Anaplazmozisli Koyunlarda Bazı Inflamasyon Markırlarının Araştırılması
Year 2020,
Volume: 15 Issue: 3, 257 - 262, 31.12.2020
Gönül Bayram
Leyla Mis
,
Ali Cınar
,
Bekir Oğuz
Abstract
Anaplazmozis koyunlarda sıklıkla görülen, kan hücrelerini enfekte eden artropod kaynaklı ve ekonomik kayıplara neden olabilen paraziter bir hastalıktır. Bu çalışma Anaplazmozis ile enfekte koyunlarda bazı serum inflamasyon markır seviyelerini değerlendirmek için planlanmıştır. Yapılan araştırma için kullanılacak olan kan örnekleri, Van Büyükşehir Belediyesi Mezbahanesi’ne getirilen 20 sağlıklı ve 20 Anaplazmozis’li koyundan sağlandı. Kontrol ve hasta gruplarının belirlenmesi, hastalığın klinik belirtileri, giemsa boyalı kan frotileri ve serolojik yöntem (cELISA) yardımıyla yapıldı. Toplanan 91 koyunların ait serum örneği Anaplazma spp. türlerinin antikorlarının varlığı yönünde serolojik olarak incelendiğinde %73.6’sı (67/91) Anaplazmozis yönünden seropozitif bulundu. Kan frotisinde Anaplazma etkenleri görünen ve ELISA inhibisyon değeri yüksek çıkan koyunların kanları analizler için kullanıldı. Anaplazmozis’li koyunlar teşhis edildikten sonra pozitif ve negatif olarak gruplandırıldı. Pozitifliği tespit edilen 20 koyun serumunda granülosit makrofaj koloni uyarıcı faktör (GM-CSF), interlöykin-1β (IL-1β), interlöykin-6 (IL-6), tumor nekroz faktör- alfa (TNF-α) düzeyleri elisa kiti ile kit prosedürüne göre belirlendi. Proinflamasyon parametrelerinden serum IL-1β (ng/L), TNF-α (ng/L), GM-CSF (ng/L) düzeylerinin negatif gruba göre istatiksel olarak yükseldiği tespit edildi. Anaplazmaya karşı gelişen inflamasyon ile ilgili mekanizmaların incelenmesi, ileride geliştirilecek immunoterapi araştırmaları için Anaplazma enfeksiyonlarının teşhis ve önlemeye yönelik çalışmalara katkı sağlayacağı düşünülmektedir.
Supporting Institution
Yüzüncü Yıl Üniversitesi Bilimsel Araştırma Projeleri Başkanlığı
Project Number
TYL-2019-8141
References
- 1. Shabana II., Alhadlag NM., Zaraket H., 2018. Diagnostic tools of caprine and ovine anaplasmosis: a direct comparative study. BMC Vet Res, 14, 165.
2. Silaghi C., Santos AS., Gomes J., Christova I., Matei IA., Walder G., Domingos A., Bell-Sakyi L., Sprong H., Loewenich FD., Oteo JA., Fuente J., Dumler JS., 2017. Guidelines for the direct detection of Anaplasma spp. in diagnosis and epidemiological studies. Vector-Borne Zoonotic Dis, 17, 12-22.
3. Shinwan K., Jan TV., Borna R., 2019. Cytokines in inflammatory disease. Int J Mol Sci, 20, 6008.
4. Kaya S., Deger Y., Oguz B., Özdek U., 2020. Investigating erythrocyte membrane lipid and protein oxidation with Na+/K+ATPase activity in caprine Anaplasmosis. Large Anim Rev, 26, 231-237.
5. El-Ashker M., Salama M., El Boshy M., 2013. Traumatic reticuloperitonitis in water buffalo (Bubalus bubalis): Clinical findings and the associated inflammatory response. J Vet Med, 8086, 56, 6.
6. El-Ashker M., Salama M., Rizk A., El-Boshy M., 2014. The use of inflammatory markers as a prognostic aid for traumatic reticuloperitonitis in water buffalo (Bubalus bubalis). Vet Med, 59, 239-246.
7. Silva-Barrios S., Stager S., 2017. Protozoan parasites and type I IFNs. Front Immunol, 8, 14.
8. Nazifi S., Razavi SM., Esmailnejad Z., Gheisari H., 2009. Study on acute phase proteins (haptoglobin, serum amyloid A, fibrinogen, and ceruloplasmin) changes and their diagnostic values in bovine tropical theileriosis. Parasitol Res, 105, 41-46.
9. Coskun A., Ekici OD., Guzelbektes H., Aydogdu U., Sen I., 2012. Acute phase proteins, clinical, haematological and biochemical parameters in dairy cows naturally infected with Anaplasma marginale. Kafkas Univ Vet Fak Derg, 18, 497-502.
10. Kocan KM., de la Fuente J., Blouin EF., Coetzee JF., Ewing S.A., 2010. The natural history of Anaplasma marginale. Vet Parasitol, 167, 95-107.
11. Edith MS., Jonathan H., Sezer MT., Chertow GM., 2004. Plasma cytokine levels predict mortality in patients with acute renal failure. Offic J Int Soc Nephr, 65, 1357-1365.
12. Qiu P., Cui X., Barochia A., Li Y., Natanson C., Eichacker PQ., 2011. The evolving experience with therapeutic TNF inhibition in sepsis: considering the potential influence of risk of death. Expert Opin Investig Drugs, 20, 1555-1564.
13. Cuzzocrea S., 2017. TNF Superfamily. From Molecular and Cellular Mechanisms to the Clinic. Inflammation, 529-547.
14. Shoda KM., Palmer GH., Florin-chiristensen J., Forinchristensen M., Godson DL., 2000. Babesia bovis-stimulated macrophages express interleukin-1β, interleukin-12, tumor necrosis factor alpha, and nitric oxide and inhibit parasite replication in vitro. Infect Immun, 68, 5139-5145.
15. Goff WL., Jonhson WC., Valdez RA., 2002. IL-4 and IL-10 inhibition of IFN-gama and TNF-alfa dependent nitric oxide production from bovine mononuclear phagocytes exposed to Babesia bovis merazoites. Vet Immun Immunopathol, 84, 237-251.
16. Grab DJ., Elvis N., Barat NC., Nikolskaia OV., Dumler JS., 2007. Anaplasma phagocytophilum-Borrelia burgdorferi coinfection enhances chemokine, cytokine, and matrix metalloprotease expression by human brain microvascular endothelial cells. Clin Vaccine Immunol, 14, 1420-1424.
17. Dinarello CA., 2005. Interleukin-1β. Crit Care Med, 33, 460-462.
18. Visser AE., Abraham A., Sakyi LJ., 1995. Nitric oxide inhibits establishment of macroschizont-fected cell lines and is produced by macrophages of calves undergoing bovine Tropical Theileriosis or East Coast Fever. Parasite Immunol, 17, 91-102.
19. Rose-John S., 2018. Interleukin-6 family cytokines. Cold Spring Harbor Perspectives in Biology, 10, 1-17.
20. Tsai TT., Chuang YJ., Lin YS., Wan SW., Chen CL., Lin CF., 2013. An emerging role for the anti-inflammatory cytokine interleukin-10 in dengue virus infection. J Biomed Sci, 20, 40.
21. Ergönül S., Aşkar T., 2009. The Investigation of heat shock protein (HSP 27), malondialdehyde (MDA), nitric oxide (NO) and interleukin (IL-6, IL-10) levels in cattle with anaplasmosis. Kafkas Univ Vet Fak Derg, 15, 575-579.
22. Crnogaj M., Ceron JJ., Smit I., Kis I., Gotic J., Brkljacic M., Matijatko V., Rubio C.P., Kucer N., Mrljak V., 2017. Relation of antioxidant status at admission and disease severity and outcome in dogs naturally infected with Babesia canis canis. BMC Vet Res, 13, 114.
23. Naka T., Nishimoto N., Kishimoto T., 2002. The paradigm of IL-6: From basic science to medicine. Arthritis Res, 4, 233-242.
24. Carson WF., Kunkel SL., 2017. Type I and II cytokine superfamilies in inflammatory responses. Inflammation: From Molecular and Cellular Mechanisms to the Clinic, 587-618.
25. Dinerallo CA., 2000. Proinflammatory cytokines. Chest, 118, 503-508.
26. Sternberg JM., Rodgers B., Bradley L., Maclean M., Murray P., Kennedy G., 2005. Meningoencephalitic African trypanosomiasis: Brain IL-10 and IL-6 are associated with protection from neuro-inflammatory pathology. J Neuroimmunol, 167, 81-89.
27. Scarffe JH., 1991. Emerging clinical uses for GM-CSF. Eur J Cancer, 27, 1493-1504.
28. Frank MO., Mandell GL., 1995. Adjunct to anti-bacterial therapy. Infect Dis Clin North Am, 9, 769-781
Investigation of Some Markers of Inflammation in Sheep with Anaplasmosis
Year 2020,
Volume: 15 Issue: 3, 257 - 262, 31.12.2020
Gönül Bayram
Leyla Mis
,
Ali Cınar
,
Bekir Oğuz
Abstract
Anaplasmosis is an arthropod-borne parasitic disease that infects blood cells and frequently seen in sheep. This study was planned to evaluate inflammation marker levels in sheep infected with anaplasmosis. In this research, the blood samples used were obtained from 20 healthy and 20 Anaplasmosis sheep brought to Van Metropolitan Municipality Slaughterhouse. Determination of control and patient groups, clinical symptoms of the disease, Giemsa stained blood smears and serological method (cELISA) were used. Serum samples of 91 sheep collected from Anaplasma spp. When examined serologically for the presence of antibodies of the species, 73.6% (67/91) were found to be seropositive in terms of Anaplasmosis. The blood of the sheep with high ELISA inhibition values and showing Anaplasma morulae form in the peripheral blood smears, were used for analysis. Granulocyte macrophage colony stimulating factor (GM-CSF), interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α) levels in 20 sheep whose positivity was detected were identified with the Elisa kit. IL-1β (ng/L), TNF-α (ng/L), GM-CSF (ng/L) levels from among the pro-inflammation parameters were found to increase. It is thought that researching the mechanisms related to inflammation developing against Anaplasma will contribute to studies for diagnosis and prevention of Anaplasma infections for future immunotherapy research.
Project Number
TYL-2019-8141
References
- 1. Shabana II., Alhadlag NM., Zaraket H., 2018. Diagnostic tools of caprine and ovine anaplasmosis: a direct comparative study. BMC Vet Res, 14, 165.
2. Silaghi C., Santos AS., Gomes J., Christova I., Matei IA., Walder G., Domingos A., Bell-Sakyi L., Sprong H., Loewenich FD., Oteo JA., Fuente J., Dumler JS., 2017. Guidelines for the direct detection of Anaplasma spp. in diagnosis and epidemiological studies. Vector-Borne Zoonotic Dis, 17, 12-22.
3. Shinwan K., Jan TV., Borna R., 2019. Cytokines in inflammatory disease. Int J Mol Sci, 20, 6008.
4. Kaya S., Deger Y., Oguz B., Özdek U., 2020. Investigating erythrocyte membrane lipid and protein oxidation with Na+/K+ATPase activity in caprine Anaplasmosis. Large Anim Rev, 26, 231-237.
5. El-Ashker M., Salama M., El Boshy M., 2013. Traumatic reticuloperitonitis in water buffalo (Bubalus bubalis): Clinical findings and the associated inflammatory response. J Vet Med, 8086, 56, 6.
6. El-Ashker M., Salama M., Rizk A., El-Boshy M., 2014. The use of inflammatory markers as a prognostic aid for traumatic reticuloperitonitis in water buffalo (Bubalus bubalis). Vet Med, 59, 239-246.
7. Silva-Barrios S., Stager S., 2017. Protozoan parasites and type I IFNs. Front Immunol, 8, 14.
8. Nazifi S., Razavi SM., Esmailnejad Z., Gheisari H., 2009. Study on acute phase proteins (haptoglobin, serum amyloid A, fibrinogen, and ceruloplasmin) changes and their diagnostic values in bovine tropical theileriosis. Parasitol Res, 105, 41-46.
9. Coskun A., Ekici OD., Guzelbektes H., Aydogdu U., Sen I., 2012. Acute phase proteins, clinical, haematological and biochemical parameters in dairy cows naturally infected with Anaplasma marginale. Kafkas Univ Vet Fak Derg, 18, 497-502.
10. Kocan KM., de la Fuente J., Blouin EF., Coetzee JF., Ewing S.A., 2010. The natural history of Anaplasma marginale. Vet Parasitol, 167, 95-107.
11. Edith MS., Jonathan H., Sezer MT., Chertow GM., 2004. Plasma cytokine levels predict mortality in patients with acute renal failure. Offic J Int Soc Nephr, 65, 1357-1365.
12. Qiu P., Cui X., Barochia A., Li Y., Natanson C., Eichacker PQ., 2011. The evolving experience with therapeutic TNF inhibition in sepsis: considering the potential influence of risk of death. Expert Opin Investig Drugs, 20, 1555-1564.
13. Cuzzocrea S., 2017. TNF Superfamily. From Molecular and Cellular Mechanisms to the Clinic. Inflammation, 529-547.
14. Shoda KM., Palmer GH., Florin-chiristensen J., Forinchristensen M., Godson DL., 2000. Babesia bovis-stimulated macrophages express interleukin-1β, interleukin-12, tumor necrosis factor alpha, and nitric oxide and inhibit parasite replication in vitro. Infect Immun, 68, 5139-5145.
15. Goff WL., Jonhson WC., Valdez RA., 2002. IL-4 and IL-10 inhibition of IFN-gama and TNF-alfa dependent nitric oxide production from bovine mononuclear phagocytes exposed to Babesia bovis merazoites. Vet Immun Immunopathol, 84, 237-251.
16. Grab DJ., Elvis N., Barat NC., Nikolskaia OV., Dumler JS., 2007. Anaplasma phagocytophilum-Borrelia burgdorferi coinfection enhances chemokine, cytokine, and matrix metalloprotease expression by human brain microvascular endothelial cells. Clin Vaccine Immunol, 14, 1420-1424.
17. Dinarello CA., 2005. Interleukin-1β. Crit Care Med, 33, 460-462.
18. Visser AE., Abraham A., Sakyi LJ., 1995. Nitric oxide inhibits establishment of macroschizont-fected cell lines and is produced by macrophages of calves undergoing bovine Tropical Theileriosis or East Coast Fever. Parasite Immunol, 17, 91-102.
19. Rose-John S., 2018. Interleukin-6 family cytokines. Cold Spring Harbor Perspectives in Biology, 10, 1-17.
20. Tsai TT., Chuang YJ., Lin YS., Wan SW., Chen CL., Lin CF., 2013. An emerging role for the anti-inflammatory cytokine interleukin-10 in dengue virus infection. J Biomed Sci, 20, 40.
21. Ergönül S., Aşkar T., 2009. The Investigation of heat shock protein (HSP 27), malondialdehyde (MDA), nitric oxide (NO) and interleukin (IL-6, IL-10) levels in cattle with anaplasmosis. Kafkas Univ Vet Fak Derg, 15, 575-579.
22. Crnogaj M., Ceron JJ., Smit I., Kis I., Gotic J., Brkljacic M., Matijatko V., Rubio C.P., Kucer N., Mrljak V., 2017. Relation of antioxidant status at admission and disease severity and outcome in dogs naturally infected with Babesia canis canis. BMC Vet Res, 13, 114.
23. Naka T., Nishimoto N., Kishimoto T., 2002. The paradigm of IL-6: From basic science to medicine. Arthritis Res, 4, 233-242.
24. Carson WF., Kunkel SL., 2017. Type I and II cytokine superfamilies in inflammatory responses. Inflammation: From Molecular and Cellular Mechanisms to the Clinic, 587-618.
25. Dinerallo CA., 2000. Proinflammatory cytokines. Chest, 118, 503-508.
26. Sternberg JM., Rodgers B., Bradley L., Maclean M., Murray P., Kennedy G., 2005. Meningoencephalitic African trypanosomiasis: Brain IL-10 and IL-6 are associated with protection from neuro-inflammatory pathology. J Neuroimmunol, 167, 81-89.
27. Scarffe JH., 1991. Emerging clinical uses for GM-CSF. Eur J Cancer, 27, 1493-1504.
28. Frank MO., Mandell GL., 1995. Adjunct to anti-bacterial therapy. Infect Dis Clin North Am, 9, 769-781