Review
BibTex RIS Cite

TiO2'nin Fotokatalitik Boya Olarak İç Hava Arıtma Sürecindeki Etkisi

Year 2024, Volume: 4 Issue: 2, 59 - 67, 23.11.2024
https://doi.org/10.62425/atakim.1449172

Abstract

Fotokatalizin hava temizleme cihazları ve hatta boya formüllerine dahil edilerek hava temizleme ve kendi kendini temizleme özelliklerinden yararlanılabilen kaplamalar gibi çeşitli alanlarda uygulamaları vardır. Bu rapor yalnızca fotokataliz sürecine değil, aynı zamanda titanyum dioksit (TiO2) kullanılarak kaplamalara dahil edilmesi üzerine yürütülen çalışmalara da bakmaktadır. TiO2 ticari olarak mevcuttur ve hava temizleme ve çeşitli kirleticilerin dekontaminasyonundaki performansını artırmak için laboratuvarda sentezlenebilir. Buna ek olarak, manganez dahil edilmesi gibi fotokatalitik bir sistemle TiO2 yarı iletken malzemelerini geliştirme çalışmaları vurgulanmıştır. Bu çalışmalar, zararlı gazların ve organik bileşiklerin ortadan kaldırılması yoluyla iç mekan hava kalitesini iyileştirmek için kritik olan artırılmış dekontaminasyon performansına ilişkin bulgular sunmuştur. Formaldehit, toluen, benzen ve NOx gibi uçucu organik bileşiklerin son derece toksik sağlık etkileri vardır. Her yıl, iç ve dış hava kirliliği önemli sayıda ölüme neden olmaktadır. İnsanların zamanlarının %80'inden fazlasını iç mekanlarda geçirdiği düşünüldüğünde, iç mekan havasının filtrelenmesi daha da önemlidir. Bu nedenle, bu makale fotokatalitik boyaların ticari uygulaması için fotokatalitik malzemelerin ve teknolojilerin daha da geliştirilmesine ilişkin bazı çalışmalar sunmaktadır. Magnezyum (Mn) ile katkılanmış TiO2 içeren ticari fotokatalitik boyalar, silikat boyalar ve su bazlı stiren akrilik boyalar, VOC emisyonlarını azaltma yeteneklerine odaklanılarak araştırılmıştır.

References

  • 1. Rafaj P, Kiesewetter G, Gül T, et al. Outlook for clean air in the context of sustainable development goals. Glob Environ Change. 2018;53:1-11.
  • 2. Mills A, Hill C, Robertson P. Overview of the Current ISO tests for Photocatalytic Materials. J Photochem Photobiol A Chem. 2012;(237):7-23
  • 3. WHO Guidelines For Indoor Air Quality: Selected Pollutants. Oct 1, 2010. https://www.who.int/europe/publications/i/item/9789289002134
  • 4. Mamaghani A, Haghighat F, Lee C. Photocatalytic oxidation technology for indoor environment air purification: The state-of-the-art, Appl Catal B: Environ. 2017;(203):247–269.
  • 5. Dundar I, Krichevskaya M, Katerski A, Krunks M, Acik I. Photocatalytic degradation of different VOCs in the gas-phase over TiO2 thin films prepared by ultrasonic spray pyrolysis. Catalysts. 2019;9(11), 915.
  • 6. Dubey S, Rohra H, Taneja A. Assessing effectiveness of air purifiers (HEPA) for controlling indoor particulate pollution. Heliyon. 2021;7(9).
  • 7. Zeng Y, Xie R, Cao J, et al. Simultaneous removal of multiple indoor-air pollutants using a combined process of electrostatic precipitation and catalytic decomposition. J Chem Eng. 2020;(388):124219.
  • 8. Day D, Xiang J, Mo J, et al. Combined use of an electrostatic precipitator and a high-efficiency particulate air filter in building ventilation systems: Effects on cardiorespiratory health indicators in healthy adults. Indoor Air. 2018;28(3): 360–372.
  • 9. Reza M, Yun C, Afroze S, et al. Preparation of activated carbon from biomass and its applications in water and gas purification, a review. Arab J Basic Appl Sci. 2020;27(1): 208–238.
  • 10. Mata T, Martins A, Calheiros C, et al. Indoor Air Quality: A Review of Cleaning Technologies. Environments – MDPI. 2022;9(9): 118.
  • 11. Ireland C, Ducati C. Investigating the photo-oxidation of model indoor air pollutants using field asymmetric ion mobility spectrometry. J Photochem Photobiol A Chem. 2015;312:1-7.
  • 12. Sansotera M, Kheyli S, Baggioli A, et al. Absorption and photocatalytic degradation of VOCs by perfluorinated ionomeric coating with TiO2 nanopowders for air purification. J Chem Eng. 2019;361:885–896.
  • 13. Ligotski R, Sager U, Schneiderwind U, Asbach C, Schmidt F. Prediction of VOC adsorption performance for estimation of service life of activated carbon based filter media for indoor air purification. Build Environ. 2019;149:146–156.
  • 14. Fulazzaky M, Talaiekhozani A, Ponraj M, Abd Majid M, Hadibarata T, Goli A. Biofiltration process as an ideal approach to remove pollutants from polluted air. Desalination Water Treat. 2014;52(19–21):3600–3615.
  • 15. Zou W, Gu B, Sun S, et al. Preparation of a graphene oxide membrane for air purification. Mater Res Express. 2019;6(10): 105624.
  • 16. Raso R, Zeltner M, Stark W. Indoor air purification using activated carbon adsorbers: Regeneration using catalytic combustion of intermediately stored VOC. Ind Eng Chem Res. 2014;53(49):19304–19312.
  • 17. Pui W, Yusoff R, Aroua M. A review on activated carbon adsorption for volatile organic compounds (VOCs). Rev Chem Eng. 2019;35(5): 649–668.
  • 18. Li X, Zhang L, Yang Z, Wang P, Yan Y, Ran J. Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: A review. Sep Purif Technol. 2020;235: 116213.
  • 19. Ducom G, Cabassud C. Interests and limitations of nanofiltration for the removal of volatile organic compounds in drinking water production. Desalination. 1999;124(1-3):115-123.
  • 20. Delhoménie M, Heitz M. Biofiltration of air: A review. Crit Rev Biotechnol. 2005;25(1-2): 53–72.
  • 21. Saracoglu S, Soylak M, ElCI L. Extractable Trace Metals Content of Dust from Vehicle Air Filters as Determined by Sequential Extraction and Flame Atomic Absorption Spectrometry. J AOAC Int. 2009,92(4), 1196–1202.
  • 22. Nunes D, Pimentel A, Branquinho R, Fortunato E, Martins R. Metal oxide-based photocatalytic paper: A green alternative for environmental remediation. Catalysts. 2021;11(4): 504.
  • 23. Krishna S, Sathishkumarb P, Pugazhenthiran N, et al. Heterogeneous sonocatalytic activation of peroxomonosulphate in the presence of CoFe2O4/TiO2nanocatalysts for the degradation of Acid Blue 113 in an aqueous environment. J Environ Chem Eng. 2020;8(5): 104024.
  • 24. Nunes D, Pimentel A, Branquinho R, Fortunato E, Martins R. Metal oxide-based photocatalytic paper: A green alternative for environmental remediation. Catalysts. 2021;11(4).
  • 25. Roy A, Mishra C, Jain S, Solanki N. A review of general and modern methods of air purification. J Therm Eng. 2019;5(2):22-28.
  • 26. Qiu R, Zhang D, Mo Y, et al. Photocatalytic activity of polymer-modified ZnO under visible light irradiation. J Hazard Mater. 2008;156(1-3):80-85.
  • 27. Kusmierek E. A CeO2 semiconductor as a photocatalytic and photoelectrocatalytic material for the remediation of pollutants in industrial wastewater: A review. Catalysts. 2020;10(12):1–54.
  • 28. Sreethawong T, Ngamsinlapasathian S, Yoshikawa S. Synthesis of crystalline mesoporous-assembled ZrO2 nanoparticles via a facile surfactant-aided sol-gel process and their photocatalytic dye degradation activity. J Chem Eng. 2013;228:256–262.
  • 29. Mirsalari S, Nezamzadeh-Ejhieh A. Focus on the photocatalytic pathway of the CdS-AgBr nano-catalyst by using the scavenging agents. Sep Purif Technol. 2020;250: 117235.
  • 30. Wang J, Yang J, Fang J, et al. Photocatalytic Activity of Nonprecious Metal WSe2/g-C3N4 Composite under Visible Light Irradiation. Nano. 2020;15(4):2050042.
  • 31. Lubis S, Sheilatina, Murisna. Synthesis, Characterization and Photocatalytic Activity of α-Fe 2 O 3 /Bentonite Composite Prepared by Mechanical Milling. J Phys Conf Ser. 2018; 1116: 042016.
  • 32. Yang C, Hsu Y, Lin W. Synthesis, Characterization and Photocatalytic Activity of Strontium (II)-Doped Titanium Dioxide Powders. Res Nano Eng. 2019;3(1):1-4.
  • 33. Amano F, Ishinaga E, Yamakata A. Effect of particle size on the photocatalytic activity of WO3 particles for water oxidation. J Phys Chem C. 2013;117(44):22584–22590.
  • 34. Zhangt J, Wilson W, Lloy P. Indoor Air Chemistry: FormatCon of Organic Acids and Aldehydes. Environ Sci Technol. 1994;28(11):1975-82.
  • 35. König B. Heterogeneous semiconductor photocatalysis. Chemical Photocatalysis. Germany: Regensburg;2013:211.
  • 36. Hamandi M, Meksi M, Kochkar H. Nanoscale Advances of Carbon-Titanium Dioxide Nanomaterials in Photocatalysis Applications. Rev Nanosci Nanotech. 2015;4(2):108-134.
  • 37. Su Y, Ji K, Xun J, Zhang K, Liu P, Zhao L. Catalytic oxidation of low concentration formaldehyde over Pt/TiO2 catalyst. Chin J Chem Eng. 2021; 29:190-195.
  • 38. Huang C, Ding Y, Chen Y, Li P, Zhu S, Shen S. Highly efficient Zr doped-TiO2/glass fiber photocatalyst and its performance in formaldehyde removal under visible light. J Environ Sci (China). 2017; 60:61-69.
  • 39. Šuligoj A, Arcon I, Mazaj M, et al. Surface modified titanium dioxide using transition metals: Nickel as a winning transition metal for solar light photocatalysis. J Mater Chem A Mater. 2018; 6(21):9882–9892.
  • 40. Khalid N, Hong Z, Ahmed E, Zhang Y, Chan H, Ahmad M. Synergistic effects of Fe and graphene on photocatalytic activity enhancement of TiO2 under visible light. Appl Surf Sci. 2012; 258(15):5827–5834.
  • 41. Fang R, He H, Huang H, et al. Effect of redox state of Ag on indoor formaldehyde degradation over Ag/TiO2 catalyst at room temperature. Chemosphere. 2018; 213:235-243.
  • 42. Gao L, Gan W, Xiao S, Zhan X, Li J. Enhancement of photo-catalytic degradation of formaldehyde through loading anatase TiO2 and silver nanoparticle films on wood substrates. RSC Advances. 2015; 5(65):52985–52992.
  • 43. Salvadores F, Reli M, Alfano O, Kočí K, de los M. Ballari. Efficiencies evaluation of photocatalytic paints under indoor and outdoor air conditions. Front Chem. 2020; 8: 551710.
  • 44. Auvinen J, Wirtanen L. The influence of photocatalytic interior paints on indoor air quality. Atmos Environ. 2008; 42(18):4101–4112.
  • 45. Lucas S, Barroso De Aguiar J. Multifunctional wall coating combining photocatalysis, self-cleaning and latent heat storage. Mater Res Express. 2018; 5(2): 025702.
  • 46. Maggos T, Leva P, Bartzis J, Vasilakos C, Kotzias D. Gas phase photocatalytic oxidation of VOC using TiO2-containing paint: Influence of NO and relative humidity. WIT Transactions on Ecology and the Environment. 2007; 101:585–593.
  • 47. Galenda A, Visentin F, Gerbasi R, Favaro M, Bernardi A, El Habra N. Evaluation of self-cleaning photocatalytic paints: Are they effective under actual indoor lighting systems?. Appl Catal B. 2018; 232:194-204.
  • 48. Maggos T, Bartzis J, Liakou M, Gobin C. Photocatalytic degradation of NOx gases using TiO2-containing paint: A real scale study. J Hazard Mater. 2007; 146(3):668–673.
  • 49. Papadimitriou V, Stefanopoulos V, Romanias M, et al. Determination of photo-catalytic activity of un-doped and Mn-doped TiO2 anatase powders on acetaldehyde under UV and visible light. Thin SolidFilms. 2011; 520(4): 1195–1201.

The Effect of TiO2 as a Photocatalytic Paint in The Indoor Air Purification Process

Year 2024, Volume: 4 Issue: 2, 59 - 67, 23.11.2024
https://doi.org/10.62425/atakim.1449172

Abstract

Photocatalysis has applications in various fields, such as in air purification devices and even in coatings, where it can be incorporated into paint formulations to take advantage of its air purification and self-cleaning properties. This report looks not only at the process of photocatalysis, but also at studies that have been carried out on its incorporation into coatings using titanium dioxide (TiO2). TiO2 is commercially available and can be synthesized in the laboratory to improve its performance in air purification and decontamination of various pollutants. In addition, studies into enhancing TiO2 semiconductor materials with a photocatalytic system, such as the inclusion of manganese, were emphasized. These studies presented findings on boosted decontamination performance, which is critical for enhancing indoor air quality through the elimination of harmful gases and organic compounds. Volatile organic compounds, such as formaldehyde, toluene, benzene, and NOx, have extremely toxic health effects. Every year, indoor and outdoor air pollution causes a significant number of deaths. Considering that people spend more than 80% of their time indoors, the filtration of indoor air is even more important. Therefore, this article presents some studies on the further development of photocatalytic materials and technologies for the commercial application of photocatalytic paints. Commercial photocatalytic paints containing TiO2 doped with magnesium (Mn), silicate paints and water-based styrene acrylic paints were investigated, focusing on their ability to reduce VOC emissions.

References

  • 1. Rafaj P, Kiesewetter G, Gül T, et al. Outlook for clean air in the context of sustainable development goals. Glob Environ Change. 2018;53:1-11.
  • 2. Mills A, Hill C, Robertson P. Overview of the Current ISO tests for Photocatalytic Materials. J Photochem Photobiol A Chem. 2012;(237):7-23
  • 3. WHO Guidelines For Indoor Air Quality: Selected Pollutants. Oct 1, 2010. https://www.who.int/europe/publications/i/item/9789289002134
  • 4. Mamaghani A, Haghighat F, Lee C. Photocatalytic oxidation technology for indoor environment air purification: The state-of-the-art, Appl Catal B: Environ. 2017;(203):247–269.
  • 5. Dundar I, Krichevskaya M, Katerski A, Krunks M, Acik I. Photocatalytic degradation of different VOCs in the gas-phase over TiO2 thin films prepared by ultrasonic spray pyrolysis. Catalysts. 2019;9(11), 915.
  • 6. Dubey S, Rohra H, Taneja A. Assessing effectiveness of air purifiers (HEPA) for controlling indoor particulate pollution. Heliyon. 2021;7(9).
  • 7. Zeng Y, Xie R, Cao J, et al. Simultaneous removal of multiple indoor-air pollutants using a combined process of electrostatic precipitation and catalytic decomposition. J Chem Eng. 2020;(388):124219.
  • 8. Day D, Xiang J, Mo J, et al. Combined use of an electrostatic precipitator and a high-efficiency particulate air filter in building ventilation systems: Effects on cardiorespiratory health indicators in healthy adults. Indoor Air. 2018;28(3): 360–372.
  • 9. Reza M, Yun C, Afroze S, et al. Preparation of activated carbon from biomass and its applications in water and gas purification, a review. Arab J Basic Appl Sci. 2020;27(1): 208–238.
  • 10. Mata T, Martins A, Calheiros C, et al. Indoor Air Quality: A Review of Cleaning Technologies. Environments – MDPI. 2022;9(9): 118.
  • 11. Ireland C, Ducati C. Investigating the photo-oxidation of model indoor air pollutants using field asymmetric ion mobility spectrometry. J Photochem Photobiol A Chem. 2015;312:1-7.
  • 12. Sansotera M, Kheyli S, Baggioli A, et al. Absorption and photocatalytic degradation of VOCs by perfluorinated ionomeric coating with TiO2 nanopowders for air purification. J Chem Eng. 2019;361:885–896.
  • 13. Ligotski R, Sager U, Schneiderwind U, Asbach C, Schmidt F. Prediction of VOC adsorption performance for estimation of service life of activated carbon based filter media for indoor air purification. Build Environ. 2019;149:146–156.
  • 14. Fulazzaky M, Talaiekhozani A, Ponraj M, Abd Majid M, Hadibarata T, Goli A. Biofiltration process as an ideal approach to remove pollutants from polluted air. Desalination Water Treat. 2014;52(19–21):3600–3615.
  • 15. Zou W, Gu B, Sun S, et al. Preparation of a graphene oxide membrane for air purification. Mater Res Express. 2019;6(10): 105624.
  • 16. Raso R, Zeltner M, Stark W. Indoor air purification using activated carbon adsorbers: Regeneration using catalytic combustion of intermediately stored VOC. Ind Eng Chem Res. 2014;53(49):19304–19312.
  • 17. Pui W, Yusoff R, Aroua M. A review on activated carbon adsorption for volatile organic compounds (VOCs). Rev Chem Eng. 2019;35(5): 649–668.
  • 18. Li X, Zhang L, Yang Z, Wang P, Yan Y, Ran J. Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: A review. Sep Purif Technol. 2020;235: 116213.
  • 19. Ducom G, Cabassud C. Interests and limitations of nanofiltration for the removal of volatile organic compounds in drinking water production. Desalination. 1999;124(1-3):115-123.
  • 20. Delhoménie M, Heitz M. Biofiltration of air: A review. Crit Rev Biotechnol. 2005;25(1-2): 53–72.
  • 21. Saracoglu S, Soylak M, ElCI L. Extractable Trace Metals Content of Dust from Vehicle Air Filters as Determined by Sequential Extraction and Flame Atomic Absorption Spectrometry. J AOAC Int. 2009,92(4), 1196–1202.
  • 22. Nunes D, Pimentel A, Branquinho R, Fortunato E, Martins R. Metal oxide-based photocatalytic paper: A green alternative for environmental remediation. Catalysts. 2021;11(4): 504.
  • 23. Krishna S, Sathishkumarb P, Pugazhenthiran N, et al. Heterogeneous sonocatalytic activation of peroxomonosulphate in the presence of CoFe2O4/TiO2nanocatalysts for the degradation of Acid Blue 113 in an aqueous environment. J Environ Chem Eng. 2020;8(5): 104024.
  • 24. Nunes D, Pimentel A, Branquinho R, Fortunato E, Martins R. Metal oxide-based photocatalytic paper: A green alternative for environmental remediation. Catalysts. 2021;11(4).
  • 25. Roy A, Mishra C, Jain S, Solanki N. A review of general and modern methods of air purification. J Therm Eng. 2019;5(2):22-28.
  • 26. Qiu R, Zhang D, Mo Y, et al. Photocatalytic activity of polymer-modified ZnO under visible light irradiation. J Hazard Mater. 2008;156(1-3):80-85.
  • 27. Kusmierek E. A CeO2 semiconductor as a photocatalytic and photoelectrocatalytic material for the remediation of pollutants in industrial wastewater: A review. Catalysts. 2020;10(12):1–54.
  • 28. Sreethawong T, Ngamsinlapasathian S, Yoshikawa S. Synthesis of crystalline mesoporous-assembled ZrO2 nanoparticles via a facile surfactant-aided sol-gel process and their photocatalytic dye degradation activity. J Chem Eng. 2013;228:256–262.
  • 29. Mirsalari S, Nezamzadeh-Ejhieh A. Focus on the photocatalytic pathway of the CdS-AgBr nano-catalyst by using the scavenging agents. Sep Purif Technol. 2020;250: 117235.
  • 30. Wang J, Yang J, Fang J, et al. Photocatalytic Activity of Nonprecious Metal WSe2/g-C3N4 Composite under Visible Light Irradiation. Nano. 2020;15(4):2050042.
  • 31. Lubis S, Sheilatina, Murisna. Synthesis, Characterization and Photocatalytic Activity of α-Fe 2 O 3 /Bentonite Composite Prepared by Mechanical Milling. J Phys Conf Ser. 2018; 1116: 042016.
  • 32. Yang C, Hsu Y, Lin W. Synthesis, Characterization and Photocatalytic Activity of Strontium (II)-Doped Titanium Dioxide Powders. Res Nano Eng. 2019;3(1):1-4.
  • 33. Amano F, Ishinaga E, Yamakata A. Effect of particle size on the photocatalytic activity of WO3 particles for water oxidation. J Phys Chem C. 2013;117(44):22584–22590.
  • 34. Zhangt J, Wilson W, Lloy P. Indoor Air Chemistry: FormatCon of Organic Acids and Aldehydes. Environ Sci Technol. 1994;28(11):1975-82.
  • 35. König B. Heterogeneous semiconductor photocatalysis. Chemical Photocatalysis. Germany: Regensburg;2013:211.
  • 36. Hamandi M, Meksi M, Kochkar H. Nanoscale Advances of Carbon-Titanium Dioxide Nanomaterials in Photocatalysis Applications. Rev Nanosci Nanotech. 2015;4(2):108-134.
  • 37. Su Y, Ji K, Xun J, Zhang K, Liu P, Zhao L. Catalytic oxidation of low concentration formaldehyde over Pt/TiO2 catalyst. Chin J Chem Eng. 2021; 29:190-195.
  • 38. Huang C, Ding Y, Chen Y, Li P, Zhu S, Shen S. Highly efficient Zr doped-TiO2/glass fiber photocatalyst and its performance in formaldehyde removal under visible light. J Environ Sci (China). 2017; 60:61-69.
  • 39. Šuligoj A, Arcon I, Mazaj M, et al. Surface modified titanium dioxide using transition metals: Nickel as a winning transition metal for solar light photocatalysis. J Mater Chem A Mater. 2018; 6(21):9882–9892.
  • 40. Khalid N, Hong Z, Ahmed E, Zhang Y, Chan H, Ahmad M. Synergistic effects of Fe and graphene on photocatalytic activity enhancement of TiO2 under visible light. Appl Surf Sci. 2012; 258(15):5827–5834.
  • 41. Fang R, He H, Huang H, et al. Effect of redox state of Ag on indoor formaldehyde degradation over Ag/TiO2 catalyst at room temperature. Chemosphere. 2018; 213:235-243.
  • 42. Gao L, Gan W, Xiao S, Zhan X, Li J. Enhancement of photo-catalytic degradation of formaldehyde through loading anatase TiO2 and silver nanoparticle films on wood substrates. RSC Advances. 2015; 5(65):52985–52992.
  • 43. Salvadores F, Reli M, Alfano O, Kočí K, de los M. Ballari. Efficiencies evaluation of photocatalytic paints under indoor and outdoor air conditions. Front Chem. 2020; 8: 551710.
  • 44. Auvinen J, Wirtanen L. The influence of photocatalytic interior paints on indoor air quality. Atmos Environ. 2008; 42(18):4101–4112.
  • 45. Lucas S, Barroso De Aguiar J. Multifunctional wall coating combining photocatalysis, self-cleaning and latent heat storage. Mater Res Express. 2018; 5(2): 025702.
  • 46. Maggos T, Leva P, Bartzis J, Vasilakos C, Kotzias D. Gas phase photocatalytic oxidation of VOC using TiO2-containing paint: Influence of NO and relative humidity. WIT Transactions on Ecology and the Environment. 2007; 101:585–593.
  • 47. Galenda A, Visentin F, Gerbasi R, Favaro M, Bernardi A, El Habra N. Evaluation of self-cleaning photocatalytic paints: Are they effective under actual indoor lighting systems?. Appl Catal B. 2018; 232:194-204.
  • 48. Maggos T, Bartzis J, Liakou M, Gobin C. Photocatalytic degradation of NOx gases using TiO2-containing paint: A real scale study. J Hazard Mater. 2007; 146(3):668–673.
  • 49. Papadimitriou V, Stefanopoulos V, Romanias M, et al. Determination of photo-catalytic activity of un-doped and Mn-doped TiO2 anatase powders on acetaldehyde under UV and visible light. Thin SolidFilms. 2011; 520(4): 1195–1201.
There are 49 citations in total.

Details

Primary Language English
Subjects Photochemistry, Catalysis and Mechanisms of Reactions
Journal Section Reviews
Authors

Ravan Allababidi 0000-0002-5251-5458

Publication Date November 23, 2024
Submission Date March 14, 2024
Acceptance Date July 29, 2024
Published in Issue Year 2024 Volume: 4 Issue: 2

Cite

APA Allababidi, R. (2024). The Effect of TiO2 as a Photocatalytic Paint in The Indoor Air Purification Process. Ata-Kimya Dergisi, 4(2), 59-67. https://doi.org/10.62425/atakim.1449172
AMA Allababidi R. The Effect of TiO2 as a Photocatalytic Paint in The Indoor Air Purification Process. J Ata-Chem. November 2024;4(2):59-67. doi:10.62425/atakim.1449172
Chicago Allababidi, Ravan. “The Effect of TiO2 As a Photocatalytic Paint in The Indoor Air Purification Process”. Ata-Kimya Dergisi 4, no. 2 (November 2024): 59-67. https://doi.org/10.62425/atakim.1449172.
EndNote Allababidi R (November 1, 2024) The Effect of TiO2 as a Photocatalytic Paint in The Indoor Air Purification Process. Ata-Kimya Dergisi 4 2 59–67.
IEEE R. Allababidi, “The Effect of TiO2 as a Photocatalytic Paint in The Indoor Air Purification Process”, J Ata-Chem, vol. 4, no. 2, pp. 59–67, 2024, doi: 10.62425/atakim.1449172.
ISNAD Allababidi, Ravan. “The Effect of TiO2 As a Photocatalytic Paint in The Indoor Air Purification Process”. Ata-Kimya Dergisi 4/2 (November 2024), 59-67. https://doi.org/10.62425/atakim.1449172.
JAMA Allababidi R. The Effect of TiO2 as a Photocatalytic Paint in The Indoor Air Purification Process. J Ata-Chem. 2024;4:59–67.
MLA Allababidi, Ravan. “The Effect of TiO2 As a Photocatalytic Paint in The Indoor Air Purification Process”. Ata-Kimya Dergisi, vol. 4, no. 2, 2024, pp. 59-67, doi:10.62425/atakim.1449172.
Vancouver Allababidi R. The Effect of TiO2 as a Photocatalytic Paint in The Indoor Air Purification Process. J Ata-Chem. 2024;4(2):59-67.

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License

30724