Research Article
BibTex RIS Cite

Yaşın Tükürük Transforme Edici Büyüme Faktör Beta (TGF-β) Düzeyleri Üzerindeki Etkisi

Year 2021, Volume: 4 Issue: 3, 127 - 133, 01.11.2021

Abstract

Amaç: Transforme edici büyüme faktör-beta (TGF-β), birçok hücrede proliferasyon, hücresel farklılaşma, motilite ve adezyon gibi fonksiyonları kontrol eden bir sitokin türüdür. Ayrıca, organizmada tüm dokuların gelişiminde, homeostazisinde ve onarımında çok önemli rol oynarlar. Bu çalışmanın amacı, belirlenen yaş gruplarında TGF-β düzeylerinin tükürük örneklerinde değişiminin değerlendirilmesidir. Gereç ve Yöntem: Çalışmaya 26-75 yaş aralığında 32 erişkin (15 kadın/ 17 erkek) birey dahil edildi. Stimüle edilmiş tükürük örnekleri, sabah 08.00-09.00 saatleri arasında SARSTEDT marka tükürük toplama tüpleri ile önerilen şekilde tüp kartuşlarının 2 dakika ağızda çiğnetilmesi ile toplandı. Sonrasında 30 dk bekleme ve 3200 g ‘de 15 dakika santrüfüj yapıldı. Tükürük TGF-β düzeyleri ELISA kiti (pg/mL) ile çalışıldı. Bulgular: Tükürük TGF-β düzeyleri belirlenen yaş grupları arasında anlamlı olarak yüksek bulundu (p=0.0001). Sonuç: Sonuç olarak, 55 yaş üstü bireylerde tükürük TGF-β düzeylerinde gözlenen artışın aynı yaş grubu serum düzeyleri ile yapılan çalışmalarla benzer sonuçlar göstermesi tükürük örneklerinin kullanılabilirliğine dikkat çekmektedir.

References

  • 1. Xianglan Z., Jun Seop Y., Dawool H., Jong In Y., Hyun Sil K., and Euane Sandra C. TGF- β Pathway in Saliva Gland Fibrosis Int. J. Mol. Sci. 2020, 21, 9138; doi:10.3390/ijms21239138.
  • 2. Massagué J. TGF-β signalling in context. Nat Rev Mol Cell Biol. 2012;13(10):616-630.
  • 3. Derynck R, Budi EH. Specificity, versatility, and control of TGF-β family signaling. Sci Signal. 2019;12(570):eaav5183.
  • 4. Lopez-Otin, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell 2013;153, 1194–1217.
  • 5. He, S.; Sharpless, N.E. Senescence in Health and Disease. Cell 2017;169, 1000–1011.
  • 6. Passarino, G.; De Rango, F.; Montesanto, A. Human longevity: Genetics or Lifestyle? It takes two to tango. Immun. Ageing 2016;13, 12.
  • 7. Cadenas, E.; Davies, K.J. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic. Biol. Med. 2000;29, 222–230.
  • 8. Kaushik, S.; Cuervo, A.M. Proteostasis and aging. Nat. Med. 2015;21, 1406–1415.
  • 9.Morikawa, M.; Derynck, R.; Miyazono, K. TGF-β and the TGF-β Family: Context-Dependent Roles in Cell and Tissue Physiology. Cold Spring Harb. Perspect. Biol. 2016;8.
  • 10.Miyazono, K.; Katsuno, Y.; Koinuma, D.; Ehata, S.; Morikawa, M. Intracellular and extracellular TGF-beta signaling in cancer: Some recent topics. Front. Med. 2018;12, 387–411.
  • 11. Feng XH, Derynck R. Specifity and versality in TGFbeta signaling through smads. Annu Cell Dev Biol 2005; 21: 659-93.
  • 12. Meng XM, Tang PM, Li J, Lan HY. TGF-b/smad signaling in renal fibrosis. Front Physiol 2015;6:82
  • 13. Xu F, Liu C, Zhou D, Zhang L. TGF-b/SMAD pathway and its regulation in hepatic fibrosis. J Histochem Cytochem 2016;64:157–67.
  • 14. Sisto M, Lorusso L, Ingravallo G, Tamma R, Ribatti D, Lisi S. The TGFb1 signaling pathway as an attractive target in the fibrosis pathogenesis of Sj€ogren’s syndrome. Mediators Inflamm 2018;2018:1965935
  • 15. Franceschi, C.; Capri, M.; Monti, D.; Giunta, S.; Olivieri, F.; Sevini, F.; Panourgia, M.P.; Invidia, L.; Celani, L.; Scurti, M.; et al. Inflammaging and anti-inflammaging: A systemic perspective on aging and longevity emerged from studies in humans. Mech. Ageing Dev. 2007;128, 92–105.
  • 16. Li MO, Wan YY, Sanjabi S, Robertson AK, Falvell RA. Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol 2006; 24: 99-146.
  • 17. Fox RI, Kang H, Ando D, Abrams J, Pisa E: Cytokine mRNA expression in salivary gland biopsies of Sjögren’s syndrome. J Immunol 1994;152:5532–5539.
  • 18. Streckfus CF, Bigler L, Navazesh M, Al-HashimiI: Cytokine concentrations in stimulated whole saliva among patients receiving varying doses of IFN-γ symptomatic treatment of Sjögren’s syndrome: A preliminary study. Clin Oral Invest 2000;5:133–135.
  • 19. Batlle E, Massague J. Transforming growth factor-b signaling in immunity and cancer. Immunity. 2019;50(4):924-940.
  • 20. Chen W, Frank ME, Jin W et al. TGF-beta released by apoptotic T cells contributes to an immunosuppressive milieu. Immunity 2001; 14: 715–725.
  • 21. Zhang H, Jiang Z, Chang J et al. Role of NAD(P)H oxidase in transforming growth factor-beta1-induced monocyte chemoattractant protein-1 and interleukin- 6 expression in rat renal tubular epithelial cells. Nephrology 2009; 14: 302–310.
  • 22. Shull MM, Ormsby I, Kier AB, et al. Targeted disruption of the mouse transforming growth factor-β1 gene results inmultifocal inflammatory disease Nature. 1992;359(6397):693-699.
  • 23. Fionda C, Stabile H, Cerboni C, et al. Hitting more birds with a stone: impact of TGF-β on ILC activity in cancer. J Clin Med. 2020;9(1):143.
  • 24. Zhang F, Wang H, Wang X, et al. TGF-β induces M2-like macrophage polarization via SNAIL mediated suppression of a pro-inflammatory phenotype. Oncotarget. 2016;7(32):52294- 52306.
  • 25. Gocer P, Gurer US, Erten N, et al.Comparison of polymorphonuclear leukocyte functions in elderly patients and healthy young volunteers. Med Princ Pract 2005;14: 382-85.
  • 26. Gregg R, Smith CM, Clark FJ, et al.The number of human peripheral blood CD4+ CD25 high regulatory T cells increases with age. Clin Exp Immunol 2005;140:540-6.
  • 27. Goodwin K, Viboud C, Simonsen L. Antibody response toinfluenza vaccination in the elderly: a quantitative review. Vaccine 2006;24:1159–69.
  • 28. Bruunsgaard H. Physical activity and modulation of systemic lowlevel inflammation. J Leuk Biol 2005; 78: 819-35.
  • 29. Lin Y., Nakachi K., Ito Y. et al., “Variations in serum transforming growth factor-𝛽1 levels with gender, age and lifestyle factors of healthy Japanese adults,” Disease Markers,2009, vol. 27, no. 1, pp. 23–28.
  • 30. Ghavazi A., Ganji A., Kshavarzaian N., et. al. Cytokine profile and disease severity in patients with COVID-19. Cytokine., 2021 Jan;137:155323. doi: 10.1016/j.cyto.2020.155323.
  • 31.Sanjabi S., Oh S.A., Li M.O. Regulation of the immune response by TGF-β: from conception to autoimmunity and infection, Cold Spring Harbor Perspect. Biol.2017; 9:(6). a022236.

Effect of Age on Salivary Transforming Growth Factor Beta (TGF-β) Levels

Year 2021, Volume: 4 Issue: 3, 127 - 133, 01.11.2021

Abstract

Objective: Transforming growth factor-beta (TGF-β) is a type of cytokine that controls functions such as proliferation, cellular differentiation, motility, and adhesion in many cells. They also play a very important role in the development, homeostasis and repair of all tissues in the organism. The aim of this study is to evaluate the changes in TGF-β levels in the determined age groups. Materials and methods: 32 adult (15 female / 17 male) individuals aged between 26-75 years were included in the study. Stimulated saliva samples were collected between 08.00-09.00 in the morning by chewing the tube cartridges in the mouth for 2 minutes with SARSTEDT brand saliva collection tubes as recommended. Afterwards, it was waited for 30 minutes and centrifuged at 3200 g for 15 minutes. Saliva TGF-β levels (pg/mL) were studied with the ELISA kit. Results: Salivary TGF-β levels were found to be significantly higher among the specified age groups (p=0.0001). Conclusion: In conclusion, the increase observed in salivary TGF-β levels in individuals over 55 years of age showed similar results with studies conducted with serum levels in the same age group, which draws attention to the usability of saliva samples.

References

  • 1. Xianglan Z., Jun Seop Y., Dawool H., Jong In Y., Hyun Sil K., and Euane Sandra C. TGF- β Pathway in Saliva Gland Fibrosis Int. J. Mol. Sci. 2020, 21, 9138; doi:10.3390/ijms21239138.
  • 2. Massagué J. TGF-β signalling in context. Nat Rev Mol Cell Biol. 2012;13(10):616-630.
  • 3. Derynck R, Budi EH. Specificity, versatility, and control of TGF-β family signaling. Sci Signal. 2019;12(570):eaav5183.
  • 4. Lopez-Otin, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell 2013;153, 1194–1217.
  • 5. He, S.; Sharpless, N.E. Senescence in Health and Disease. Cell 2017;169, 1000–1011.
  • 6. Passarino, G.; De Rango, F.; Montesanto, A. Human longevity: Genetics or Lifestyle? It takes two to tango. Immun. Ageing 2016;13, 12.
  • 7. Cadenas, E.; Davies, K.J. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic. Biol. Med. 2000;29, 222–230.
  • 8. Kaushik, S.; Cuervo, A.M. Proteostasis and aging. Nat. Med. 2015;21, 1406–1415.
  • 9.Morikawa, M.; Derynck, R.; Miyazono, K. TGF-β and the TGF-β Family: Context-Dependent Roles in Cell and Tissue Physiology. Cold Spring Harb. Perspect. Biol. 2016;8.
  • 10.Miyazono, K.; Katsuno, Y.; Koinuma, D.; Ehata, S.; Morikawa, M. Intracellular and extracellular TGF-beta signaling in cancer: Some recent topics. Front. Med. 2018;12, 387–411.
  • 11. Feng XH, Derynck R. Specifity and versality in TGFbeta signaling through smads. Annu Cell Dev Biol 2005; 21: 659-93.
  • 12. Meng XM, Tang PM, Li J, Lan HY. TGF-b/smad signaling in renal fibrosis. Front Physiol 2015;6:82
  • 13. Xu F, Liu C, Zhou D, Zhang L. TGF-b/SMAD pathway and its regulation in hepatic fibrosis. J Histochem Cytochem 2016;64:157–67.
  • 14. Sisto M, Lorusso L, Ingravallo G, Tamma R, Ribatti D, Lisi S. The TGFb1 signaling pathway as an attractive target in the fibrosis pathogenesis of Sj€ogren’s syndrome. Mediators Inflamm 2018;2018:1965935
  • 15. Franceschi, C.; Capri, M.; Monti, D.; Giunta, S.; Olivieri, F.; Sevini, F.; Panourgia, M.P.; Invidia, L.; Celani, L.; Scurti, M.; et al. Inflammaging and anti-inflammaging: A systemic perspective on aging and longevity emerged from studies in humans. Mech. Ageing Dev. 2007;128, 92–105.
  • 16. Li MO, Wan YY, Sanjabi S, Robertson AK, Falvell RA. Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol 2006; 24: 99-146.
  • 17. Fox RI, Kang H, Ando D, Abrams J, Pisa E: Cytokine mRNA expression in salivary gland biopsies of Sjögren’s syndrome. J Immunol 1994;152:5532–5539.
  • 18. Streckfus CF, Bigler L, Navazesh M, Al-HashimiI: Cytokine concentrations in stimulated whole saliva among patients receiving varying doses of IFN-γ symptomatic treatment of Sjögren’s syndrome: A preliminary study. Clin Oral Invest 2000;5:133–135.
  • 19. Batlle E, Massague J. Transforming growth factor-b signaling in immunity and cancer. Immunity. 2019;50(4):924-940.
  • 20. Chen W, Frank ME, Jin W et al. TGF-beta released by apoptotic T cells contributes to an immunosuppressive milieu. Immunity 2001; 14: 715–725.
  • 21. Zhang H, Jiang Z, Chang J et al. Role of NAD(P)H oxidase in transforming growth factor-beta1-induced monocyte chemoattractant protein-1 and interleukin- 6 expression in rat renal tubular epithelial cells. Nephrology 2009; 14: 302–310.
  • 22. Shull MM, Ormsby I, Kier AB, et al. Targeted disruption of the mouse transforming growth factor-β1 gene results inmultifocal inflammatory disease Nature. 1992;359(6397):693-699.
  • 23. Fionda C, Stabile H, Cerboni C, et al. Hitting more birds with a stone: impact of TGF-β on ILC activity in cancer. J Clin Med. 2020;9(1):143.
  • 24. Zhang F, Wang H, Wang X, et al. TGF-β induces M2-like macrophage polarization via SNAIL mediated suppression of a pro-inflammatory phenotype. Oncotarget. 2016;7(32):52294- 52306.
  • 25. Gocer P, Gurer US, Erten N, et al.Comparison of polymorphonuclear leukocyte functions in elderly patients and healthy young volunteers. Med Princ Pract 2005;14: 382-85.
  • 26. Gregg R, Smith CM, Clark FJ, et al.The number of human peripheral blood CD4+ CD25 high regulatory T cells increases with age. Clin Exp Immunol 2005;140:540-6.
  • 27. Goodwin K, Viboud C, Simonsen L. Antibody response toinfluenza vaccination in the elderly: a quantitative review. Vaccine 2006;24:1159–69.
  • 28. Bruunsgaard H. Physical activity and modulation of systemic lowlevel inflammation. J Leuk Biol 2005; 78: 819-35.
  • 29. Lin Y., Nakachi K., Ito Y. et al., “Variations in serum transforming growth factor-𝛽1 levels with gender, age and lifestyle factors of healthy Japanese adults,” Disease Markers,2009, vol. 27, no. 1, pp. 23–28.
  • 30. Ghavazi A., Ganji A., Kshavarzaian N., et. al. Cytokine profile and disease severity in patients with COVID-19. Cytokine., 2021 Jan;137:155323. doi: 10.1016/j.cyto.2020.155323.
  • 31.Sanjabi S., Oh S.A., Li M.O. Regulation of the immune response by TGF-β: from conception to autoimmunity and infection, Cold Spring Harbor Perspect. Biol.2017; 9:(6). a022236.
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Clinical Sciences
Journal Section Research article
Authors

Rabia Şemsi 0000-0002-8477-5537

Aylin Sepici Dinçel 0000-0001-5847-0556

Publication Date November 1, 2021
Acceptance Date November 11, 2021
Published in Issue Year 2021 Volume: 4 Issue: 3

Cite

APA Şemsi, R., & Sepici Dinçel, A. (2021). Yaşın Tükürük Transforme Edici Büyüme Faktör Beta (TGF-β) Düzeyleri Üzerindeki Etkisi. Tıp Fakültesi Klinikleri Dergisi, 4(3), 127-133.


All site content, except where otherwise noted, is licensed under a Creative Common Attribution Licence. (CC-BY-NC 4.0)

by-nc.png