Research Article
BibTex RIS Cite
Year 2021, Volume: 36 Issue: 4, 207 - 214, 01.10.2021

Abstract

References

  • Asmare AM, Demessie BA, Murthy GS (2013) Baseline Study on the Dairy Wastewater Treatment Performance and Microalgae Biomass Productivity of an Open Pond Pilot Plant : Ethiopian Case. J Algal Biomass Util 4:88–109.
  • Bałdyga J, Pohorecki R (1998) Influence of Turbulent Mechanical Stresses on Microorganisms. Appl Mech Rev 51:121–140. [CrossRef]
  • Barsanti L, Gualtieri P (2014) Algae. CRC Press.Barton AD, Ward BA, Williams RG, Follows MJ (2014) The impact of fine-scale turbulence on phytoplankton community structure. Limnol Oceanogr Fluids Environ 4:34–49. [CrossRef]
  • Beauvais S, Pedrotti M, Egge J, et al (2006) Effects of turbulence on TEP dynamics under contrasting nutrient conditions: implications for aggregation and sedimentation processes. Mar Ecol Prog Ser 323:47–57. [CrossRef]
  • Becker EW (1994) Microalgae: Biotechnology and Microbiology. Cambridge University Press, Cambridge.Bienfang PK, Takahashi M (1983) Ultraplankton growth rates in a subtropical ecosystem. Mar Biol 76:213–218. [CrossRef]
  • Burns, Wilton Gray, “Effects of small-scale turbulence on phytoplankton growth and metabolism” (2017). Master’s Theses and Capstones. 1113. [CrossRef]
  • Butterwick C, Heaney SI, Talling JF (1982) A comparison of eight methods for estimating the biomass and growth of planktonic algae. Br Phycol J 17:69–79. [CrossRef]
  • Calbet A, Landry MR (2004) Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol Oceanogr 49:51–57. [CrossRef]
  • Caspers H (1970) J. D. H. Strickland and T. R. Parsons: A Practical Handbook of Seawater Analysis. Ottawa: Fisheries Research Board of Canada, Bulletin 167, 1968. 293 pp. $ 7.50. Int Rev der gesamten Hydrobiol und Hydrogr 55:167–167. [CrossRef]
  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306. [CrossRef]
  • de Souza Cardoso L, da Motta Marques D (2009) Hydrodynamics-driven plankton community in a shallow lake. Aquat Ecol 43:73–84. [CrossRef]DeVries T, Primeau F, Deutsch C (2012) The sequestration efficiency of the biological pump. Geophys Res Lett 39:n/a-n/a. [CrossRef]
  • Fan Y, Held IM, Lin S-J, Wang XL (2013) Ocean Warming Effect on Surface Gravity Wave Climate Change for the End of the Twenty-First Century. J Clim 26:6046–6066. [CrossRef]Fernández I, Acién FG, Fernández JM, et al (2012) Dynamic model of microalgal production in tubular photobioreactors. Bioresour Technol 126:172–181. [CrossRef]
  • Field, C. B.; Behrenfeld, M. J.; Randerson JT ;Falkowsk. P (1998) Primary Production of the Biosphere: Integrating Terrestrial and Oceanic Components. Science (80- ) 281:237–240. [CrossRef]
  • Friend AD, Geider RJ, Behrenfeld MJ, Still CJ (2009) Photosynthesis in Global-Scale Models. In: Marine Ecology Progress Series. pp 465–497 [CrossRef]
  • Gargett AE (1989) Ocean Turbulence. Annu Rev Fluid Mech 21:419–451. [CrossRef]Gargett AE (1997) “Theories” and techniques for observing turbulence in the ocean euphotic zone. Sci Mar 61:25–45
  • Ghirardi, M.L.; Zhang, J.P.; Lee, J.W.; Flynn, T.; Seibert, M.; Greenbaum, E.; Melis A (2000) Microalgae: a green source of renewable H2. Trends Biotechnol 18:506–511. [CrossRef]
  • Gielen B, Löw M, Deckmyn G, et al (2007) Chronic ozone exposure affects leaf senescence of adult beech trees: A chlorophyll fluorescence approach. J Exp Bot 58:785–795. [CrossRef]
  • Guillard RRL, Ryther JH (1962) Studies of Marine Planktonic Diatoms: I. Cyclotella nana Hustedt, and Detonula Confervacea (Cleve) Gran. Can J Microbiol 8:229–239. [CrossRef]
  • Hallegraeff GM (1977) A comparison of different methods used for the quantitative evaluation of biomass of freshwater phytoplankton. Hydrobiologia 55:145–165. [CrossRef]
  • Han W, Li C, Miao X, Yu G (2012) A Novel Miniature Culture System to Screen CO2-Sequestering Microalgae. Energies 5:4372–4389. [CrossRef]
  • Hao T Bin, Yang YF, Balamurugan S, et al (2020) Enrichment of f/2 medium hyperaccumulates biomass and bioactive compounds in the diatom Phaeodactylum tricornutum. Algal Res 47:101872. [CrossRef]
  • Harun, M., Peralta, H. M. M., Gonawan, N. H., & Shahri, Z. (2018). Effect of Mixing on the Density and Chlorophyll A Content on Botryococcus Sp. Journal of Science and Technology, 10(2). [CrossRef]
  • Hecky RE, Kilham P (1988) Nutrient limitation of phytoplankton in freshwater and marine environments: A review of recent evidence on the effects of enrichment1. Limnol Oceanogr 33:796–822. [CrossRef]Hemer MA, Fan Y, Mori N, et al (2013a) Projected changes in wave climate from a multi-model ensemble. Nat Clim Chang 3:471–476. [CrossRef]
  • Hemer MA, Katzfey J, Trenham CE (2013b) Global dynamical projections of surface ocean wave climate for a future high greenhouse gas emission scenario. Ocean Model 70:221–245. [CrossRef]
  • Hondzo M, Al-Homoud A (2007) Model development and verification for mass transport to Escherichia coli cells in a turbulent flow. Water Resour Res 43:. [CrossRef]
  • Hondzo M, Lyn D (1999) Quantified small‐scale turbulence inhibits the growth of a green alga. Freshw Biol 41:51–61. [CrossRef]
  • Shriwastav A, Thomas J, Bose P (2017) A comprehensive mechanistic model for simulating algal growth dynamics in photobioreactors. Bioresour Technol 233:7–14. [CrossRef]
  • Sivakumar, R; Rajendran S (2013) Growth measurement technique of microalgae. Curr Sci J 7:52–54.
  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96. [CrossRef]
  • Subhash N, Wenzel O, Lichtenthaler HK (1999) Changes in blue-green and chlorophyll fluorescence emission and fluorescence ratios during senescence of tobacco plants. Remote Sens Environ 69:215–223. [CrossRef]
  • Sullivan JM, Swift E (2003) Effects of small-scale turbulence on net growth rate and size of ten species of marine dinoflagellates. J Phycol 39:83–94. [CrossRef]
  • Terray EA, Donelan MA, Agrawal YC, et al (1996) Estimates of Kinetic Energy Dissipation under Breaking Waves. J Phys Oceanogr 26:792–807. [CrossRef]Thomas WH, Gibson CH (1990) Effects of small-scale turbulence on microalgae. J Appl Phycol 2:71–77. [CrossRef]
  • Toennies G, Gallant DL (1949) The relation between photometric turbidity and bacterial concentration. Growth 13:7—20.
  • Vanags J, Kunga L, Dubencovs K, et al (2015) The Effect of Shaking, CO2 Concentration and Light Intensity on Biomass Growth of Green Microalgae Desmodesmus communis. Environ Res Eng Manag 70:. [CrossRef]
  • Wang H, Zhou Y, Xia K, et al (2016) Flow-disturbance considered simulation for algae growth in a river-lake system. Ecohydrology 9:601–609. [CrossRef]
  • Wang L, Min M, Li Y, et al (2010) Cultivation of Green Algae Chlorella sp. in Different Wastewaters from Municipal Wastewater Treatment Plant. Appl Biochem Biotechnol 162:1174–1186. [CrossRef]
  • Yentsch CS, Menzel DW (1963) A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep Res Oceanogr Abstr 10:221–231. [CrossRef]
  • Zhao B, Zhang Y, Xiong K, et al (2011) Effect of cultivation mode on microalgal growth and CO2 fixation. Chem Eng Res Des 89:1758–1762. [CrossRef]
  • Zhong CH (2004) A Study on the Eutrophication of the Three Gorges Reservoir. Sichuan University, Chengdu, ChinaZhou J, Qin B, Casenave C, et al (2015) Effects of wind wave turbulence on the phytoplankton community composition in large, shallow Lake Taihu. Environ Sci Pollut Res 22:12737–12746. [CrossRef]
  • Zhu L, Wang Z, Shu Q, et al (2013) Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment. Water Res 47:4294–4302. [CrossRef]

Effect of Different Shaking Systems on the Growth of Marine Diatom Phaeodactylum Tricornutum

Year 2021, Volume: 36 Issue: 4, 207 - 214, 01.10.2021

Abstract

In aquatic ecosystems, the fact of encountering fluctuations is vital for the survival of phytoplank-ton, in terms of remaining in the euphotic zone and reaching the necessary nutrients for their growth. The existence and the abundance of the phytoplankton are also vital for the other living things in indirect or direct ways, due to being the fundamental components of the food chain and webs, in addition to their usage in several industries like fuel, pharmacy, or cosmetics. However, particularly for the energy industry, the production cost of biofuels by using phytoplankton is rela-tively higher than the cost of conventional fossil fuels. Thus, the need of increasing the phytoplank-ton biomass in artificial environments has emerged to reduce the biofuel production cost. For this purpose, the correlation of turbulence and growth rate has been investigated through various ex-perimental studies. In addition to the previous studies, this study focuses on the turbulence effects at a small scale in respect of the movement directions. Fixed, axial, and orbital movements were performed and quantified in terms of the specific growth rate, doubling time and the productivity of biomass for each system. The frequencies of the axial and orbital systems were set to 40 and 80 rpm, respectively and the specific growth rates were quantified as 0.38, 0.43 and 0.42 μ day-1 where-as the doubling times were calculated as 1.84, 1.62 and 1.63 day. In conclusion, it was observed that the frequency of the movement is more influential rather than the type of the movement.

References

  • Asmare AM, Demessie BA, Murthy GS (2013) Baseline Study on the Dairy Wastewater Treatment Performance and Microalgae Biomass Productivity of an Open Pond Pilot Plant : Ethiopian Case. J Algal Biomass Util 4:88–109.
  • Bałdyga J, Pohorecki R (1998) Influence of Turbulent Mechanical Stresses on Microorganisms. Appl Mech Rev 51:121–140. [CrossRef]
  • Barsanti L, Gualtieri P (2014) Algae. CRC Press.Barton AD, Ward BA, Williams RG, Follows MJ (2014) The impact of fine-scale turbulence on phytoplankton community structure. Limnol Oceanogr Fluids Environ 4:34–49. [CrossRef]
  • Beauvais S, Pedrotti M, Egge J, et al (2006) Effects of turbulence on TEP dynamics under contrasting nutrient conditions: implications for aggregation and sedimentation processes. Mar Ecol Prog Ser 323:47–57. [CrossRef]
  • Becker EW (1994) Microalgae: Biotechnology and Microbiology. Cambridge University Press, Cambridge.Bienfang PK, Takahashi M (1983) Ultraplankton growth rates in a subtropical ecosystem. Mar Biol 76:213–218. [CrossRef]
  • Burns, Wilton Gray, “Effects of small-scale turbulence on phytoplankton growth and metabolism” (2017). Master’s Theses and Capstones. 1113. [CrossRef]
  • Butterwick C, Heaney SI, Talling JF (1982) A comparison of eight methods for estimating the biomass and growth of planktonic algae. Br Phycol J 17:69–79. [CrossRef]
  • Calbet A, Landry MR (2004) Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol Oceanogr 49:51–57. [CrossRef]
  • Caspers H (1970) J. D. H. Strickland and T. R. Parsons: A Practical Handbook of Seawater Analysis. Ottawa: Fisheries Research Board of Canada, Bulletin 167, 1968. 293 pp. $ 7.50. Int Rev der gesamten Hydrobiol und Hydrogr 55:167–167. [CrossRef]
  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306. [CrossRef]
  • de Souza Cardoso L, da Motta Marques D (2009) Hydrodynamics-driven plankton community in a shallow lake. Aquat Ecol 43:73–84. [CrossRef]DeVries T, Primeau F, Deutsch C (2012) The sequestration efficiency of the biological pump. Geophys Res Lett 39:n/a-n/a. [CrossRef]
  • Fan Y, Held IM, Lin S-J, Wang XL (2013) Ocean Warming Effect on Surface Gravity Wave Climate Change for the End of the Twenty-First Century. J Clim 26:6046–6066. [CrossRef]Fernández I, Acién FG, Fernández JM, et al (2012) Dynamic model of microalgal production in tubular photobioreactors. Bioresour Technol 126:172–181. [CrossRef]
  • Field, C. B.; Behrenfeld, M. J.; Randerson JT ;Falkowsk. P (1998) Primary Production of the Biosphere: Integrating Terrestrial and Oceanic Components. Science (80- ) 281:237–240. [CrossRef]
  • Friend AD, Geider RJ, Behrenfeld MJ, Still CJ (2009) Photosynthesis in Global-Scale Models. In: Marine Ecology Progress Series. pp 465–497 [CrossRef]
  • Gargett AE (1989) Ocean Turbulence. Annu Rev Fluid Mech 21:419–451. [CrossRef]Gargett AE (1997) “Theories” and techniques for observing turbulence in the ocean euphotic zone. Sci Mar 61:25–45
  • Ghirardi, M.L.; Zhang, J.P.; Lee, J.W.; Flynn, T.; Seibert, M.; Greenbaum, E.; Melis A (2000) Microalgae: a green source of renewable H2. Trends Biotechnol 18:506–511. [CrossRef]
  • Gielen B, Löw M, Deckmyn G, et al (2007) Chronic ozone exposure affects leaf senescence of adult beech trees: A chlorophyll fluorescence approach. J Exp Bot 58:785–795. [CrossRef]
  • Guillard RRL, Ryther JH (1962) Studies of Marine Planktonic Diatoms: I. Cyclotella nana Hustedt, and Detonula Confervacea (Cleve) Gran. Can J Microbiol 8:229–239. [CrossRef]
  • Hallegraeff GM (1977) A comparison of different methods used for the quantitative evaluation of biomass of freshwater phytoplankton. Hydrobiologia 55:145–165. [CrossRef]
  • Han W, Li C, Miao X, Yu G (2012) A Novel Miniature Culture System to Screen CO2-Sequestering Microalgae. Energies 5:4372–4389. [CrossRef]
  • Hao T Bin, Yang YF, Balamurugan S, et al (2020) Enrichment of f/2 medium hyperaccumulates biomass and bioactive compounds in the diatom Phaeodactylum tricornutum. Algal Res 47:101872. [CrossRef]
  • Harun, M., Peralta, H. M. M., Gonawan, N. H., & Shahri, Z. (2018). Effect of Mixing on the Density and Chlorophyll A Content on Botryococcus Sp. Journal of Science and Technology, 10(2). [CrossRef]
  • Hecky RE, Kilham P (1988) Nutrient limitation of phytoplankton in freshwater and marine environments: A review of recent evidence on the effects of enrichment1. Limnol Oceanogr 33:796–822. [CrossRef]Hemer MA, Fan Y, Mori N, et al (2013a) Projected changes in wave climate from a multi-model ensemble. Nat Clim Chang 3:471–476. [CrossRef]
  • Hemer MA, Katzfey J, Trenham CE (2013b) Global dynamical projections of surface ocean wave climate for a future high greenhouse gas emission scenario. Ocean Model 70:221–245. [CrossRef]
  • Hondzo M, Al-Homoud A (2007) Model development and verification for mass transport to Escherichia coli cells in a turbulent flow. Water Resour Res 43:. [CrossRef]
  • Hondzo M, Lyn D (1999) Quantified small‐scale turbulence inhibits the growth of a green alga. Freshw Biol 41:51–61. [CrossRef]
  • Shriwastav A, Thomas J, Bose P (2017) A comprehensive mechanistic model for simulating algal growth dynamics in photobioreactors. Bioresour Technol 233:7–14. [CrossRef]
  • Sivakumar, R; Rajendran S (2013) Growth measurement technique of microalgae. Curr Sci J 7:52–54.
  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96. [CrossRef]
  • Subhash N, Wenzel O, Lichtenthaler HK (1999) Changes in blue-green and chlorophyll fluorescence emission and fluorescence ratios during senescence of tobacco plants. Remote Sens Environ 69:215–223. [CrossRef]
  • Sullivan JM, Swift E (2003) Effects of small-scale turbulence on net growth rate and size of ten species of marine dinoflagellates. J Phycol 39:83–94. [CrossRef]
  • Terray EA, Donelan MA, Agrawal YC, et al (1996) Estimates of Kinetic Energy Dissipation under Breaking Waves. J Phys Oceanogr 26:792–807. [CrossRef]Thomas WH, Gibson CH (1990) Effects of small-scale turbulence on microalgae. J Appl Phycol 2:71–77. [CrossRef]
  • Toennies G, Gallant DL (1949) The relation between photometric turbidity and bacterial concentration. Growth 13:7—20.
  • Vanags J, Kunga L, Dubencovs K, et al (2015) The Effect of Shaking, CO2 Concentration and Light Intensity on Biomass Growth of Green Microalgae Desmodesmus communis. Environ Res Eng Manag 70:. [CrossRef]
  • Wang H, Zhou Y, Xia K, et al (2016) Flow-disturbance considered simulation for algae growth in a river-lake system. Ecohydrology 9:601–609. [CrossRef]
  • Wang L, Min M, Li Y, et al (2010) Cultivation of Green Algae Chlorella sp. in Different Wastewaters from Municipal Wastewater Treatment Plant. Appl Biochem Biotechnol 162:1174–1186. [CrossRef]
  • Yentsch CS, Menzel DW (1963) A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep Res Oceanogr Abstr 10:221–231. [CrossRef]
  • Zhao B, Zhang Y, Xiong K, et al (2011) Effect of cultivation mode on microalgal growth and CO2 fixation. Chem Eng Res Des 89:1758–1762. [CrossRef]
  • Zhong CH (2004) A Study on the Eutrophication of the Three Gorges Reservoir. Sichuan University, Chengdu, ChinaZhou J, Qin B, Casenave C, et al (2015) Effects of wind wave turbulence on the phytoplankton community composition in large, shallow Lake Taihu. Environ Sci Pollut Res 22:12737–12746. [CrossRef]
  • Zhu L, Wang Z, Shu Q, et al (2013) Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment. Water Res 47:4294–4302. [CrossRef]
There are 40 citations in total.

Details

Primary Language English
Subjects Hydrobiology
Journal Section Research Articles
Authors

Sevil Deniz Yakan Dündar 0000-0003-2493-680X

Oktay Eren Türeyen 0000-0003-2346-1128

Publication Date October 1, 2021
Submission Date March 30, 2021
Published in Issue Year 2021 Volume: 36 Issue: 4

Cite

APA Yakan Dündar, S. D., & Türeyen, O. E. (2021). Effect of Different Shaking Systems on the Growth of Marine Diatom Phaeodactylum Tricornutum. Aquatic Sciences and Engineering, 36(4), 207-214.
AMA Yakan Dündar SD, Türeyen OE. Effect of Different Shaking Systems on the Growth of Marine Diatom Phaeodactylum Tricornutum. Aqua Sci Eng. October 2021;36(4):207-214.
Chicago Yakan Dündar, Sevil Deniz, and Oktay Eren Türeyen. “Effect of Different Shaking Systems on the Growth of Marine Diatom Phaeodactylum Tricornutum”. Aquatic Sciences and Engineering 36, no. 4 (October 2021): 207-14.
EndNote Yakan Dündar SD, Türeyen OE (October 1, 2021) Effect of Different Shaking Systems on the Growth of Marine Diatom Phaeodactylum Tricornutum. Aquatic Sciences and Engineering 36 4 207–214.
IEEE S. D. Yakan Dündar and O. E. Türeyen, “Effect of Different Shaking Systems on the Growth of Marine Diatom Phaeodactylum Tricornutum”, Aqua Sci Eng, vol. 36, no. 4, pp. 207–214, 2021.
ISNAD Yakan Dündar, Sevil Deniz - Türeyen, Oktay Eren. “Effect of Different Shaking Systems on the Growth of Marine Diatom Phaeodactylum Tricornutum”. Aquatic Sciences and Engineering 36/4 (October 2021), 207-214.
JAMA Yakan Dündar SD, Türeyen OE. Effect of Different Shaking Systems on the Growth of Marine Diatom Phaeodactylum Tricornutum. Aqua Sci Eng. 2021;36:207–214.
MLA Yakan Dündar, Sevil Deniz and Oktay Eren Türeyen. “Effect of Different Shaking Systems on the Growth of Marine Diatom Phaeodactylum Tricornutum”. Aquatic Sciences and Engineering, vol. 36, no. 4, 2021, pp. 207-14.
Vancouver Yakan Dündar SD, Türeyen OE. Effect of Different Shaking Systems on the Growth of Marine Diatom Phaeodactylum Tricornutum. Aqua Sci Eng. 2021;36(4):207-14.

openaccess.jpgOpen Access Statement:

This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.