Review
BibTex RIS Cite

Biodosimeters: Advancements in Radiation Detection and Monitoring

Year 2024, Volume: 22 Issue: 1, 11 - 34, 02.01.2025

Abstract

Biyodozimetreler: Radyasyon Tespit ve İzlemede Gelişmeler


ÖZ
Bu derleme, biyolojik tepkileri ölçen biodosimetrelere derinlemesine bir bakış sunarak, insan sağlığı ve çevre için radyasyon maruziyetinin ciddi bir sorun olduğunu ve etkili radyasyon tespit ve izleme sistemlerine ihtiyaç duyulduğunu vurgulamaktadır. İlk bölümde biodosimetrelere ve radyasyon tespitinde ve izlenmesindeki kullanımlarına değinilmektedir. Güvenilir maruziyet seviyesi göstergeleri olarak kabul edilirler ve radyasyon güvenliğinde önemli bir rol oynarlar. Araştırma, kan bileşenlerini ve kromozomal değişiklikleri analiz eden hematolojik ve sitogenetik biyoduyarlı sensörler gibi diğer biyodozimetre türlerine de odaklanmaktadır. Takip eden bölümler, biyodozimetrelere ilişkin işleyiş ve kullanımlara daha detaylı bir bakış sunmaktadır. Biyodozimetrelere, radyasyon maruziyetinin gerçek zamanlı izlenmesine izin verdiği gibi sağlık sorunlarının erken tespitine de olanak tanır. Ayrıca, biyodozimetrelere, tıbbi tedavilerde ve çevresel araştırmalarda hassas doz tahmini yapmada yardımcı olarak, radyasyon olayları sonrası çalışmaları mümkün kılar. Biyodozimetrelere, işyeri radyasyon maruziyet izleme, radyoterapi, nükleer tıp ve çevresel radyasyon izleme gibi alanlarda, ekosistemler üzerindeki radyasyon etkisini incelemek için geniş ölçüde başvurulmaktadır. Son dönemdeki gelişmeler, onların doğruluğunu ve duyarlılığını artırarak, onları giyilebilir cihazlar ve IoT platformları ile entegre ederek basit ve gerçek zamanlı izleme imkanı sunmuştur. Rapor ayrıca, düşük maliyetli, yüksek duyarlılıkta radyasyon tespiti sağlayan bakteriyel biyoduyarlı sensörlerin tanıtımına da vurgu yapmaktadır. Biyodozimetre teknolojisinin ilerlemesi, özelleştirilmiş radyasyon maruziyet izleme ve uzay keşfi koruması için umut vaat etmektedir. Son olarak, biyodozimetreler, geniş bir endüstri yelpazesini kapsayan radyasyon güvenliğinde kritik cihazlar olup, insan sağlığı ve çevre için daha güvenli bir gelecek sağlayarak gerçek zamanlı izleme ve erken risk tespiti sağlar.
Anahtar Kelimeler: Biyodozimetreler; radyasyon; biyoduyarlar; hematoloji; tarama.
Makale Gönderim: 26 Ekim 2023
Makale Kabul:
Makale Yayım:
Biodosimeters: Advancements in Radiation Detection and Monitoring
ABSTRACT
Radiation exposure is a serious problem for both human health and the environment, needing effective radiation detection and monitoring systems. Biodosimeters, which measure biological reactions to radiation, have emerged as cutting-edge technologies in this sector. This study takes an in-depth look at biodosimeters and their uses. The first section discusses biodosimeters and their use in radiation detection and monitoring. They are considered as dependable exposure level indicators and serve an important role in radiation safety. The research then looks into other forms of biodosimeters, such as hematological and cytogenetic biodosensors, which analyze blood components and chromosomal changes, respectively. The sections that follow go into the functioning and uses of biodosimeters in greater detail. They allow for real-time monitoring of radiation exposure as well as early detection of health problems. Furthermore, biodosimeters help with precise dose estimation in medical treatments and environmental investigations, allowing for post-radiation event study. Biodosimeters are widely used to examine the impact of radiation on ecosystems in occupational radiation exposure monitoring, radiotherapy, nuclear medicine, and environmental radiation monitoring. Recent advances have improved their accuracy and sensitivity, allowing them to be integrated with wearable devices and IoT platforms for simple and real-time monitoring. The report also emphasizes the introduction of bacterial biodosensors, which provide low-cost, high-sensitivity radiation detection options. The advancement of biodosimeter technology holds promise for tailored radiation exposure monitoring and space exploration protection. Finally, biodosimeters are critical assets in radiation safety, with applications covering a wide range of industries. They provide real-time monitoring and early risk detection, resulting in a safer and more secure future for human health and the environment.
Keywords: biodosimeters; radiation; biodosensors; hematology; screening.

References

  • [1] E. C. Laiakis et al., “A Serum Small Molecule Biosignature of Radiation Exposure from Total Body Irradiated Patients,” Journal of Proteome Research, vol. 16, no. 10, pp. 3805–3815, Aug. 2017, doi: 10.1021/acs.jproteome.7b00468.
  • [2] W. Cui, J. Ma, Y. Wang, and S. Biswal, “Plasma MIRNA as biomarkers for Assessment of Total-Body Radiation Exposure Dosimetry,” PLOS ONE, vol. 6, no. 8, p. e22988, Aug. 2011, doi: 10.1371/journal.pone.0022988. [3] H. Budworth et al., “DNA repair and cell cycle biomarkers of radiation exposure and inflammation stress in human blood,” PLOS ONE, vol. 7, no. 11, p. e48619, Nov. 2012, doi: 10.1371/journal.pone.0048619. [4] C. E. Redon, A. Nakamura, K. Gouliaeva, A. Rahman, W. F. Blakely, and W. M. Bonner, “The use of Gamma-H2AX as a biodosimeter for Total-Body radiation exposure in Non-Human primates,” PLOS ONE, vol. 5, no. 11, p. e15544, Nov. 2010, doi: 10.1371/journal.pone.0015544.
  • [5] L. Sun, Y. Inaba, N. Kanzaki, M. Bekal, K. Chida, and T. Moritake, “Identification of potential biomarkers of radiation exposure in blood cells by capillary electrophoresis Time-of-Flight mass spectrometry,” International Journal of Molecular Sciences, vol. 21, no. 3, p. 812, Jan. 2020, doi: 10.3390/ijms21030812.
  • [6] E. L. Pannkuk, E. C. Laiakis, M. Garcia, A. J. Fornace, and V. K. Singh, “Nonhuman Primates with Acute Radiation Syndrome: Results from a Global Serum Metabolomics Study after 7.2 Gy Total-Body Irradiation,” Radiation Research, vol. 190, no. 6, p. 576, Sep. 2018, doi: 10.1667/rr15167.1.
  • [7] V. K. Singh and H. B. Pollard, “Ionizing radiation-induced altered microRNA expression as biomarkers for assessing acute radiation injury,” Expert Review of Molecular Diagnostics, vol. 17, no. 10, pp. 871–874, Aug. 2017, doi: 10.1080/14737159.2017.1366316.
  • [8] M. Sang et al., “A Hydrophobic, Self-Powered, Electromagnetic Shielding PVDF-Based wearable device for human body monitoring and protection,” ACS Applied Materials & Interfaces, vol. 11, no. 50, pp. 47340–47349, Nov. 2019, doi: 10.1021/acsami.9b16120.
  • [9] E. Gotoh and Y. Tanno, “Simple biodosimetry method for cases of high-dose radiation exposure using the ratio of the longest/shortest length of Giemsa-stained drug-induced prematurely condensed chromosomes (PCC),” International Journal of Radiation Biology, vol. 81, no. 5, pp. 379–385, May 2005, doi: 10.1080/09553000500147667.
  • [10] M. A. Chaudhry, “Biomarkers for human radiation exposure,” Journal of Biomedical Science, vol. 15, no. 5, pp. 557–563, May 2008, doi: 10.1007/s11373-008-9253-z.
  • [11] S. Heydarheydari, A. Haghparast, and M. T. Eivazi, “A novel biological dosimetry method for monitoring occupational radiation exposure in diagnostic and therapeutic wards: From radiation dosimetry to biological Effects.,” DOAJ (DOAJ: Directory of Open Access Journals), vol. 6, no. 1, pp. 21–6, Mar. 2016, [Online]. Available: https://doaj.org/article/f2bdc80e1b2f4c5296cb1a5dfafe7fa4
  • [12] U. Plappert, B. Stocker, H. Fender, and T. M. Fliedner, “Changes in the repair capacity of blood cells as a biomarker for chronic low-dose exposure to ionizing radiation,” Environmental and Molecular Mutagenesis, vol. 30, no. 2, pp. 153–160, Jan. 1997, doi: 10.1002/(sici)1098-2280(1997)30:2.
  • [13] E. Kis et al., “Microarray analysis of radiation response genes in primary human fibroblasts,” International Journal of Radiation Oncology Biology Physics, vol. 66, no. 5, pp. 1506–1514, Dec. 2006, doi: 10.1016/j.ijrobp.2006.08.004.
  • [14] N. A. Gkanatsios, W. Huda, K. Peters, and J. A. Freeman, “Evaluation of an on-line patient exposure meter in neuroradiology.,” Radiology, vol. 203, no. 3, pp. 837–842, Jun. 1997, doi: 10.1148/radiology.203.3.9169713.
  • [15] K. Coeytaux, É. Bey, D. M. Christensen, E. S. Glassman, B. Murdock, and C. Doucet, “Reported Radiation Overexposure Accidents Worldwide, 1980-2013: A Systematic review,” PLOS ONE, vol. 10, no. 3, p. e0118709, Mar. 2015, doi: 10.1371/journal.pone.0118709.
  • [16] C. R. Muirhead et al., “Mortality and cancer incidence following occupational radiation exposure: third analysis of the National Registry for Radiation Workers,” British Journal of Cancer, vol. 100, no. 1, pp. 206–212, Jan. 2009, doi: 10.1038/sj.bjc.6604825.
  • [17] R. H. Jensen et al., “Laser-based flow cytometric analysis of genotoxicity of humans exposed to ionizing radiation during the Chernobyl accident,” Proceedings of SPIE, May 1991, doi: 10.1117/12.57307.
  • [18] S. Avino et al., “Detecting ionizing radiation with optical fibers down to biomedical doses,” Applied Physics Letters, vol. 103, no. 18, Oct. 2013, doi: 10.1063/1.4826934.
  • [19] W. C. Pfeiffer, E. Penna-Franca, C. C. Ribeiro, A. Nogueira, H. Londres, and A. E. De Oliveira, “Measurements of environmental radiation exposure dose rates at selected sites in Brazil.,” PubMed, vol. 53, no. 4, pp. 683–91, Dec. 1981, [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/7345962
  • [20] M. Ghardi, M. Moreels, B. Châtelain, C. Chatelain, and S. Baatout, “Radiation-induced double strand breaks and subsequent apoptotic DNA fragmentation in human peripheral blood mononuclear cells,” International Journal of Molecular Medicine, Feb. 2012, doi: 10.3892/ijmm.2012.907.

Biyodozimetreler: Radyasyon Tespit ve İzlemede Gelişmeler

Year 2024, Volume: 22 Issue: 1, 11 - 34, 02.01.2025

Abstract

Biyodozimetreler: Radyasyon Tespit ve İzlemede Gelişmeler


ÖZ
Bu derleme, biyolojik tepkileri ölçen biodosimetrelere derinlemesine bir bakış sunarak, insan sağlığı ve çevre için radyasyon maruziyetinin ciddi bir sorun olduğunu ve etkili radyasyon tespit ve izleme sistemlerine ihtiyaç duyulduğunu vurgulamaktadır. İlk bölümde biodosimetrelere ve radyasyon tespitinde ve izlenmesindeki kullanımlarına değinilmektedir. Güvenilir maruziyet seviyesi göstergeleri olarak kabul edilirler ve radyasyon güvenliğinde önemli bir rol oynarlar. Araştırma, kan bileşenlerini ve kromozomal değişiklikleri analiz eden hematolojik ve sitogenetik biyoduyarlı sensörler gibi diğer biyodozimetre türlerine de odaklanmaktadır. Takip eden bölümler, biyodozimetrelere ilişkin işleyiş ve kullanımlara daha detaylı bir bakış sunmaktadır. Biyodozimetrelere, radyasyon maruziyetinin gerçek zamanlı izlenmesine izin verdiği gibi sağlık sorunlarının erken tespitine de olanak tanır. Ayrıca, biyodozimetrelere, tıbbi tedavilerde ve çevresel araştırmalarda hassas doz tahmini yapmada yardımcı olarak, radyasyon olayları sonrası çalışmaları mümkün kılar. Biyodozimetrelere, işyeri radyasyon maruziyet izleme, radyoterapi, nükleer tıp ve çevresel radyasyon izleme gibi alanlarda, ekosistemler üzerindeki radyasyon etkisini incelemek için geniş ölçüde başvurulmaktadır. Son dönemdeki gelişmeler, onların doğruluğunu ve duyarlılığını artırarak, onları giyilebilir cihazlar ve IoT platformları ile entegre ederek basit ve gerçek zamanlı izleme imkanı sunmuştur. Rapor ayrıca, düşük maliyetli, yüksek duyarlılıkta radyasyon tespiti sağlayan bakteriyel biyoduyarlı sensörlerin tanıtımına da vurgu yapmaktadır. Biyodozimetre teknolojisinin ilerlemesi, özelleştirilmiş radyasyon maruziyet izleme ve uzay keşfi koruması için umut vaat etmektedir. Son olarak, biyodozimetreler, geniş bir endüstri yelpazesini kapsayan radyasyon güvenliğinde kritik cihazlar olup, insan sağlığı ve çevre için daha güvenli bir gelecek sağlayarak gerçek zamanlı izleme ve erken risk tespiti sağlar.
Anahtar Kelimeler: Biyodozimetreler; radyasyon; biyoduyarlar; hematoloji; tarama.
Makale Gönderim: 26 Ekim 2023
Makale Kabul:
Makale Yayım:
Biodosimeters: Advancements in Radiation Detection and Monitoring
ABSTRACT
Radiation exposure is a serious problem for both human health and the environment, needing effective radiation detection and monitoring systems. Biodosimeters, which measure biological reactions to radiation, have emerged as cutting-edge technologies in this sector. This study takes an in-depth look at biodosimeters and their uses. The first section discusses biodosimeters and their use in radiation detection and monitoring. They are considered as dependable exposure level indicators and serve an important role in radiation safety. The research then looks into other forms of biodosimeters, such as hematological and cytogenetic biodosensors, which analyze blood components and chromosomal changes, respectively. The sections that follow go into the functioning and uses of biodosimeters in greater detail. They allow for real-time monitoring of radiation exposure as well as early detection of health problems. Furthermore, biodosimeters help with precise dose estimation in medical treatments and environmental investigations, allowing for post-radiation event study. Biodosimeters are widely used to examine the impact of radiation on ecosystems in occupational radiation exposure monitoring, radiotherapy, nuclear medicine, and environmental radiation monitoring. Recent advances have improved their accuracy and sensitivity, allowing them to be integrated with wearable devices and IoT platforms for simple and real-time monitoring. The report also emphasizes the introduction of bacterial biodosensors, which provide low-cost, high-sensitivity radiation detection options. The advancement of biodosimeter technology holds promise for tailored radiation exposure monitoring and space exploration protection. Finally, biodosimeters are critical assets in radiation safety, with applications covering a wide range of industries. They provide real-time monitoring and early risk detection, resulting in a safer and more secure future for human health and the environment.
Keywords: biodosimeters; radiation; biodosensors; hematology; screening.

References

  • [1] E. C. Laiakis et al., “A Serum Small Molecule Biosignature of Radiation Exposure from Total Body Irradiated Patients,” Journal of Proteome Research, vol. 16, no. 10, pp. 3805–3815, Aug. 2017, doi: 10.1021/acs.jproteome.7b00468.
  • [2] W. Cui, J. Ma, Y. Wang, and S. Biswal, “Plasma MIRNA as biomarkers for Assessment of Total-Body Radiation Exposure Dosimetry,” PLOS ONE, vol. 6, no. 8, p. e22988, Aug. 2011, doi: 10.1371/journal.pone.0022988. [3] H. Budworth et al., “DNA repair and cell cycle biomarkers of radiation exposure and inflammation stress in human blood,” PLOS ONE, vol. 7, no. 11, p. e48619, Nov. 2012, doi: 10.1371/journal.pone.0048619. [4] C. E. Redon, A. Nakamura, K. Gouliaeva, A. Rahman, W. F. Blakely, and W. M. Bonner, “The use of Gamma-H2AX as a biodosimeter for Total-Body radiation exposure in Non-Human primates,” PLOS ONE, vol. 5, no. 11, p. e15544, Nov. 2010, doi: 10.1371/journal.pone.0015544.
  • [5] L. Sun, Y. Inaba, N. Kanzaki, M. Bekal, K. Chida, and T. Moritake, “Identification of potential biomarkers of radiation exposure in blood cells by capillary electrophoresis Time-of-Flight mass spectrometry,” International Journal of Molecular Sciences, vol. 21, no. 3, p. 812, Jan. 2020, doi: 10.3390/ijms21030812.
  • [6] E. L. Pannkuk, E. C. Laiakis, M. Garcia, A. J. Fornace, and V. K. Singh, “Nonhuman Primates with Acute Radiation Syndrome: Results from a Global Serum Metabolomics Study after 7.2 Gy Total-Body Irradiation,” Radiation Research, vol. 190, no. 6, p. 576, Sep. 2018, doi: 10.1667/rr15167.1.
  • [7] V. K. Singh and H. B. Pollard, “Ionizing radiation-induced altered microRNA expression as biomarkers for assessing acute radiation injury,” Expert Review of Molecular Diagnostics, vol. 17, no. 10, pp. 871–874, Aug. 2017, doi: 10.1080/14737159.2017.1366316.
  • [8] M. Sang et al., “A Hydrophobic, Self-Powered, Electromagnetic Shielding PVDF-Based wearable device for human body monitoring and protection,” ACS Applied Materials & Interfaces, vol. 11, no. 50, pp. 47340–47349, Nov. 2019, doi: 10.1021/acsami.9b16120.
  • [9] E. Gotoh and Y. Tanno, “Simple biodosimetry method for cases of high-dose radiation exposure using the ratio of the longest/shortest length of Giemsa-stained drug-induced prematurely condensed chromosomes (PCC),” International Journal of Radiation Biology, vol. 81, no. 5, pp. 379–385, May 2005, doi: 10.1080/09553000500147667.
  • [10] M. A. Chaudhry, “Biomarkers for human radiation exposure,” Journal of Biomedical Science, vol. 15, no. 5, pp. 557–563, May 2008, doi: 10.1007/s11373-008-9253-z.
  • [11] S. Heydarheydari, A. Haghparast, and M. T. Eivazi, “A novel biological dosimetry method for monitoring occupational radiation exposure in diagnostic and therapeutic wards: From radiation dosimetry to biological Effects.,” DOAJ (DOAJ: Directory of Open Access Journals), vol. 6, no. 1, pp. 21–6, Mar. 2016, [Online]. Available: https://doaj.org/article/f2bdc80e1b2f4c5296cb1a5dfafe7fa4
  • [12] U. Plappert, B. Stocker, H. Fender, and T. M. Fliedner, “Changes in the repair capacity of blood cells as a biomarker for chronic low-dose exposure to ionizing radiation,” Environmental and Molecular Mutagenesis, vol. 30, no. 2, pp. 153–160, Jan. 1997, doi: 10.1002/(sici)1098-2280(1997)30:2.
  • [13] E. Kis et al., “Microarray analysis of radiation response genes in primary human fibroblasts,” International Journal of Radiation Oncology Biology Physics, vol. 66, no. 5, pp. 1506–1514, Dec. 2006, doi: 10.1016/j.ijrobp.2006.08.004.
  • [14] N. A. Gkanatsios, W. Huda, K. Peters, and J. A. Freeman, “Evaluation of an on-line patient exposure meter in neuroradiology.,” Radiology, vol. 203, no. 3, pp. 837–842, Jun. 1997, doi: 10.1148/radiology.203.3.9169713.
  • [15] K. Coeytaux, É. Bey, D. M. Christensen, E. S. Glassman, B. Murdock, and C. Doucet, “Reported Radiation Overexposure Accidents Worldwide, 1980-2013: A Systematic review,” PLOS ONE, vol. 10, no. 3, p. e0118709, Mar. 2015, doi: 10.1371/journal.pone.0118709.
  • [16] C. R. Muirhead et al., “Mortality and cancer incidence following occupational radiation exposure: third analysis of the National Registry for Radiation Workers,” British Journal of Cancer, vol. 100, no. 1, pp. 206–212, Jan. 2009, doi: 10.1038/sj.bjc.6604825.
  • [17] R. H. Jensen et al., “Laser-based flow cytometric analysis of genotoxicity of humans exposed to ionizing radiation during the Chernobyl accident,” Proceedings of SPIE, May 1991, doi: 10.1117/12.57307.
  • [18] S. Avino et al., “Detecting ionizing radiation with optical fibers down to biomedical doses,” Applied Physics Letters, vol. 103, no. 18, Oct. 2013, doi: 10.1063/1.4826934.
  • [19] W. C. Pfeiffer, E. Penna-Franca, C. C. Ribeiro, A. Nogueira, H. Londres, and A. E. De Oliveira, “Measurements of environmental radiation exposure dose rates at selected sites in Brazil.,” PubMed, vol. 53, no. 4, pp. 683–91, Dec. 1981, [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/7345962
  • [20] M. Ghardi, M. Moreels, B. Châtelain, C. Chatelain, and S. Baatout, “Radiation-induced double strand breaks and subsequent apoptotic DNA fragmentation in human peripheral blood mononuclear cells,” International Journal of Molecular Medicine, Feb. 2012, doi: 10.3892/ijmm.2012.907.
There are 18 citations in total.

Details

Primary Language Turkish
Subjects Clinical Microbiology, Clinical Sciences (Other)
Journal Section Review
Authors

Başak Ünver Koluman 0000-0003-1106-5021

Meltem Delimanlar 0000-0003-4152-7805

Atakan Konukbay 0000-0003-2404-0253

Ahmet Koluman 0000-0001-5308-8884

Early Pub Date January 2, 2025
Publication Date January 2, 2025
Submission Date October 30, 2023
Acceptance Date January 2, 2025
Published in Issue Year 2024 Volume: 22 Issue: 1

Cite

APA Ünver Koluman, B., Delimanlar, M., Konukbay, A., Koluman, A. (2025). Biyodozimetreler: Radyasyon Tespit ve İzlemede Gelişmeler. Ankara Sağlık Hizmetleri Dergisi, 22(1), 11-34.
AMA Ünver Koluman B, Delimanlar M, Konukbay A, Koluman A. Biyodozimetreler: Radyasyon Tespit ve İzlemede Gelişmeler. ASHD. January 2025;22(1):11-34.
Chicago Ünver Koluman, Başak, Meltem Delimanlar, Atakan Konukbay, and Ahmet Koluman. “Biyodozimetreler: Radyasyon Tespit Ve İzlemede Gelişmeler”. Ankara Sağlık Hizmetleri Dergisi 22, no. 1 (January 2025): 11-34.
EndNote Ünver Koluman B, Delimanlar M, Konukbay A, Koluman A (January 1, 2025) Biyodozimetreler: Radyasyon Tespit ve İzlemede Gelişmeler. Ankara Sağlık Hizmetleri Dergisi 22 1 11–34.
IEEE B. Ünver Koluman, M. Delimanlar, A. Konukbay, and A. Koluman, “Biyodozimetreler: Radyasyon Tespit ve İzlemede Gelişmeler”, ASHD, vol. 22, no. 1, pp. 11–34, 2025.
ISNAD Ünver Koluman, Başak et al. “Biyodozimetreler: Radyasyon Tespit Ve İzlemede Gelişmeler”. Ankara Sağlık Hizmetleri Dergisi 22/1 (January 2025), 11-34.
JAMA Ünver Koluman B, Delimanlar M, Konukbay A, Koluman A. Biyodozimetreler: Radyasyon Tespit ve İzlemede Gelişmeler. ASHD. 2025;22:11–34.
MLA Ünver Koluman, Başak et al. “Biyodozimetreler: Radyasyon Tespit Ve İzlemede Gelişmeler”. Ankara Sağlık Hizmetleri Dergisi, vol. 22, no. 1, 2025, pp. 11-34.
Vancouver Ünver Koluman B, Delimanlar M, Konukbay A, Koluman A. Biyodozimetreler: Radyasyon Tespit ve İzlemede Gelişmeler. ASHD. 2025;22(1):11-34.