Review
BibTex RIS Cite

COVİD-19 PANDEMİSİ VE KOKU BOZUKLUĞU PATOGENESİ; GÜNCEL BİR DERLEME

Year 2021, Volume: 4 Issue: 2, 49 - 55, 01.07.2021

Abstract

Bir solunum yolu enfeksiyon ajanı olarak bilinen korona virüs kaynaklı covid 19 pandemisi, daha önceki salgınlarından farklı olarak koku kaybı ile ön plana çıkmıştır. Koku kaybının izole, ani başlangıçlı ve genellikle total kayıp şeklinde klinik seyre sahip olduğu, hastaların önemli kısmında nasal obstrüksiyon veya rinore olmadan görüldüğü ve olfaktor disfonksiyonun genel semptomlardan önce, bu semptomlarla birlikte veya sonradan ortaya çıkabildiği görülmiştür. Koku kaybı gelişimi ile ilgili hipotezler arasında olfaktor sensoryal nöronların kaybı, olfaktor epiteldeki destek hücrelerinin hasar görmesi, koronavirüslerin nörotropik potansiyeli ile olfaktor bulbus ve veya kokuyla ilişkili beyin alanlarını etkilemesi yer almaktadır. Patofizyolojiyi ortaya koyan bu çalışmalar postviral koku kaybına ışık tutacağı gibi yeni tedavi modaliteleri geliştirmek açısından da önem arz etmektedir.

References

  • 1. Huart C, Philpott C, Konstantinidis I, et al. Comparison of COVID-19 and common cold chemosensory dysfunction. Rhinology. 2020; 58: 623-25.
  • 2. Temmel AFP, Quint C, Schickinger-Fischer B, et al. Characteristics of Olfactory Disorders in Relation to Major Causes of Olfactory Loss. Archives of Otolaryngology–Head & Neck Surgery. 2002; 128: 635-41.
  • 3. Bohmwald K, Gálvez NMS, Ríos M, et al. Neurologic Alterations Due to Respiratory Virus Infections. Front Cell Neurosci. 2018; 12: 386-86.
  • 4. Suzuki M, Saito K, Min WP, et al. Identification of viruses in patients with postviral olfactory dysfunction. Laryngoscope. 2007; 117: 272-7.
  • 5. Hwang CS. Olfactory neuropathy in severe acute respiratory syndrome: report of A case. Acta Neurol Taiwan. 2006; 15: 26-8.
  • 6. Zegarra-Valdivia JA, Chino-Vilca BN, Tairo-Cerron T, et al. Neurological Components in Coronavirus Induced Disease: A Review of the Literature Related to SARS, MERS, and COVID-19. Neurology Research International. 2020; 2020: 6587875.
  • 7. Lechien JR, Chiesa-Estomba CM, De Siati DR, et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Otorhinolaryngol. 2020 Aug;277(8):2251-2261.
  • 8. Gane SB, Kelly C, Hopkins C. Isolated sudden onset anosmia in COVID-19 infection. A novel syndrome? Rhinology. 2020 Jun 1;58(3):299-301.
  • 9. Altundag A, Saatci O, Sanli DET, et al. The temporal course of COVID-19 anosmia and relation to other clinical symptoms. Eur Arch Otorhinolaryngol. 2020: 1-7.
  • 10. von Bartheld CS, Hagen MM, Butowt R. Prevalence of Chemosensory Dysfunction in COVID-19 Patients: A Systematic Review and Meta-analysis Reveals Significant Ethnic Differences. ACS Chem Neurosci. 2020; 11: 2944-61.
  • 11. Whitcroft KL, Hummel T. Olfactory Dysfunction in COVID-19: Diagnosis and Management. JAMA. 2020; 323: 2512-14.
  • 12. Lechien JR, Chiesa-Estomba CM, Hans S, et al. Loss of Smell and Taste in 2013 European Patients With Mild to Moderate COVID-19. Ann Intern Med. 2020; 173: 672-75.
  • 13. Vaira LA, Salzano G, Deiana G, et al. Anosmia and Ageusia: Common Findings in COVID-19 Patients. Laryngoscope. 2020; 130: 1787.
  • 14. Butowt R, von Bartheld CS. Anosmia in COVID-19: Underlying Mechanisms and Assessment of an Olfactory Route to Brain Infection. Neuroscientist. 2020: 1073858420956905-05.
  • 15. Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol. 2020; 5: 562-69.
  • 16. Hou YJ, Okuda K, Edwards CE, et al. SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in the Respiratory Tract. Cell. 2020; 182: 429-46.e14.
  • 17. Bertram S, Heurich A, Lavender H, et al. Influenza and SARS-coronavirus activating proteases TMPRSS2 and HAT are expressed at multiple sites in human respiratory and gastrointestinal tracts. PLoS One. 2012; 7: e35876.
  • 18. Kesic MJ, Meyer M, Bauer R, et al. Exposure to ozone modulates human airway protease/antiprotease balance contributing to increased influenza A infection. PLoS One. 2012; 7: e35108.
  • 19. Brann DH, Tsukahara T, Weinreb C, et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci Adv. 2020 Jul 31;6(31):eabc5801
  • 20. Cantuti-Castelvetri L, Ojha R, Pedro LD, et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science. 2020; 370: 856-60.
  • 21. Daly JL, Simonetti B, Klein K, et al. Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science. 2020; 370: 861-65.
  • 22. Hopkins C, Lechien JR, Saussez S. More that ACE2? NRP1 may play a central role in the underlying pathophysiological mechanism of olfactory dysfunction in COVID-19 and its association with enhanced survival. Med Hypotheses. 2021; 146: 110406.
  • 23. Brann JH, Firestein SJ. A lifetime of neurogenesis in the olfactory system. Front Neurosci. 2014; 8: 182.
  • 24. Liang F. Sustentacular Cell Enwrapment of Olfactory Receptor Neuronal Dendrites: An Update. Genes (Basel). 2020 Apr 30;11(5):493.
  • 25. Perlman S, Evans G, Afifi A. Effect of olfactory bulb ablation on spread of a neurotropic coronavirus into the mouse brain. J Exp Med. 1990; 172: 1127-32.
  • 26. Barnett EM, Perlman S. The olfactory nerve and not the trigeminal nerve is the major site of CNS entry for mouse hepatitis virus, strain JHM. Virology. 1993; 194: 185-91.
  • 27. Netland J, Meyerholz DK, Moore S, et al. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol. 2008; 82: 7264-75.
  • 28. Al-Dalahmah O, Thakur KT, Nordvig AS, et al. Neuronophagia and microglial nodules in a SARS-CoV-2 patient with cerebellar hemorrhage. Acta Neuropathol Commun. 2020; 8: 147.
  • 29. Deigendesch N, Sironi L, Kutza M, et al. Correlates of critical illness-related encephalopathy predominate postmortem COVID-19 neuropathology. Acta Neuropathol. 2020; 140: 583-86.
  • 30. Laurendon T, Radulesco T, Mugnier J, et al. Bilateral transient olfactory bulb edema during COVID-19–related anosmia. Neurology. 2020; 95: 224-25.
  • 31. Politi LS, Salsano E, Grimaldi M. Magnetic Resonance Imaging Alteration of the Brain in a Patient With Coronavirus Disease 2019 (COVID-19) and Anosmia. JAMA Neurology. 2020; 77: 1028-29.
  • 32. Eliezer M, Hautefort C, Hamel A-L, et al. Sudden and Complete Olfactory Loss of Function as a Possible Symptom of COVID-19. JAMA Otolaryngology–Head & Neck Surgery. 2020; 146: 674-75.
  • 33. Schwob JE. Neural regeneration and the peripheral olfactory system. Anat Rec. 2002; 269: 33-49.
  • 34. Cooper KW, Brann DH, Farruggia MC, et al. COVID-19 and the Chemical Senses: Supporting Players Take Center Stage. Neuron. 2020; 107: 219-33.
  • 35. Butowt R, Bilinska K, Von Bartheld CS. Chemosensory Dysfunction in COVID-19: Integration of Genetic and Epidemiological Data Points to D614G Spike Protein Variant as a Contributing Factor. ACS Chem Neurosci. 2020; 11: 3180-84.
  • 36. Meunier N, Briand L, Jacquin-Piques A, et al. COVID 19-Induced Smell and Taste Impairments: Putative Impact on Physiology. Frontiers in Physiology. 2021; 11.
  • 37. Klein SL. Sex influences immune responses to viruses, and efficacy of prophylaxis and treatments for viral diseases. Bioessays. 2012; 34: 1050-9.
  • 38. Pan A, Liu L, Wang C, et al. Association of Public Health Interventions With the Epidemiology of the COVID-19 Outbreak in Wuhan, China. Jama. 2020; 323: 1-9.
  • 39. Schrödter S, Biermann E, Halata Z. Histological evaluation of age-related changes in human respiratory mucosa of the middle turbinate. Anat Embryol (Berl). 2003; 207: 19-27.
  • 40. Attems J, Walker L, Jellinger KA. Olfaction and Aging: A Mini-Review. Gerontology. 2015; 61: 485-90.
  • 41. Walford RL. The immunologic theory of aging. Immunological Reviews. 1969; 2: 171-71.
  • 42. Zou L, Ruan F, Huang M, et al. SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. N Engl J Med. 2020; 382: 1177-79.
  • 43. Liu Y, Yan LM, Wan L, et al. Viral dynamics in mild and severe cases of COVID-19. Lancet Infect Dis. 2020 Jun;20(6):656-657.
  • 44. Menni C, Valdes AM, Freidin MB, et al. Real-time tracking of self-reported symptoms to predict potential COVID-19. Nat Med. 2020 Jul;26(7):1037-1040.

PATHOGENESIS OF OLFACTORY DYSFUNCTIONS IN THE COVID-19 PANDEMIC; UP TO DATE REVİEW

Year 2021, Volume: 4 Issue: 2, 49 - 55, 01.07.2021

Abstract

Covid 19 pandemic caused by corona virüs come along with olfactory loss, unlike its previous outbreaks. It has been observed that the olfactory loss has an isolated, sudden onset type and usually clinical course was a total loss. It was seen in most of the patients without nasal obstruction or rhinorrhea, and olfactory dysfunction may occur before, with or after the general symptoms. Hypotheses for the development of olfactory loss include the loss of olfactory sensorial neurons, damage to the supporting cells in the olfactory epithelium, the neurotropic potential of coronaviruses, and their affecting the olfactory bulbus and or olfactory-related brain areas. Studies revealing the pathophysiology are important for understanding the postviral olfactory loss as well as developing new treatment modalities

References

  • 1. Huart C, Philpott C, Konstantinidis I, et al. Comparison of COVID-19 and common cold chemosensory dysfunction. Rhinology. 2020; 58: 623-25.
  • 2. Temmel AFP, Quint C, Schickinger-Fischer B, et al. Characteristics of Olfactory Disorders in Relation to Major Causes of Olfactory Loss. Archives of Otolaryngology–Head & Neck Surgery. 2002; 128: 635-41.
  • 3. Bohmwald K, Gálvez NMS, Ríos M, et al. Neurologic Alterations Due to Respiratory Virus Infections. Front Cell Neurosci. 2018; 12: 386-86.
  • 4. Suzuki M, Saito K, Min WP, et al. Identification of viruses in patients with postviral olfactory dysfunction. Laryngoscope. 2007; 117: 272-7.
  • 5. Hwang CS. Olfactory neuropathy in severe acute respiratory syndrome: report of A case. Acta Neurol Taiwan. 2006; 15: 26-8.
  • 6. Zegarra-Valdivia JA, Chino-Vilca BN, Tairo-Cerron T, et al. Neurological Components in Coronavirus Induced Disease: A Review of the Literature Related to SARS, MERS, and COVID-19. Neurology Research International. 2020; 2020: 6587875.
  • 7. Lechien JR, Chiesa-Estomba CM, De Siati DR, et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Otorhinolaryngol. 2020 Aug;277(8):2251-2261.
  • 8. Gane SB, Kelly C, Hopkins C. Isolated sudden onset anosmia in COVID-19 infection. A novel syndrome? Rhinology. 2020 Jun 1;58(3):299-301.
  • 9. Altundag A, Saatci O, Sanli DET, et al. The temporal course of COVID-19 anosmia and relation to other clinical symptoms. Eur Arch Otorhinolaryngol. 2020: 1-7.
  • 10. von Bartheld CS, Hagen MM, Butowt R. Prevalence of Chemosensory Dysfunction in COVID-19 Patients: A Systematic Review and Meta-analysis Reveals Significant Ethnic Differences. ACS Chem Neurosci. 2020; 11: 2944-61.
  • 11. Whitcroft KL, Hummel T. Olfactory Dysfunction in COVID-19: Diagnosis and Management. JAMA. 2020; 323: 2512-14.
  • 12. Lechien JR, Chiesa-Estomba CM, Hans S, et al. Loss of Smell and Taste in 2013 European Patients With Mild to Moderate COVID-19. Ann Intern Med. 2020; 173: 672-75.
  • 13. Vaira LA, Salzano G, Deiana G, et al. Anosmia and Ageusia: Common Findings in COVID-19 Patients. Laryngoscope. 2020; 130: 1787.
  • 14. Butowt R, von Bartheld CS. Anosmia in COVID-19: Underlying Mechanisms and Assessment of an Olfactory Route to Brain Infection. Neuroscientist. 2020: 1073858420956905-05.
  • 15. Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol. 2020; 5: 562-69.
  • 16. Hou YJ, Okuda K, Edwards CE, et al. SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in the Respiratory Tract. Cell. 2020; 182: 429-46.e14.
  • 17. Bertram S, Heurich A, Lavender H, et al. Influenza and SARS-coronavirus activating proteases TMPRSS2 and HAT are expressed at multiple sites in human respiratory and gastrointestinal tracts. PLoS One. 2012; 7: e35876.
  • 18. Kesic MJ, Meyer M, Bauer R, et al. Exposure to ozone modulates human airway protease/antiprotease balance contributing to increased influenza A infection. PLoS One. 2012; 7: e35108.
  • 19. Brann DH, Tsukahara T, Weinreb C, et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci Adv. 2020 Jul 31;6(31):eabc5801
  • 20. Cantuti-Castelvetri L, Ojha R, Pedro LD, et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science. 2020; 370: 856-60.
  • 21. Daly JL, Simonetti B, Klein K, et al. Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science. 2020; 370: 861-65.
  • 22. Hopkins C, Lechien JR, Saussez S. More that ACE2? NRP1 may play a central role in the underlying pathophysiological mechanism of olfactory dysfunction in COVID-19 and its association with enhanced survival. Med Hypotheses. 2021; 146: 110406.
  • 23. Brann JH, Firestein SJ. A lifetime of neurogenesis in the olfactory system. Front Neurosci. 2014; 8: 182.
  • 24. Liang F. Sustentacular Cell Enwrapment of Olfactory Receptor Neuronal Dendrites: An Update. Genes (Basel). 2020 Apr 30;11(5):493.
  • 25. Perlman S, Evans G, Afifi A. Effect of olfactory bulb ablation on spread of a neurotropic coronavirus into the mouse brain. J Exp Med. 1990; 172: 1127-32.
  • 26. Barnett EM, Perlman S. The olfactory nerve and not the trigeminal nerve is the major site of CNS entry for mouse hepatitis virus, strain JHM. Virology. 1993; 194: 185-91.
  • 27. Netland J, Meyerholz DK, Moore S, et al. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol. 2008; 82: 7264-75.
  • 28. Al-Dalahmah O, Thakur KT, Nordvig AS, et al. Neuronophagia and microglial nodules in a SARS-CoV-2 patient with cerebellar hemorrhage. Acta Neuropathol Commun. 2020; 8: 147.
  • 29. Deigendesch N, Sironi L, Kutza M, et al. Correlates of critical illness-related encephalopathy predominate postmortem COVID-19 neuropathology. Acta Neuropathol. 2020; 140: 583-86.
  • 30. Laurendon T, Radulesco T, Mugnier J, et al. Bilateral transient olfactory bulb edema during COVID-19–related anosmia. Neurology. 2020; 95: 224-25.
  • 31. Politi LS, Salsano E, Grimaldi M. Magnetic Resonance Imaging Alteration of the Brain in a Patient With Coronavirus Disease 2019 (COVID-19) and Anosmia. JAMA Neurology. 2020; 77: 1028-29.
  • 32. Eliezer M, Hautefort C, Hamel A-L, et al. Sudden and Complete Olfactory Loss of Function as a Possible Symptom of COVID-19. JAMA Otolaryngology–Head & Neck Surgery. 2020; 146: 674-75.
  • 33. Schwob JE. Neural regeneration and the peripheral olfactory system. Anat Rec. 2002; 269: 33-49.
  • 34. Cooper KW, Brann DH, Farruggia MC, et al. COVID-19 and the Chemical Senses: Supporting Players Take Center Stage. Neuron. 2020; 107: 219-33.
  • 35. Butowt R, Bilinska K, Von Bartheld CS. Chemosensory Dysfunction in COVID-19: Integration of Genetic and Epidemiological Data Points to D614G Spike Protein Variant as a Contributing Factor. ACS Chem Neurosci. 2020; 11: 3180-84.
  • 36. Meunier N, Briand L, Jacquin-Piques A, et al. COVID 19-Induced Smell and Taste Impairments: Putative Impact on Physiology. Frontiers in Physiology. 2021; 11.
  • 37. Klein SL. Sex influences immune responses to viruses, and efficacy of prophylaxis and treatments for viral diseases. Bioessays. 2012; 34: 1050-9.
  • 38. Pan A, Liu L, Wang C, et al. Association of Public Health Interventions With the Epidemiology of the COVID-19 Outbreak in Wuhan, China. Jama. 2020; 323: 1-9.
  • 39. Schrödter S, Biermann E, Halata Z. Histological evaluation of age-related changes in human respiratory mucosa of the middle turbinate. Anat Embryol (Berl). 2003; 207: 19-27.
  • 40. Attems J, Walker L, Jellinger KA. Olfaction and Aging: A Mini-Review. Gerontology. 2015; 61: 485-90.
  • 41. Walford RL. The immunologic theory of aging. Immunological Reviews. 1969; 2: 171-71.
  • 42. Zou L, Ruan F, Huang M, et al. SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. N Engl J Med. 2020; 382: 1177-79.
  • 43. Liu Y, Yan LM, Wan L, et al. Viral dynamics in mild and severe cases of COVID-19. Lancet Infect Dis. 2020 Jun;20(6):656-657.
  • 44. Menni C, Valdes AM, Freidin MB, et al. Real-time tracking of self-reported symptoms to predict potential COVID-19. Nat Med. 2020 Jul;26(7):1037-1040.
There are 44 citations in total.

Details

Primary Language Turkish
Subjects Clinical Sciences
Journal Section Rewiev
Authors

Özlem Saatci

Ayşegül Batıoğşu-karaaltın 0000-0002-8620-4375

Publication Date July 1, 2021
Acceptance Date May 17, 2021
Published in Issue Year 2021 Volume: 4 Issue: 2

Cite

APA Saatci, Ö., & Batıoğşu-karaaltın, A. (2021). COVİD-19 PANDEMİSİ VE KOKU BOZUKLUĞU PATOGENESİ; GÜNCEL BİR DERLEME. Tıp Fakültesi Klinikleri Dergisi, 4(2), 49-55.


All site content, except where otherwise noted, is licensed under a Creative Common Attribution Licence. (CC-BY-NC 4.0)

by-nc.png