2009). Zooplanktonic community of six reservoirs in northeast Brazil. Brazilian Journal of Biology, 69 (1), 57-65.
  • Apaydın Yağcı, M., Yeğen, V., Yağcı, A., & Uysal, R. (2013). A preliminary investigation on zooplankton species in some of the dam lakes in Central Anatolia (Kütahya-Eskişehir/Turkey). Ege Journal of Fisheries and Aquatic Sciences, 30 (1), 37-40. (in Turkish with an abstract in English).
  • APHA (1989). APHA-AWWA WPCF 1989. Standard methods for the examination of water and wastewater. 17th ed. Washington DC.1391 p.
  • Arhonditsis, G. B., Winder, M., Bretta, M. T., & Schindler, D. E. (2004). Patterns and mechanisms of phytoplankton variability in Lake Washington (USA). Water Research, 38, 4013–4027.
  • Arora, J., & Mehra, N. K. (2003). Seasonal dynamics of rotifers in relation to physical and chemical conditions of the river Yamun (Delhi), India. Hydrobiologia, 491, 101-109.
  • Bekleyen, A. (2001). A Taxonomical Study on the Rotifera Fauna of Devegeçidi Dam Lake (Diyarbakır-Turkey). Turkish Journal of Zoology, 25, 251-255.
  • Bekleyen, A. (2006). Devegeçidi Baraj Gölü’nün (Diyarbakır) Cladocera ve Copepoda (Crustacea) Faunası. Ege Journal of Fisheries and Aquatic Sciences, 23 (3-4), 413–415.
  • Berzins, B., Pejler, B. (1987). Rotifer occurrence in relation to pH. Hydrobiologia, 147, 107–116.
  • Bray, J. R., & Curtis, J. T. (1957). An ordination of the upland forest communities of Southern Wisconsin. Ecological Monographies, 27,325-349.
  • Brito, S. L., Maia-Barbosa, P. M., & Pinto-Coelho, R. M. (2011). Zooplankton as an indicator of trophic conditions in two large reservoirs in Brazil. Lakes & Reservoirs: Research and Management, 16, 253–264.
  • Brock, M. A., Nielsen, D. L., & Crossle, K. (2005). Changes in biotic communities developing from freshwater wetland sediments under experimental salinity and water regimes. Freshwater Biology, 50, 1376–1390.
  • Carlson, R. E. (1977). A trophic state index for lakes. Limnology and Oceanography, 22 (2), 361-369.
  • Chen, L., Liu, Q., Peng, Z., Hu, Z., Xue, J., & Wang, W. (2012). Rotifer community structure and assessment of water quality in Yangcheng Lake. Chinese Journal of Oceanology and Limnology, 30 (1), 47-58.
  • Conde-Porcuna, J. M., Ramos-Rodriguez, E., & Pérez-Martinez, C. (2002). Correlations between nutrient concentrations and zooplankton populations in a mesotrophic reservoir. Freshwater Biology, 47, 1463–1473.
  • Davies, J. M., Roxborough, M., & Mazumder, A. (2004). Origins and implications of drinking water odours in lakes and reservoirs of British Columbia, Canada. Water Research, 38, 1900–1910.
  • Dussart, B. (1969). Les Copépodes Des Eaux Continentales D’Europe Occidentale. Tome II Cyclopoides et Biologie. Ed: N.Boubée and Cie 3. Place Saint-André-des-Arts. Paris 6º.
  • Gazonato Neto, A. J., Silva, L. C., Saggio, A. A., & Rocha, O. (2014). Zooplankton communities as eutrophication bioindicators in tropical reservoirs. Biota Neotropica, 14 (4), e20140018.  
  • Gilbert, J. J. (1996). Effect of temperature on the response of planktonic rotifers to a toxic cyanobacterium. Ecology, 77, 1174–1180.
  • Gołdyn, R., Joniak, T., Kowalczewska-Madura, K., & Kozak, A. (2003). Trophic state of a lowland reservoir during 10 years after restoration. Hydrobiologia, 506–509, 759–765.
  • Haberman, J., & Haldna, M. (2014). Indices of zooplankton community as valuable tools in assessing the trophic state and water quality of eutrophic lakes: long term study of Lake Võrtsjärv. Journal of Limnology, 73, 263–273.
  • Hanazato, T. (2001). Pesticide effects on freshwater zooplankton: an ecological perspective. Environmental Pollution, 112, 1–10.
  • Herzig, A. (1987).The analysis of planktonic rotifers populations. A plea for long-term investigations. Hydrobiologia, 147, 163-187.
  • Hutchinson, G.E. (1967). A Treatise on Limnology. II. Introduction to Lake Biology and the Limnoplankton. Wiley, New York.
  • Koste, W. (1978). Rotatoria. Überordnung Monogononta. Die Radertiere Mitteleuropas. I. Textband. Berlin. pp. 670.
  • Köker, L., Akçaalan, R., Oğuz, A., Gaygusuz, Ö., Gürevin, C,. Akat-Köse, C., ... Kınacı, C. (2017). Distribution of toxic cyanobacteria and cyanotoxins in Turkish waterbodies. Journal of Environmental Protection and Ecology, 18 (2), 425–432.
  • Lodi, S., Galli Vieira, L. C., Machado Velho, L. F., Costa Bonecker, C., de Carvalho, P., & Bini, L. M. (2011). Zooplankton Community Metrics as Indicators of Eutrophication in Urban Lakes. Natureza & Conservação, 9(1): 87-92.
  • Margaritora, F. G. (1983). Fauna d’Italia. Cladocera. Edizioni Calderini. Bologna. pp. 399.
  • Mason, C. F. (1983). Biology of Freshwater Pollution. Longman Group Limited. England. 250 p.
  • Montagud, D., Soria, J. M., Soria-Perpiñà, X., Alfonso, T., & Vicente, E. (2019). A comparative study of four indexes based on zooplankton as trophic state indicators in reservoirs. Limnetica, 38(1), 291-302.
  • Nandini, S., García, P. R., Sarma, S. S. S. (2016). Water quality indicators in Lake Xochimilco, Mexico: zooplankton and Vibrio cholerae. Journal of Limnology, 75(1), 91-100.
  • Nogueira, M. (2001). Zooplankton composition, dominance and abundance as indicators of environmental compartmentalization in Jurumirim Reservoir (Paranapanema River), Sao Paulo, Brazil. Hydrobiologia, 455, 1-18.
  • Nusch, E. A. (1980). Comparison of different methods for chlorophyll and phaeopigment determination. Archiv für Hydrobiologie–Beiheft Ergebnisse der Limnologie, 14,14-36.
  • Özdemir Mis, D., Aygen, C., Ustaoğlu, M. R., & Balık, S. (2009). Tahtalı Baraj Gölü (İzmir)’nün Zooplankton Kompozisyonu. Ege Journal of Fisheries and Aquatic Sciences, 26(2), 129-134.
  • Pace, M. L. (1986). An empirical analysis of zooplankton community size structure across lake trophic gradients. Limnology and Oceanography, 31(1), 45-55.
  • Palmstrom, N. S., Carlson, R. E., & Dennis Cooke, G. (1988). Potential Links Between Eutrophication and the Formation of Carcinogens in Drinking Water. Lake and Reservoir Management, 4(2), 1-15.
  • Pantle, R., & Buck, H. (1955). Die biologische Überwachung der Gewässer und die Darstellung der Ergebnisse. GWF-Wasser/Abwasser 96:604-620.
  • Pereira, R., Soares, A.M., Ribeiro, R., Goçalves, F. (2002). Assessing the trophic state of Linhos lake: a first step towards ecological rehabilitation. Journal of Environmental Management, 64: 285–297.
  • Pielou, E. C. (1966). The measurement of diversity in different types of biological collections. Journal of Theoretical Biology, 13, 131-144.
  • Reed, C. (1978). Species diversity in aquatic microecosystems. Ecology, 59(3), 481-488.
  • Ruttner-Kolisko, A. (1974). Plankton rotifers. Biology and taxonomy. Suppl. Die Binnengewässer. Schweizerbart’sch Verlagsbuchlandlung, Stuttgart, Germany.
  • Saksena, N. D. (1987). Rotifer as indicators of water quality. Acta hydrochimica et Hydrobiologica, 15, 481-485.
  • Sed’a, J., & Devetter, M. (2000). Zooplankton community structure along a trophic gradient in a canyon-shaped dam reservoir. Journal of Plankton Research, 22(10), 1829-1840.
  • Sendacz, S. (1984). A study of the zooplankton community of Billing Reservoir-Sao Paulo. Hydrobiologia, 113, 121–127.
  • Shannon, C.E., & Weaver, W. (1949). The Mathematical Theory of Communication. The University of Illinois Press. Urbana. IL.
  • Sladecek, V. (1983). Rotifers as indicators of water quality. Hydrobiologia, 100, 169– 201.
  • Smith, V. H., Sieber-Denlinger, J., deNoyelles, Jr. F., Campbell, S., Pan, S., Randtke, S.J., ..., Strasser, V.A., (2002). Managing Taste and Odor Problems in a Eutrophic Drinking Water Reservoir. Lake and Reservoir Management, 18(4), 319-323.
  • Špoljar, M. (2013). Microaquatic communities as indicators of environmental changes in lake ecosystems. Journal of Engineering Research, 1(1), 29-42.
  • Sørensen, T. (1948). A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons. Biologiske Skrifter, 5, 1-34.
  • Stemberger, R. S. (1995). The influence of mixing on rotifer assemblages of Michigan lakes. Hydrobiologia, 297, 149–161.
  • ter Braak, C. J. F., & Šmilauer, P. (1998). CANOCO Reference Manual and Users Guide to Canoco for Windows: Software for Community Ordination (Version 4.0). Microcomputer Power Ithaca, NY.
  • ter Braak, C. J. F., & Šmilauer, P. (2002). CANOCO Software for Canonical Comunity Ordination (Version 4.5). Biometris, Wageningen and Ceske Budejovice.
  • U.S. Environmental Protection Agency (2010). Standard operating procedure for zooplankton analysis (LG403). Revision 07. July 2016. in sampling and analytical procedures for GLNPO’s open lake water quality survey of the Great Lakes: U.S. Environmental Protection Agency EPA 905–R–001. 20 p.. accessed February 2017 at https://www.epa.gov/sites/production/files/2017-01/documents/sop-for-zooplankton-analysis201607-22pp.pdf.
There are 52 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Zeynep Dorak 0000-0003-4782-3082

Latife Köker 0000-0002-9134-2801

Özcan Gaygusuz 0000-0001-6861-6221

Cenk Gürevin This is me 0000-0002-5354-949X

Reyhan Akçaalan This is me 0000-0002-0756-8972

Meriç Albay 0000-0001-9726-945X

Publication Date January 7, 2019
Submission Date February 5, 2019
Published in Issue Year 2019 Volume: 34 Issue: 1

Cite

APA Dorak, Z., Köker, L., Gaygusuz, Ö., Gürevin, C., et al. (2019). Zooplankton Biodiversity in Reservoirs of Different Geographical Regions of Turkey: Composition and Distribution Related with Some Environmental Conditions. Aquatic Sciences and Engineering, 34(1), 29-38. https://doi.org/10.26650/ASE2019522326
AMA Dorak Z, Köker L, Gaygusuz Ö, Gürevin C, Akçaalan R, Albay M. Zooplankton Biodiversity in Reservoirs of Different Geographical Regions of Turkey: Composition and Distribution Related with Some Environmental Conditions. Aqua Sci Eng. January 2019;34(1):29-38. doi:10.26650/ASE2019522326
Chicago Dorak, Zeynep, Latife Köker, Özcan Gaygusuz, Cenk Gürevin, Reyhan Akçaalan, and Meriç Albay. “Zooplankton Biodiversity in Reservoirs of Different Geographical Regions of Turkey: Composition and Distribution Related With Some Environmental Conditions”. Aquatic Sciences and Engineering 34, no. 1 (January 2019): 29-38. https://doi.org/10.26650/ASE2019522326.
EndNote Dorak Z, Köker L, Gaygusuz Ö, Gürevin C, Akçaalan R, Albay M (January 1, 2019) Zooplankton Biodiversity in Reservoirs of Different Geographical Regions of Turkey: Composition and Distribution Related with Some Environmental Conditions. Aquatic Sciences and Engineering 34 1 29–38.
IEEE Z. Dorak, L. Köker, Ö. Gaygusuz, C. Gürevin, R. Akçaalan, and M. Albay, “Zooplankton Biodiversity in Reservoirs of Different Geographical Regions of Turkey: Composition and Distribution Related with Some Environmental Conditions”, Aqua Sci Eng, vol. 34, no. 1, pp. 29–38, 2019, doi: 10.26650/ASE2019522326.
ISNAD Dorak, Zeynep et al. “Zooplankton Biodiversity in Reservoirs of Different Geographical Regions of Turkey: Composition and Distribution Related With Some Environmental Conditions”. Aquatic Sciences and Engineering 34/1 (January 2019), 29-38. https://doi.org/10.26650/ASE2019522326.
JAMA Dorak Z, Köker L, Gaygusuz Ö, Gürevin C, Akçaalan R, Albay M. Zooplankton Biodiversity in Reservoirs of Different Geographical Regions of Turkey: Composition and Distribution Related with Some Environmental Conditions. Aqua Sci Eng. 2019;34:29–38.
MLA Dorak, Zeynep et al. “Zooplankton Biodiversity in Reservoirs of Different Geographical Regions of Turkey: Composition and Distribution Related With Some Environmental Conditions”. Aquatic Sciences and Engineering, vol. 34, no. 1, 2019, pp. 29-38, doi:10.26650/ASE2019522326.
Vancouver Dorak Z, Köker L, Gaygusuz Ö, Gürevin C, Akçaalan R, Albay M. Zooplankton Biodiversity in Reservoirs of Different Geographical Regions of Turkey: Composition and Distribution Related with Some Environmental Conditions. Aqua Sci Eng. 2019;34(1):29-38.

openaccess.jpgOpen Access Statement:

This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.