Research Article
BibTex RIS Cite
Year 2020, Volume: 35 Issue: 3, 83 - 88, 20.03.2020
https://doi.org/10.26650/ASE2020646338

Abstract

References

  • Abd El-Aty, A. M., Mohamed, A. A. & Samhan, F. A. (2014). In vitro antioxidant and antibacterial activities of two fresh water Cyanobacterial species, Oscillatoria agardhii and Anabaena sphaerica. Journal of Applied Pharmaceutical Science, 4(7), 69-75.
  • Abobaker, H. M. & Elsalhin, H. E. L. (2019). Antibacterial Activity of Anabaena circinalis Isolated from Fresh Water. Journal of Advances in Microbiology, 15(3), 1-7. [CrossRef]
  • Andersen, R. A. & Kawachi, M. (2005). Traditional microalgae isolation techniques. In R. A. Andersen (Ed), Algal culturing techniques (pp. 83-100). London, Elsevier Press. [CrossRef]
  • Brennan, L. & Owened, P. (2010). Biofuels from microalgae A review of technologies for production, processing and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14(2), 557-577. [CrossRef]
  • Converti, A., Casazza, A. A., Ortiz, E. Y., Perego, P. & Borghi, M. D. (2009). Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing: Process Intensification, 48, 1146-1151. [CrossRef]
  • Cowan, M. M. (1999). Plant products as antimicrobial agents. Clinical Microbiology Reviews, 564-582. [CrossRef]
  • Demir, Ö. (2011). Neochloris pseudoalveolaris Deason & Bold’de biyomas artışı ve yağ üretiminin araştırılması. Ege Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi.
  • Demirbas, A. (2010). Use of algae as biofuel sources. Energy Conversion Management, 51(12), 2738-2749. [CrossRef]
  • Demiriz, T., Çökmüş, C. & Pabuçcu, K. (2011). Antimicrobial activity of some algal species belonging to cyanobacteria and chlorophyta. Asian Journal of Chemistry, 23(3), 1384-1386.
  • Deshmukh, D. V. & Puranik, P. R. (2012). Application of plackett-burman design to evaluate media components affecting antibacterial activity of alkaliphilic cyanobacteria isolated from Lonar Lake. Turkish Journal of Biochemistry, 35(2), 114-120.
  • Gault, P. M. & Marler, H. J. (2009). Handbook on cyanobacteria: biochemistry, biotechnology and applications. New York: Nova Science Publishers.
  • Guillard, R. R. L. (2005). Purification methods for microalgae. In R.A. Andersen (Ed.), Algal culturing techniques (pp. 117-132). London, Elsevier Press. [CrossRef]
  • Guiry, M. D. & Guiry, G. M. (2018) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Retrieved from http://www.algaebase.org. (accessed 21.10.18)
  • Gouveia, L. (2014) From tiny microalgae to huge biorefineries. Oceanography. [CrossRef]
  • Gouveia, L., Batista, A. P., Sousa, I., Raymundo, A. & Bandarra, N. M. (2008). Microalgae in novel food products. In K.N. Papadopoulos & N.Y. Hauppauge, (Eds.), Food Chemistry Research Developments (pp. 1-37). Nova Science Publishers. ISBN 978-1-60456-262-0.
  • Halder, N. (2015). Phytoconstituents composition and in vitro antibacterial activity of a blue green alga Anabaena variabilis Kütz. ex Born. et Flah. Tropical Plant Research, 2(3), 288-291.
  • Helms, M., Vastrup, P., Gerner-Smidt, P. & Molbak, K. (2002). Excess mortality associated with antimicrobial drug-resistant Salmonella typhimurium. Emerging Infectious Diseases, 8, 490-495. [CrossRef]
  • Hur, S. B., Bae, J. H., Youn, J. Y. & Jo, M. J. (2015). KMMCC-Korea marine microalgae culture center: list of strains, 2nd edition. Algae, S1-S188. [CrossRef]
  • John, D. M., Witton, B. A. & Brook, A. J. (2002). The Freshwater Algal Flora of the British Isles. UK: Cambridge. Kreitlow, S., Mundt, S. & Lindequist, U. (1999). Cyanobacteria - a potential source of new biologically active substances. Progress in Industrial Microbiology, 35, 61-63. [CrossRef]
  • Lorenz, R. T. & Cysewski, G. R. (2000). Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnology, 18(4), 160-167. [CrossRef]
  • Madigan, T. M., Martinko, J. M., Stahl, D. A. & Clark, D. P. (2012). Brock biology of microorganisms. Thirteen edition, ISBN-13: 9780321649638.
  • Malathi, T., Ramesh Babu, M., Mounika, T., Snehalatha, D. & Digamber Rao, B. (2014). Screening of cyanobacterial strains for antibacterial activity. Phykos: Journal of the Phycological Society, 44(2), 6-11.
  • Mtolera, M. S. P. & Semesi, A. K. (1996). Antimicrobial activity of extraxts from six green algae from Tanzania. Current Trends In Marine Botanical Research In East African Region, 211–217.
  • Mulbry, W., Kondrad, S. & Buyer, J. (2008). Treatment of dairy and swine manure effluents using freshwater algae: fatty acid content and composition of algal biomass at different manure loading rates. Journal of Applied Phycology, 20, 1079-1085. [CrossRef]
  • Özdemir, G., Karabay, N. U., Dalay, M. C. & Pazarbaş B. (2004). Antibacterial activity of volatile component and various extracts of Spirulina platensis. Phytotherapy Research, 18, 754-757. [CrossRef]
  • Parvin, M., Zannat, M. N. & Habib, M. A. B. (2007). Two important technique for isolation of microalgae. Asian Fisheries Science, 20, 117-124.
  • Patil, K. J., Patil, V. A., Mahajan, S. R. & Mahajan, R. T. (2011). Bio-activity of algae belonging to Bhusawal region, Maharashtra. Current Botany, 2, 29-31.
  • Perez, C., Pauli, M. & Bazerque, P. (1990). An antibiotic assay by agar-well diffusion method. Acta Biologiae et Medecine Experimentaalis, 15, 113-115.
  • Plaza, M., Santoyo, S. & Jaime, L. (2010). Screening for bioactive compounds from algae. Journal of Pharmaceutical and Biomedical Analysis, 51(2), 450-455. [CrossRef]
  • Prescott, G. W. (1973). Algae of the western great lakes area. Michigan: C. Brown Company Publishers. Pulz, O. & Gross, W. (2004). Valuable products from biotechnology of microalgae. Applied Microbiology Biotechnology, 65, 635-648. [CrossRef]
  • Rania, M. A. & Abedin Hala Taha, M. (2008). Antibacterial and antifungal activity of Cyanobacteria and green Microalgae, evaluation of medium components by placket-Burman Design for antimicrobial activity of Spirulina platensis. Global Journal of Biochemistry and Biotechnology, 3(1), 22-31.
  • Shamchi, M. (2016). Investigation of cyanobacteria and some algal species bioactive compounds. Hacettepe Üniversitesi, Doktora Tezi.
  • Sethubathi, G. V. B. & Prabu, V. A. (2010). Antibacterial activity of cyanobacterial species from Adirampattinam Coast, Southeast Coast of Palk Bay. Current Research Journal of Biological Sciences, 2(1), 24-26.
  • Taskin, E., Ozturk, M., Taskin, E. & Kurt, O. (2007). Antibacterial activities of some marine algae from the Aegean Sea (Turkey). African Journal of Biotechnology, 6(24), 2746-2751. [CrossRef]
  • Thajuddin, N. & Subramanian, G. (2005). Cyanobacterial biodiversity and potential applications in biotechnology. Current Science, 89(1), 47-57.
  • Tiwari, A. & Sharma, D. (2013). Antibacterial activity of bloom farming Cyanobacteria against clinically isolated human pathogenic microbes. Journal of Algal Biomass Utilization, 4(1), 83-89.
  • UTEX Culture Collection of Algae (2016, 12 October). Retrieved October 12, 2019, from https://utex.org/products/bg-11-medium?variant= 30991786868826 (accessed 12.10.2019).
  • Walker, T. L., Purton, S. & Becker, D. K. (2005). Collet C: microalgae as bioreactors. Plant Cell Reports, 24, 629-641. [CrossRef]
  • Weis, Y. H. & Pang, C. Y. (2010). The role of mitochondria in human aging process. Biotechnology International, 17, 8-13.
  • Whitton, B. A. (2000). Soils and rice-fields. In B. A., Whitton & M., Potts, (Eds), The Ecology of Cyanobacteria (pp. 233–255) Dordrecht: Kluwer Academic. [CrossRef]

Antibacterial Activity of Cyanobacteria Dolichospermum affine Isolated from Freshwater

Year 2020, Volume: 35 Issue: 3, 83 - 88, 20.03.2020
https://doi.org/10.26650/ASE2020646338

Abstract

Cyanobacteria are known for their potential for antibacterial activity against a variety of pathogens, which are of medicinal importance in drug development. In addition, Cyanobacterial species produce various secondary metabolites that are used as dye and pigmentation and food additives. Cyanobacteria Dolichospermum affine (Lemmermann) Wacklin, L. Hoffmann & Komárek was isolated from freshwater resources and its antimicrobial effect was studied. Chloroform, methanol and water extracts of D. affine were tested to investigate their efficiency against five pathogenic bacterial strains [Pseudomonas aeruginosa (ATCC 27853), Shigella dysenteriae (ATCC 11835), Escherichia coli (ATCC 25924), Staphylococcus aureus (ATCC 29213) and Bacillus subtilis (ATCC 6633)]. The antimicrobial test was determined using the disk diffusion method. The antimicrobial activities of D. affine extracts were measured using the diameter of the inhibition zone (DIZ) of the pathogen microorganisms. The results showed that B. subtilis and E.coli were more sensitive, while S. aureus and P. aeruginosa showed more intermediate results. The highest antimicrobial activity was measured against E. coli (DIZ=13.9±0.05 mm - methanol), followed by B. subtilis (DIZ=13.6±0.05 mm - methanol). The lowest antibacterial effect of D. affine extracts were observed against P. aeruginosa (DIZ=11.7±0.02 mm - chloroform) and S. aureus (DIZ=12.2±0.03 mm - chloroform). The Gram-negative bacteria S. dysenteria exhibited no zone of inhibition. The aqueous extract showed poor activities against the tested pathogenic bacteria. Therefore, this study revealed that D. affine extracts would be a promising natural resource for new antibiotics and further research would be needed.

References

  • Abd El-Aty, A. M., Mohamed, A. A. & Samhan, F. A. (2014). In vitro antioxidant and antibacterial activities of two fresh water Cyanobacterial species, Oscillatoria agardhii and Anabaena sphaerica. Journal of Applied Pharmaceutical Science, 4(7), 69-75.
  • Abobaker, H. M. & Elsalhin, H. E. L. (2019). Antibacterial Activity of Anabaena circinalis Isolated from Fresh Water. Journal of Advances in Microbiology, 15(3), 1-7. [CrossRef]
  • Andersen, R. A. & Kawachi, M. (2005). Traditional microalgae isolation techniques. In R. A. Andersen (Ed), Algal culturing techniques (pp. 83-100). London, Elsevier Press. [CrossRef]
  • Brennan, L. & Owened, P. (2010). Biofuels from microalgae A review of technologies for production, processing and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14(2), 557-577. [CrossRef]
  • Converti, A., Casazza, A. A., Ortiz, E. Y., Perego, P. & Borghi, M. D. (2009). Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing: Process Intensification, 48, 1146-1151. [CrossRef]
  • Cowan, M. M. (1999). Plant products as antimicrobial agents. Clinical Microbiology Reviews, 564-582. [CrossRef]
  • Demir, Ö. (2011). Neochloris pseudoalveolaris Deason & Bold’de biyomas artışı ve yağ üretiminin araştırılması. Ege Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi.
  • Demirbas, A. (2010). Use of algae as biofuel sources. Energy Conversion Management, 51(12), 2738-2749. [CrossRef]
  • Demiriz, T., Çökmüş, C. & Pabuçcu, K. (2011). Antimicrobial activity of some algal species belonging to cyanobacteria and chlorophyta. Asian Journal of Chemistry, 23(3), 1384-1386.
  • Deshmukh, D. V. & Puranik, P. R. (2012). Application of plackett-burman design to evaluate media components affecting antibacterial activity of alkaliphilic cyanobacteria isolated from Lonar Lake. Turkish Journal of Biochemistry, 35(2), 114-120.
  • Gault, P. M. & Marler, H. J. (2009). Handbook on cyanobacteria: biochemistry, biotechnology and applications. New York: Nova Science Publishers.
  • Guillard, R. R. L. (2005). Purification methods for microalgae. In R.A. Andersen (Ed.), Algal culturing techniques (pp. 117-132). London, Elsevier Press. [CrossRef]
  • Guiry, M. D. & Guiry, G. M. (2018) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Retrieved from http://www.algaebase.org. (accessed 21.10.18)
  • Gouveia, L. (2014) From tiny microalgae to huge biorefineries. Oceanography. [CrossRef]
  • Gouveia, L., Batista, A. P., Sousa, I., Raymundo, A. & Bandarra, N. M. (2008). Microalgae in novel food products. In K.N. Papadopoulos & N.Y. Hauppauge, (Eds.), Food Chemistry Research Developments (pp. 1-37). Nova Science Publishers. ISBN 978-1-60456-262-0.
  • Halder, N. (2015). Phytoconstituents composition and in vitro antibacterial activity of a blue green alga Anabaena variabilis Kütz. ex Born. et Flah. Tropical Plant Research, 2(3), 288-291.
  • Helms, M., Vastrup, P., Gerner-Smidt, P. & Molbak, K. (2002). Excess mortality associated with antimicrobial drug-resistant Salmonella typhimurium. Emerging Infectious Diseases, 8, 490-495. [CrossRef]
  • Hur, S. B., Bae, J. H., Youn, J. Y. & Jo, M. J. (2015). KMMCC-Korea marine microalgae culture center: list of strains, 2nd edition. Algae, S1-S188. [CrossRef]
  • John, D. M., Witton, B. A. & Brook, A. J. (2002). The Freshwater Algal Flora of the British Isles. UK: Cambridge. Kreitlow, S., Mundt, S. & Lindequist, U. (1999). Cyanobacteria - a potential source of new biologically active substances. Progress in Industrial Microbiology, 35, 61-63. [CrossRef]
  • Lorenz, R. T. & Cysewski, G. R. (2000). Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnology, 18(4), 160-167. [CrossRef]
  • Madigan, T. M., Martinko, J. M., Stahl, D. A. & Clark, D. P. (2012). Brock biology of microorganisms. Thirteen edition, ISBN-13: 9780321649638.
  • Malathi, T., Ramesh Babu, M., Mounika, T., Snehalatha, D. & Digamber Rao, B. (2014). Screening of cyanobacterial strains for antibacterial activity. Phykos: Journal of the Phycological Society, 44(2), 6-11.
  • Mtolera, M. S. P. & Semesi, A. K. (1996). Antimicrobial activity of extraxts from six green algae from Tanzania. Current Trends In Marine Botanical Research In East African Region, 211–217.
  • Mulbry, W., Kondrad, S. & Buyer, J. (2008). Treatment of dairy and swine manure effluents using freshwater algae: fatty acid content and composition of algal biomass at different manure loading rates. Journal of Applied Phycology, 20, 1079-1085. [CrossRef]
  • Özdemir, G., Karabay, N. U., Dalay, M. C. & Pazarbaş B. (2004). Antibacterial activity of volatile component and various extracts of Spirulina platensis. Phytotherapy Research, 18, 754-757. [CrossRef]
  • Parvin, M., Zannat, M. N. & Habib, M. A. B. (2007). Two important technique for isolation of microalgae. Asian Fisheries Science, 20, 117-124.
  • Patil, K. J., Patil, V. A., Mahajan, S. R. & Mahajan, R. T. (2011). Bio-activity of algae belonging to Bhusawal region, Maharashtra. Current Botany, 2, 29-31.
  • Perez, C., Pauli, M. & Bazerque, P. (1990). An antibiotic assay by agar-well diffusion method. Acta Biologiae et Medecine Experimentaalis, 15, 113-115.
  • Plaza, M., Santoyo, S. & Jaime, L. (2010). Screening for bioactive compounds from algae. Journal of Pharmaceutical and Biomedical Analysis, 51(2), 450-455. [CrossRef]
  • Prescott, G. W. (1973). Algae of the western great lakes area. Michigan: C. Brown Company Publishers. Pulz, O. & Gross, W. (2004). Valuable products from biotechnology of microalgae. Applied Microbiology Biotechnology, 65, 635-648. [CrossRef]
  • Rania, M. A. & Abedin Hala Taha, M. (2008). Antibacterial and antifungal activity of Cyanobacteria and green Microalgae, evaluation of medium components by placket-Burman Design for antimicrobial activity of Spirulina platensis. Global Journal of Biochemistry and Biotechnology, 3(1), 22-31.
  • Shamchi, M. (2016). Investigation of cyanobacteria and some algal species bioactive compounds. Hacettepe Üniversitesi, Doktora Tezi.
  • Sethubathi, G. V. B. & Prabu, V. A. (2010). Antibacterial activity of cyanobacterial species from Adirampattinam Coast, Southeast Coast of Palk Bay. Current Research Journal of Biological Sciences, 2(1), 24-26.
  • Taskin, E., Ozturk, M., Taskin, E. & Kurt, O. (2007). Antibacterial activities of some marine algae from the Aegean Sea (Turkey). African Journal of Biotechnology, 6(24), 2746-2751. [CrossRef]
  • Thajuddin, N. & Subramanian, G. (2005). Cyanobacterial biodiversity and potential applications in biotechnology. Current Science, 89(1), 47-57.
  • Tiwari, A. & Sharma, D. (2013). Antibacterial activity of bloom farming Cyanobacteria against clinically isolated human pathogenic microbes. Journal of Algal Biomass Utilization, 4(1), 83-89.
  • UTEX Culture Collection of Algae (2016, 12 October). Retrieved October 12, 2019, from https://utex.org/products/bg-11-medium?variant= 30991786868826 (accessed 12.10.2019).
  • Walker, T. L., Purton, S. & Becker, D. K. (2005). Collet C: microalgae as bioreactors. Plant Cell Reports, 24, 629-641. [CrossRef]
  • Weis, Y. H. & Pang, C. Y. (2010). The role of mitochondria in human aging process. Biotechnology International, 17, 8-13.
  • Whitton, B. A. (2000). Soils and rice-fields. In B. A., Whitton & M., Potts, (Eds), The Ecology of Cyanobacteria (pp. 233–255) Dordrecht: Kluwer Academic. [CrossRef]
There are 40 citations in total.

Details

Primary Language English
Subjects Hydrobiology
Journal Section Research Articles
Authors

Dilek Yalçın 0000-0003-2127-8186

Publication Date March 20, 2020
Submission Date November 13, 2019
Published in Issue Year 2020 Volume: 35 Issue: 3

Cite

APA Yalçın, D. (2020). Antibacterial Activity of Cyanobacteria Dolichospermum affine Isolated from Freshwater. Aquatic Sciences and Engineering, 35(3), 83-88. https://doi.org/10.26650/ASE2020646338
AMA Yalçın D. Antibacterial Activity of Cyanobacteria Dolichospermum affine Isolated from Freshwater. Aqua Sci Eng. March 2020;35(3):83-88. doi:10.26650/ASE2020646338
Chicago Yalçın, Dilek. “Antibacterial Activity of Cyanobacteria Dolichospermum Affine Isolated from Freshwater”. Aquatic Sciences and Engineering 35, no. 3 (March 2020): 83-88. https://doi.org/10.26650/ASE2020646338.
EndNote Yalçın D (March 1, 2020) Antibacterial Activity of Cyanobacteria Dolichospermum affine Isolated from Freshwater. Aquatic Sciences and Engineering 35 3 83–88.
IEEE D. Yalçın, “Antibacterial Activity of Cyanobacteria Dolichospermum affine Isolated from Freshwater”, Aqua Sci Eng, vol. 35, no. 3, pp. 83–88, 2020, doi: 10.26650/ASE2020646338.
ISNAD Yalçın, Dilek. “Antibacterial Activity of Cyanobacteria Dolichospermum Affine Isolated from Freshwater”. Aquatic Sciences and Engineering 35/3 (March 2020), 83-88. https://doi.org/10.26650/ASE2020646338.
JAMA Yalçın D. Antibacterial Activity of Cyanobacteria Dolichospermum affine Isolated from Freshwater. Aqua Sci Eng. 2020;35:83–88.
MLA Yalçın, Dilek. “Antibacterial Activity of Cyanobacteria Dolichospermum Affine Isolated from Freshwater”. Aquatic Sciences and Engineering, vol. 35, no. 3, 2020, pp. 83-88, doi:10.26650/ASE2020646338.
Vancouver Yalçın D. Antibacterial Activity of Cyanobacteria Dolichospermum affine Isolated from Freshwater. Aqua Sci Eng. 2020;35(3):83-8.

openaccess.jpgOpen Access Statement:

This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.