Research Article
BibTex RIS Cite
Year 2017, Volume: 18 Issue: 2, 289 - 300, 30.06.2017
https://doi.org/10.18038/aubtda.279709

Abstract

References

  • [1] Geim AK, Novoselov KS. The rise of graphene. Nat. Mater. 2007;6:183-191.
  • [2] Slonczewski JC, Weiss PR. Band structure of graphite. Phys. Rev. 1958;109:272-279.
  • [3] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306:666-669.
  • [4] Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008;8:902-907.
  • [5] Fowler JD, Allen MJ, Tung VC, Yang Y, Kaner, RB, Weller BH. Practical chemical sensors from chemically derived graphene. ACS Nano. 2009;3(2):301-306.
  • [6] Wang X, Zhi L, Mullen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 2008;8(1):323-327.
  • [7]Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M, et al. Gate-variable optical transitions in graphene. Science. 2008;320(5873):206–209.
  • [8] Mueller T, Xia F, Avouris, P. Graphene photodedectors for high-speed optical communications. Nat. Photon. 2010;4:297-301.
  • [9] Schwierz F. Graphene transistors. Nat. Nanotechnol. 2010;5:487-496.
  • [10] Xia F, Perebeinos V, Lin YM, Wu Y, Avouris P. The origins and limits of metal-graphene junction. Nat. Nanotechnol. 2011;5:179-184.
  • [11] Xia F, Farmer DB, Lin YM, Avouris, P. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett. 2010;10:715-718.
  • [12] Brownson DAC, Banks CE. Fabricating supercapacitors: highlighting the impact of and moieties. Chem. Commun. 2012.;48:1425-1427.
  • [13] Wang G, Shen X, Yao J, Park J. Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon. 2009;47(8):2049-2053.
  • [14] Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, et al. Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 2010;22:3906-3924.
  • [15] Losurdo M, Giangregorio MM, Capezzuto P, Bruno G. Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure. Phys. Chem. Chem. Phys. 2011;13:20836-20843.
  • [16] Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, et al. Preparation and characterization of graphene oxide paper. Nature. 2007;448:457-460.
  • [17] Bonaccorso F, Lombardo A, Hasan T, Sun Z, Colombo L, Ferrari AC. Production and processing of graphene and 2d crystals. Materialstoday. 2012;15(12):564-589.
  • [18] Wang C, Chen W, Han C, Wang G, Tang B, Tang C, et al. Growth of millimeter-size single crystal graphene on Cu foils by circumfluence chemical vapor deposition. Scientific Reports. 2014;4(4537):1-5.
  • [19] Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, et al. Lage area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009;9(1):30-35.
  • [20] Yu Q, Lian J, Siriponglert S, Li H, Chen YP, Pei SS. Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett. 2008;93:113103(3).
  • [21] Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature. 2009;457:706-710.
  • [22] Magnuson CW, Kong X, Ji H, Tan C, Li H, Piner R, et al. Copper oxide as a “self-cleaning” substrate for graphene growth. Journal of Materials Research. 2014;29(3):403-409.
  • [23] Luo ZT, Lu Y, Singer DW, Berck E, Somers LA, Goldsmith BR, et al. Effect of substrate roughness and feedstock concentration on growth of wafer-scale graphene at atmospheric pressure. Chem Mater. 2011;23:1441-1447.
  • [24] Zhang Y, Gao T, Gao Y, Xie S, Ji Q, Yan K, et al. Defect-like structures of graphene on copper foils for strain relief investigated by high-resolution scanning tunneling microscopy. ACS Nano. 2011;5(5):4014-4022.
  • [25] Gao L, Guest JF, Guisinger NP, Epitaxial graphene on Cu(111). Nano Lett. 2010;10:3512-3516.
  • [26] Straumanis ME, Yu LS. Lattice parameters, densities, expansion coefficients and perfection of structure of Cu and of Cu–In α phase. Acta Cryst. 1969;A25:676-682.
  • [27] Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, et al. Two-dimensional gas of massless dirac fermions in graphene. Nature. 2005;438:197-200.
  • [28] Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321:385-388.
  • [29] Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008;8:902-907.
  • [30] Taylor RE, Ho CY. Thermal expansion of solids. ASM International: Materials. 1998:273.
  • [31] Richardson HW. Copper compounds in ullmann's encyclopedia of industrial chemistry. Weinheim:Wiley-VCH;2005.
  • [32] Mack E, Osterhof GG, Kraner HM. Vapor pressure of copper oxide and copper. J. Am. Chem. Soc. 1923;45(3):617-623.
  • [33] Yu Q, Liu X, Tang D. Extreme extensibility of copper foil under compound forming conditions. Scientific Reports. 2013;3(3556):1-6.
  • [34] Suryanarayana C, Grant Norton M. X-Ray diffraction: A practical approach, Springer US; 1998.
  • [35] Cullity DB. Elements of X-ray diffraction. Massachusetts: Addison-Wesley;1956.
  • [36] Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Novoselov KS, Geim AK. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006;97:187401-197404.
  • [37] Tan PH, Deng Y, Zhao Q. Temperature-dependent raman spectra and anomalous raman phenomenon of highly oriented pyrolytic graphite. Phys. Rev. B. 1998;58:5435-439.
  • [38] Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS. Raman spectroscopy in graphene. Physics Reports. 2009;473:51-87.
  • [39] Basko DM, Piscanec S, Ferrari AC. Electron-electron interactions and doping dependence of the two-phonon raman intensity in graphene. Phys. Rev. B. 2009;80:165413-165422.
  • [40] Bunch JS, van der Zande AM, Verbridge SS, Frank IW, Tanenbaum DM, Parpia JM, et al. Electromechanical resonators from graphene sheets. Science. 2007;315:490-493.
  • [41] Ferrari AC. Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Comm. 2007;143:47-57.
  • [42] Graf D, Molitor F. Spatially resolved raman spectroscopy of single-and few-layer graphene. Nano Lett. 2007;7:238-242.
  • [43] Ni Z, Wang Y, Yu T, Shen Z. Raman spectroscopy and imaging of graphene. Nano Res. 2008;1:273-291.
  • [44] Wang YY, Ni ZH, Shen ZX, Wang HM, Wu YH. Interference enhancement of raman signal of graphene. Appl. Phys. Lett. 2008;92:043121(3).
  • [45] Tang B, Guoxin H, Gao H. Raman spectroscopic characterization of graphene. Applied Spectroscopy Reviews. 2010;45(5):369-407.
  • [46] Zhen HN, Ting Y. Probing charged impurities in suspended graphene using raman spectroscopy. ACS Nano. 2009;3:569-574.
  • [47] Han MY, Özyılmaz B, Zhang Y, Kim P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 2007;98:206805-206808.
  • [48] Wang YY, Ni ZH, Yu T, Wang HM, Wu YH, Chen W, et al. Raman studies of monolayer graphene: the substrate effect. J. Phys. Chem. C. 2008;112:10637-10640.
  • [49] Calizo I, Bejenari I. Ultraviolet raman microscopy of single and multilayer graphene. J. Appl. Phys. 2009;106:043509-043513.
  • [50] Das A, Pisana S, Chakraborty B, Piscanec S, Saha SK, Waghmare UV, et al. Monitoring dopants by raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008;3:210-215.
  • [51] Zhen HN, Ting Y, Yun HL. Uniaxial strain on graphene: raman spectroscopy study and band-gap opening. ACS Nano. 2008;2:2301-2305.
  • [52] Zhen HN, Hao MW, Yun M. Tunable stress and controlled thickness modification in graphene by annealing. ACS Nano. 2008;2:1033-1039.
  • [53] Calizo I, Balandin AA, Bao W, Miao F, Lau CN. Temperature dependence of the raman spectra of graphene and graphene multilayers. Nano Lett. 2007;7:2645-2469.
  • [54] Stephane B, Sunmin R, Louis E. Probing the intrinsic properties of exfoliated graphene: raman spectroscopy of free-standing monolayers. Nano Lett. 2009;9:346-352.

SYNTHESIS OF GRAPHENE VIA CHEMICAL VAPOUR DEPOSITION ON COPPER SUBSTRATES WITH DIFFERENT THICKNESSES

Year 2017, Volume: 18 Issue: 2, 289 - 300, 30.06.2017
https://doi.org/10.18038/aubtda.279709

Abstract

The
quality of the grown graphene on the top side and subside of copper
substrate with different thicknesses was investigated. Graphenes were
grown on the 9, 25, 150 and 250
μm
thickness copper substrates with Low-Pressure CVD using CH
4
process gas.

Copper subtrates were investigated with XRD, XRF. Graphenes which
grown on both surface of the copper substrate were characterized with
Raman spectrometry. Results show that the grain size which calculated
from XRD data is decreasing with increasing thickness except for 25
μm thick copper. Besides the micro-strain in the structure is
increasing with thickness of substrate. Raman results show that the

graphene grown on the top surface of the 9 μm thick substrate is
purely single-layer. The other samples consist of not only
single-layer graphene but also few-layer graphene domains. When we
look at I
2D/IG
ratios for samples on the top surface of coppers, the graphene doping
decreases with increasing of thickness of substrate. At the same
time, Graphenes on the copper subsurface have blueshift and higher
FWMH values. It reveals that a tight relation between the graphene
and the copper subsurface. The graphene grown on the top side of the
150 μm copper has the typical attribute of suspended single-layer
graphene with the redshift of a narrow 2D peak and I
2D/IG
≈ 4. In this study, the best sample is obtained on the top surface
of the 9 μm thick copper substrate. The large single-layer graphene
is depend on microstrain rather than grain orientation.

References

  • [1] Geim AK, Novoselov KS. The rise of graphene. Nat. Mater. 2007;6:183-191.
  • [2] Slonczewski JC, Weiss PR. Band structure of graphite. Phys. Rev. 1958;109:272-279.
  • [3] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306:666-669.
  • [4] Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008;8:902-907.
  • [5] Fowler JD, Allen MJ, Tung VC, Yang Y, Kaner, RB, Weller BH. Practical chemical sensors from chemically derived graphene. ACS Nano. 2009;3(2):301-306.
  • [6] Wang X, Zhi L, Mullen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 2008;8(1):323-327.
  • [7]Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M, et al. Gate-variable optical transitions in graphene. Science. 2008;320(5873):206–209.
  • [8] Mueller T, Xia F, Avouris, P. Graphene photodedectors for high-speed optical communications. Nat. Photon. 2010;4:297-301.
  • [9] Schwierz F. Graphene transistors. Nat. Nanotechnol. 2010;5:487-496.
  • [10] Xia F, Perebeinos V, Lin YM, Wu Y, Avouris P. The origins and limits of metal-graphene junction. Nat. Nanotechnol. 2011;5:179-184.
  • [11] Xia F, Farmer DB, Lin YM, Avouris, P. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett. 2010;10:715-718.
  • [12] Brownson DAC, Banks CE. Fabricating supercapacitors: highlighting the impact of and moieties. Chem. Commun. 2012.;48:1425-1427.
  • [13] Wang G, Shen X, Yao J, Park J. Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon. 2009;47(8):2049-2053.
  • [14] Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, et al. Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 2010;22:3906-3924.
  • [15] Losurdo M, Giangregorio MM, Capezzuto P, Bruno G. Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure. Phys. Chem. Chem. Phys. 2011;13:20836-20843.
  • [16] Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, et al. Preparation and characterization of graphene oxide paper. Nature. 2007;448:457-460.
  • [17] Bonaccorso F, Lombardo A, Hasan T, Sun Z, Colombo L, Ferrari AC. Production and processing of graphene and 2d crystals. Materialstoday. 2012;15(12):564-589.
  • [18] Wang C, Chen W, Han C, Wang G, Tang B, Tang C, et al. Growth of millimeter-size single crystal graphene on Cu foils by circumfluence chemical vapor deposition. Scientific Reports. 2014;4(4537):1-5.
  • [19] Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, et al. Lage area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009;9(1):30-35.
  • [20] Yu Q, Lian J, Siriponglert S, Li H, Chen YP, Pei SS. Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett. 2008;93:113103(3).
  • [21] Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature. 2009;457:706-710.
  • [22] Magnuson CW, Kong X, Ji H, Tan C, Li H, Piner R, et al. Copper oxide as a “self-cleaning” substrate for graphene growth. Journal of Materials Research. 2014;29(3):403-409.
  • [23] Luo ZT, Lu Y, Singer DW, Berck E, Somers LA, Goldsmith BR, et al. Effect of substrate roughness and feedstock concentration on growth of wafer-scale graphene at atmospheric pressure. Chem Mater. 2011;23:1441-1447.
  • [24] Zhang Y, Gao T, Gao Y, Xie S, Ji Q, Yan K, et al. Defect-like structures of graphene on copper foils for strain relief investigated by high-resolution scanning tunneling microscopy. ACS Nano. 2011;5(5):4014-4022.
  • [25] Gao L, Guest JF, Guisinger NP, Epitaxial graphene on Cu(111). Nano Lett. 2010;10:3512-3516.
  • [26] Straumanis ME, Yu LS. Lattice parameters, densities, expansion coefficients and perfection of structure of Cu and of Cu–In α phase. Acta Cryst. 1969;A25:676-682.
  • [27] Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, et al. Two-dimensional gas of massless dirac fermions in graphene. Nature. 2005;438:197-200.
  • [28] Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321:385-388.
  • [29] Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008;8:902-907.
  • [30] Taylor RE, Ho CY. Thermal expansion of solids. ASM International: Materials. 1998:273.
  • [31] Richardson HW. Copper compounds in ullmann's encyclopedia of industrial chemistry. Weinheim:Wiley-VCH;2005.
  • [32] Mack E, Osterhof GG, Kraner HM. Vapor pressure of copper oxide and copper. J. Am. Chem. Soc. 1923;45(3):617-623.
  • [33] Yu Q, Liu X, Tang D. Extreme extensibility of copper foil under compound forming conditions. Scientific Reports. 2013;3(3556):1-6.
  • [34] Suryanarayana C, Grant Norton M. X-Ray diffraction: A practical approach, Springer US; 1998.
  • [35] Cullity DB. Elements of X-ray diffraction. Massachusetts: Addison-Wesley;1956.
  • [36] Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Novoselov KS, Geim AK. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006;97:187401-197404.
  • [37] Tan PH, Deng Y, Zhao Q. Temperature-dependent raman spectra and anomalous raman phenomenon of highly oriented pyrolytic graphite. Phys. Rev. B. 1998;58:5435-439.
  • [38] Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS. Raman spectroscopy in graphene. Physics Reports. 2009;473:51-87.
  • [39] Basko DM, Piscanec S, Ferrari AC. Electron-electron interactions and doping dependence of the two-phonon raman intensity in graphene. Phys. Rev. B. 2009;80:165413-165422.
  • [40] Bunch JS, van der Zande AM, Verbridge SS, Frank IW, Tanenbaum DM, Parpia JM, et al. Electromechanical resonators from graphene sheets. Science. 2007;315:490-493.
  • [41] Ferrari AC. Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Comm. 2007;143:47-57.
  • [42] Graf D, Molitor F. Spatially resolved raman spectroscopy of single-and few-layer graphene. Nano Lett. 2007;7:238-242.
  • [43] Ni Z, Wang Y, Yu T, Shen Z. Raman spectroscopy and imaging of graphene. Nano Res. 2008;1:273-291.
  • [44] Wang YY, Ni ZH, Shen ZX, Wang HM, Wu YH. Interference enhancement of raman signal of graphene. Appl. Phys. Lett. 2008;92:043121(3).
  • [45] Tang B, Guoxin H, Gao H. Raman spectroscopic characterization of graphene. Applied Spectroscopy Reviews. 2010;45(5):369-407.
  • [46] Zhen HN, Ting Y. Probing charged impurities in suspended graphene using raman spectroscopy. ACS Nano. 2009;3:569-574.
  • [47] Han MY, Özyılmaz B, Zhang Y, Kim P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 2007;98:206805-206808.
  • [48] Wang YY, Ni ZH, Yu T, Wang HM, Wu YH, Chen W, et al. Raman studies of monolayer graphene: the substrate effect. J. Phys. Chem. C. 2008;112:10637-10640.
  • [49] Calizo I, Bejenari I. Ultraviolet raman microscopy of single and multilayer graphene. J. Appl. Phys. 2009;106:043509-043513.
  • [50] Das A, Pisana S, Chakraborty B, Piscanec S, Saha SK, Waghmare UV, et al. Monitoring dopants by raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008;3:210-215.
  • [51] Zhen HN, Ting Y, Yun HL. Uniaxial strain on graphene: raman spectroscopy study and band-gap opening. ACS Nano. 2008;2:2301-2305.
  • [52] Zhen HN, Hao MW, Yun M. Tunable stress and controlled thickness modification in graphene by annealing. ACS Nano. 2008;2:1033-1039.
  • [53] Calizo I, Balandin AA, Bao W, Miao F, Lau CN. Temperature dependence of the raman spectra of graphene and graphene multilayers. Nano Lett. 2007;7:2645-2469.
  • [54] Stephane B, Sunmin R, Louis E. Probing the intrinsic properties of exfoliated graphene: raman spectroscopy of free-standing monolayers. Nano Lett. 2009;9:346-352.
There are 54 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Mücahit Yılmaz

Yasin Ramazan Eker

Publication Date June 30, 2017
Published in Issue Year 2017 Volume: 18 Issue: 2

Cite

APA Yılmaz, M., & Eker, Y. R. (2017). SYNTHESIS OF GRAPHENE VIA CHEMICAL VAPOUR DEPOSITION ON COPPER SUBSTRATES WITH DIFFERENT THICKNESSES. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, 18(2), 289-300. https://doi.org/10.18038/aubtda.279709
AMA Yılmaz M, Eker YR. SYNTHESIS OF GRAPHENE VIA CHEMICAL VAPOUR DEPOSITION ON COPPER SUBSTRATES WITH DIFFERENT THICKNESSES. AUJST-A. June 2017;18(2):289-300. doi:10.18038/aubtda.279709
Chicago Yılmaz, Mücahit, and Yasin Ramazan Eker. “SYNTHESIS OF GRAPHENE VIA CHEMICAL VAPOUR DEPOSITION ON COPPER SUBSTRATES WITH DIFFERENT THICKNESSES”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 18, no. 2 (June 2017): 289-300. https://doi.org/10.18038/aubtda.279709.
EndNote Yılmaz M, Eker YR (June 1, 2017) SYNTHESIS OF GRAPHENE VIA CHEMICAL VAPOUR DEPOSITION ON COPPER SUBSTRATES WITH DIFFERENT THICKNESSES. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 18 2 289–300.
IEEE M. Yılmaz and Y. R. Eker, “SYNTHESIS OF GRAPHENE VIA CHEMICAL VAPOUR DEPOSITION ON COPPER SUBSTRATES WITH DIFFERENT THICKNESSES”, AUJST-A, vol. 18, no. 2, pp. 289–300, 2017, doi: 10.18038/aubtda.279709.
ISNAD Yılmaz, Mücahit - Eker, Yasin Ramazan. “SYNTHESIS OF GRAPHENE VIA CHEMICAL VAPOUR DEPOSITION ON COPPER SUBSTRATES WITH DIFFERENT THICKNESSES”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 18/2 (June 2017), 289-300. https://doi.org/10.18038/aubtda.279709.
JAMA Yılmaz M, Eker YR. SYNTHESIS OF GRAPHENE VIA CHEMICAL VAPOUR DEPOSITION ON COPPER SUBSTRATES WITH DIFFERENT THICKNESSES. AUJST-A. 2017;18:289–300.
MLA Yılmaz, Mücahit and Yasin Ramazan Eker. “SYNTHESIS OF GRAPHENE VIA CHEMICAL VAPOUR DEPOSITION ON COPPER SUBSTRATES WITH DIFFERENT THICKNESSES”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, vol. 18, no. 2, 2017, pp. 289-00, doi:10.18038/aubtda.279709.
Vancouver Yılmaz M, Eker YR. SYNTHESIS OF GRAPHENE VIA CHEMICAL VAPOUR DEPOSITION ON COPPER SUBSTRATES WITH DIFFERENT THICKNESSES. AUJST-A. 2017;18(2):289-300.