Research Article
BibTex RIS Cite

Certain Generalized Fractional Integral Inequalities

Year 2020, Volume: 4 Issue: 4, 252 - 259, 30.12.2020
https://doi.org/10.31197/atnaa.775089

Abstract

By employing the Saigo k-fractional integral operators, some new inequalities for the Chebyshev functional
are formulated for two synchronous functions in this article. Further generalisations of these inequalities,
including three monotonous functions, are also mentioned. In addition, as special cases of our key results,
inequalities for the Chebyshev functional about Saigo fractional integrals are obtained. The main results are
of a general nature and, as a special case, give rise to integral inequalities describing the Saigo's, Riemann-
Liouville and Erdélyi-Kober fractional integral operators referred to the literature.

Supporting Institution

NIL

Project Number

NIL

Thanks

NIL

References

  • [1] T. Abdeljawad, Q.M. Al-Mdallal and F. Jarad, Fractional logistic models in the frame of fractional operators generated by conformable derivatives, Chaos, Solitons and Fractals, 119(4), (2019), 94-101.
  • [2] T. Abdeljawad, M.A. Hajji, Q. Al-Mdallal and F. Jarad, Analysis of some generalized ABC-Fractional logistic models, Alexandria Engineering Journal, 59(4), (2020), 2141-2148.
  • [3] M.A. Alqudah, T. Abdeljawad, Eiman, K. Shah, F. Jarad and Q. Al-Mdalla, Existence theory and approximate solution to prey-predator coupled system involving nonsingular kernel type derivative, Adv. Diference Equ., 2020 (2020): 520.
  • [4] Ritu Agarwal, M.P. Yadav, D. Baleanu, S.D. Purohit, Existence and uniqueness of miscible flow equation through porous media with a nonsingular fractional derivative, AIMS Mathematics, 5(2) (2020), 1062-1073.
  • [5] A. Alshabanat, M. Jleli, S. Kumar and B. Samet, Generalization of Caputo-Fabrizio fractional derivative and applications to electrical circuits, Front. Phys., 8 (2020), Art. 64.
  • [6] G.A. Anastassiou, Advances on Fractional Inequalities, Springer Briefs in Mathematics; Springer: New York, NY, USA, 2011.
  • [7] S. Belarbi and Z. Dahmani, On some new fractional integral inequalities, J. Inequal. Pure Appl. Math., 10(3) (2009), Art. 86, 5 pp (electronic).
  • [8] P.L. Chebyshev, Sur les expressions approximatives des integrales de?nies par les autres prises entre les me mes limites, Proc. Math. Soc. Charkov., 2 (1882), 93-98.
  • [9] R. Díaz and E. Pariguan, On hypergeometric functions and Pochhammer k-symbol, Divulg. Mat., 15 (2007), 179-192.
  • [10] B. Ghanbari, S. Kumar and R. Kumar, A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional derivative, Chaos Solit Fract., 133 (2020), Art. 109619.
  • [11] A. Gupta and C.L. Parihar, Saigo's k-fractional calculus operators, Malaya J. Mat., 5 (2017), 494-504.
  • [12] S. Joshi, E. Mittal, R.M. Pandey and S.D. Purohit, Some Gruss type inequalities involving generalized fractional integral operator, Bull. Transilv. Univ. Brasov, Ser. III, Math. Inform. Phys., 12(61) 1 (2019), 41-52.
  • [13] S.L. Kalla and A. Rao, On Grüss type inequality for hypergeometric fractional integrals, Le Matematiche, 66(1) (2011), 57-64.
  • [14] D. Kumar, J. Singh, S.D. Purohit and R. Swroop, A hybrid analytic algorithm for nonlinear wave-like equations, Math. Model. Nat. Phenom., 14 (2019) Art. 304.
  • [15] A. Kumar and S. Kumar, A modified analytical approach for fractional discrete KdV equations arising in particle vibrations, Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci., 88 (2018), 95-106.
  • [16] S. Kumar, A new fractional modeling arising in engineering sciences and its analytical approximate solution, Alex. Engg. Journal, 52(4) (2013), 813-819.
  • [17] S. Kumar, A. Kumar, S. Abbas, M.A. Qurashi and D. Baleanu, A modi?ed analytical approach with existence and uniqueness for fractional Cauchy reaction-di?usion equations, Adv. Difer. Equ., 2020 (2020), Art. 28.
  • [18] A.M. Mishra, D. Baleanu, F. Tchier and S.D. Purohit, Certain results comprising the weighted Chebyshev functional using Pathway fractional integrals, Mathematics, 7(10) (2019), Art. 896.
  • [19] A.M. Mishra, D. Kumar and S.D. Purohit, Unified integral inequalities comprising pathway operators, AIMS Mathematics, 5(1) (2020), 399-407.
  • [20] N. Menaria, F. Ucar and S.D. Purohit, Certain new integral inequalities involving Erdelyi-Kober operators, Prog. Fract. Dif. Appl., 3(2) (2017), 1-7.
  • [21] S. Mubeen, G.M. Habibullah, An integral representation of some k-hypergeometric functions, Int. J. Contemp. Math. Sci., 7 (2012), 203-207.
  • [22] S.D. Purohit, N. Jolly, M.K. Bansal, J. Singh and D. Kumar, Chebyshev type inequalities involving the fractional integral operator containing multi-index Mittag-Leffler function in the kernel, Appl. Appl. Math. Spec. Issue 6 (2020), 29-38.
  • [23] S.D. Purohit and R.K. Raina, Chebyshev type inequalities for the saigo fractional integrals and their q-analogues, J. Math. Inequal., 7(2) (2013), 239-249.
  • [24] S.D. Purohit, F. Ucar and R.K. Yadav, On fractional integral inequalities and their q-analogues, Revista Tecno-Cienti?ca URU, 6 (2014), 53-66.
  • [25] M. Saigo, A remark on integral operators involving the Gauss hypergeometric functions, Math. Rep. Kyushu Univ., 11 (1978) 135-143.
  • [26] R.K. Saxena, S.D. Purohit and D. Kumar, Integral inequalities associated with Gauss hypergeometric function fractional integral operator, Proc. Nat. Acad. Sci., India Sect. A Phys. Sci., 88(1) (2018), 27-31.
  • [27] D.L. Suthar, D. Baleanu, S.D. Purohit and F. Ucar, Certain k-fractional calculus operators and image formulas of k-Struve function, AIMS Mathematics, 5(3) (2020) 1706-1719.
  • [28] I. Ullah, S. Ahmad, Q. Al-Mdallal, Z.A. Khan, H. Khan and A. Khan, Stability analysis of a dynamical model of tuberculosis with incomplete treatment, Adv. Difference Equ., 2020 (2020): 499.
Year 2020, Volume: 4 Issue: 4, 252 - 259, 30.12.2020
https://doi.org/10.31197/atnaa.775089

Abstract

Project Number

NIL

References

  • [1] T. Abdeljawad, Q.M. Al-Mdallal and F. Jarad, Fractional logistic models in the frame of fractional operators generated by conformable derivatives, Chaos, Solitons and Fractals, 119(4), (2019), 94-101.
  • [2] T. Abdeljawad, M.A. Hajji, Q. Al-Mdallal and F. Jarad, Analysis of some generalized ABC-Fractional logistic models, Alexandria Engineering Journal, 59(4), (2020), 2141-2148.
  • [3] M.A. Alqudah, T. Abdeljawad, Eiman, K. Shah, F. Jarad and Q. Al-Mdalla, Existence theory and approximate solution to prey-predator coupled system involving nonsingular kernel type derivative, Adv. Diference Equ., 2020 (2020): 520.
  • [4] Ritu Agarwal, M.P. Yadav, D. Baleanu, S.D. Purohit, Existence and uniqueness of miscible flow equation through porous media with a nonsingular fractional derivative, AIMS Mathematics, 5(2) (2020), 1062-1073.
  • [5] A. Alshabanat, M. Jleli, S. Kumar and B. Samet, Generalization of Caputo-Fabrizio fractional derivative and applications to electrical circuits, Front. Phys., 8 (2020), Art. 64.
  • [6] G.A. Anastassiou, Advances on Fractional Inequalities, Springer Briefs in Mathematics; Springer: New York, NY, USA, 2011.
  • [7] S. Belarbi and Z. Dahmani, On some new fractional integral inequalities, J. Inequal. Pure Appl. Math., 10(3) (2009), Art. 86, 5 pp (electronic).
  • [8] P.L. Chebyshev, Sur les expressions approximatives des integrales de?nies par les autres prises entre les me mes limites, Proc. Math. Soc. Charkov., 2 (1882), 93-98.
  • [9] R. Díaz and E. Pariguan, On hypergeometric functions and Pochhammer k-symbol, Divulg. Mat., 15 (2007), 179-192.
  • [10] B. Ghanbari, S. Kumar and R. Kumar, A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional derivative, Chaos Solit Fract., 133 (2020), Art. 109619.
  • [11] A. Gupta and C.L. Parihar, Saigo's k-fractional calculus operators, Malaya J. Mat., 5 (2017), 494-504.
  • [12] S. Joshi, E. Mittal, R.M. Pandey and S.D. Purohit, Some Gruss type inequalities involving generalized fractional integral operator, Bull. Transilv. Univ. Brasov, Ser. III, Math. Inform. Phys., 12(61) 1 (2019), 41-52.
  • [13] S.L. Kalla and A. Rao, On Grüss type inequality for hypergeometric fractional integrals, Le Matematiche, 66(1) (2011), 57-64.
  • [14] D. Kumar, J. Singh, S.D. Purohit and R. Swroop, A hybrid analytic algorithm for nonlinear wave-like equations, Math. Model. Nat. Phenom., 14 (2019) Art. 304.
  • [15] A. Kumar and S. Kumar, A modified analytical approach for fractional discrete KdV equations arising in particle vibrations, Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci., 88 (2018), 95-106.
  • [16] S. Kumar, A new fractional modeling arising in engineering sciences and its analytical approximate solution, Alex. Engg. Journal, 52(4) (2013), 813-819.
  • [17] S. Kumar, A. Kumar, S. Abbas, M.A. Qurashi and D. Baleanu, A modi?ed analytical approach with existence and uniqueness for fractional Cauchy reaction-di?usion equations, Adv. Difer. Equ., 2020 (2020), Art. 28.
  • [18] A.M. Mishra, D. Baleanu, F. Tchier and S.D. Purohit, Certain results comprising the weighted Chebyshev functional using Pathway fractional integrals, Mathematics, 7(10) (2019), Art. 896.
  • [19] A.M. Mishra, D. Kumar and S.D. Purohit, Unified integral inequalities comprising pathway operators, AIMS Mathematics, 5(1) (2020), 399-407.
  • [20] N. Menaria, F. Ucar and S.D. Purohit, Certain new integral inequalities involving Erdelyi-Kober operators, Prog. Fract. Dif. Appl., 3(2) (2017), 1-7.
  • [21] S. Mubeen, G.M. Habibullah, An integral representation of some k-hypergeometric functions, Int. J. Contemp. Math. Sci., 7 (2012), 203-207.
  • [22] S.D. Purohit, N. Jolly, M.K. Bansal, J. Singh and D. Kumar, Chebyshev type inequalities involving the fractional integral operator containing multi-index Mittag-Leffler function in the kernel, Appl. Appl. Math. Spec. Issue 6 (2020), 29-38.
  • [23] S.D. Purohit and R.K. Raina, Chebyshev type inequalities for the saigo fractional integrals and their q-analogues, J. Math. Inequal., 7(2) (2013), 239-249.
  • [24] S.D. Purohit, F. Ucar and R.K. Yadav, On fractional integral inequalities and their q-analogues, Revista Tecno-Cienti?ca URU, 6 (2014), 53-66.
  • [25] M. Saigo, A remark on integral operators involving the Gauss hypergeometric functions, Math. Rep. Kyushu Univ., 11 (1978) 135-143.
  • [26] R.K. Saxena, S.D. Purohit and D. Kumar, Integral inequalities associated with Gauss hypergeometric function fractional integral operator, Proc. Nat. Acad. Sci., India Sect. A Phys. Sci., 88(1) (2018), 27-31.
  • [27] D.L. Suthar, D. Baleanu, S.D. Purohit and F. Ucar, Certain k-fractional calculus operators and image formulas of k-Struve function, AIMS Mathematics, 5(3) (2020) 1706-1719.
  • [28] I. Ullah, S. Ahmad, Q. Al-Mdallal, Z.A. Khan, H. Khan and A. Khan, Stability analysis of a dynamical model of tuberculosis with incomplete treatment, Adv. Difference Equ., 2020 (2020): 499.
There are 28 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Kamlesh Jangid This is me 0000-0002-3138-3564

Sunil Dutt Prohit 0000-0002-1098-5961

Kottakkaran Sooppy Nisar

Thabet Abdeljawad 0000-0002-8889-3768

Project Number NIL
Publication Date December 30, 2020
Published in Issue Year 2020 Volume: 4 Issue: 4

Cite

Cited By

Some Generalized Special Functions and their Properties
Advances in the Theory of Nonlinear Analysis and its Application
https://doi.org/10.31197/atnaa.768532