Research Article
BibTex RIS Cite

NEW THIOPHENE BEARING DIMETHYL-5-HYDROXY ISOPHTALATE ESTERS AND THEIR ANTIMICROBIAL ACTIVITIES

Year 2018, Volume: 19 Issue: 1, 43 - 49, 31.03.2018
https://doi.org/10.18038/aubtda.335519

Abstract

Thiophene belongs to a class of heterocyclic
compounds. In this study, three new dimethyl-5-hydroxy isophtalate derived thiophene esters were
successfully synthesized and characterized by FT-IR, elemental analysis, 1H-NMR,
13C-NMR and HR-Mass techniques. Synthesized compounds antimicrobial
effects were tested on Staphylococcus aureus (ATCC
25923); Enterococcus faecalis  (ATCC 29212); Enterococcus faecalis (ATCC
51922); Klebsiella pneumoniae (ATCC 700603); Pseudomonas aeruginosa (ATCC
27853); Escherichia coli (ATCC 35218); Escherichia coli (ATCC
25922)
and Candida albicans (ATCC
90028); Candida glabrata (ATCC 90030); Candida krusei (ATCC
6258); Candida parapsilosis (ATCC 22019).
Compound C1 showed
the highest antimicrobial activity, possessing the same potential as
chloramphenicol against, P. aeruginosa ATCC 27853. According to MTT assays, this compound was identified as non-toxic.

References

  • [1] Martinez, J. L.; Baquero, F.; Andersson, D. I. Predicting Antibiotic Resistance, Nature Reviews Microbiology, 2007, 5, 958−965.
  • [2] Zhang, Q. C.; Lambert, G.; Liao, D.; Kim, H.; Robin, K.; Tung, C. K.; Pourmand, N.; Austin, R. H. Acceleration of Emergence of Bacterial Antibiotic Resistance in Connected Microenvironments, Science, 2011, 333, 1764−1767.
  • [3] Høiby, N.; Bjarnsholt, T.; Givskov, M.; Molinc, S.; Ciofu, O., Antibiotic resistance of bacterial biofilms, International Journal of Antimicrobial Agents, 2010, 35, 322–332.
  • [4] Andersson, D. I.; Hughes, D., Microbiological effects of sublethal levels of antibiotics, Nature Reviews Microbiology, 2014, 8, 260-271.
  • [5] Jo, Y. W.; Im, W. B.; Rhee, J. K.; Shim, M. J.; Kimb, W. B. and Choi, E. C., Synthesis and antibacterial activity of oxazolidinones containing pyridine substituted with heteroaromatic ring, Bioorganic & Medicinal Chemistry, 2004, 12, 5909–5915.
  • [6] Raja, R.; Sivasubramaniyan, A.; Murugan, D.; Subbaiah, N.; George, J.; Poovan, S.; Sangaraiah, N.; Alagusundaram, P; Shanmugam, K.; Manivachagam, C. A green synthesis of 1,2,3-triazolyl-pyridine hybrids and evaluation of their antibacterial activity, Res. Chem. Intermed., 2016, 42, 8005–8021.
  • [7] Elagamey, A. G.; Sattar, S. A; Taweel, F. E. and Said, S. An Efficient Synthesis and Antibacterial Activity of Pyrido[2,3-d] Pyrimidine, Chromeno[3,4-c]Pyridine, Pyridine, Pyrimido[2,3-c] Pyridazine, Enediamines, and Pyridazine Derivatives, J. Heterocyclic Chem., 2016, 53, 1801.
  • [8] Baharfar, R.; Asghari, S.; Rassi, S; Mohseni, M., Synthesis and evaluation of novel isatin and 5-isatinylidenerhodanine-based furan derivatives as antibacterial agents, Res. Chem. Intermed., 2015, 41, 6975–6984.
  • [9] Rani, M.; Yusuf, M.; Khan, S. A., Synthesis and in-vitro-antibacterial activity of [5-(furan-2-yl)-phenyl]-4,5-carbothioamide-pyrazolines, Journal of Saudi Chemical Society, 2012, 16, 431–436.
  • [10] Jin, Y. X.; Zhong, A. G.; Ge, C. H.; Pan, F. Y.; Yang, J. G.; Wu, Y.; Xie, M.; Feng, H. W., A novel difunctional acylhydrazone with isoxazole and furan heterocycles: Syntheses, structure, spectroscopic properties, antibacterial activities and theoretical studies of (E)-N’-(furan-2-ylmethylene)-5-methylisoxazole-4-carbohydrazide, Journal of Molecular Structure, 2012, 1010, 190–196.
  • [11] Balachandra, B.; Shanmugam, S.; Muneeswaran, T.and Ramakritinan, M., Iodine catalyzed one-pot synthesis of highly substituted N-methyl pyrroles via [3 + 2] annulation and their in vitro evaluation as antibacterial agents, RSC Adv., 2015, 5, 64781.
  • [12] Joshi, S. D.; More Y.; Vagdevi, H. M.; Vaidya, V. P.; Gadaginamath, G. S.; Kulkarni, V. H., Synthesis of new 4-(2,5-dimethylpyrrol-1-yl)/4-pyrrol-1-yl benzoic acid hydrazide analogs and some derived oxadiazole, triazole and pyrrole ring systems: a novel class of potential antibacterial, antifungal and antitubercular agents, Med. Chem. Res., 2013, 22, 1073–1089.
  • [13] Kaping, S.; Boiss, I.; Singha, L. I.; Helissey, P.; Vishwakarma, J. N., A facile, regioselective synthesis of novel 3-(N- phenylcarboxamide)pyrazolo[1,5-a]pyrimidine analogs in the presence of KHSO4 in aqueous media assisted by ultrasound and their antibacterial activities, Mol. Divers., 2016, 20, 379–390.
  • [14] Verbitskiy, E. V.; Baskakova, S. A.; Rasputin, N. A.; Gerasimova, N. A.; Amineva, P. G.; Evstigneeva, N. P.; Zil’berberg, N. V.; Kungurov, N. V.; Kravchenko, M. A.; Skornyakov, S. N.; Rusinov, G. L.; Chupakhin, O. N. and Charushin, V. N., Microwave-assisted synthesis and evaluation of antibacterial activity of novel 6-fluoroaryl-[1,2,4]triazolo[1,5-a]pyrimidines, ARKIVOC, 2016, 5, 268-278.
  • [15] Mabkhot, Y. N.; Kaal, N. A.; Alterary, S.; Showiman, S; Barakat, A.; Ghabbour, H. A. and Frey, W., Molecules, 2015, 20, 8712-8729.
  • [16] Kaya, E.; Turan, N.; Gündüz, B.; Çolak, N.; Körkoca, H., Synthesis, Characterization of Poly-2- (2-hydroxybenzylideneamino)-6-phenyl-4,5,6, 7-tetrahydrobenzo[b]thiophene-3-carbonitrile: Investigation of Antibacterial Activity and Optical Properties, Polymer Engineering And Science, 2012, 52, 7, 1581-1589.
  • [17] Elsabee, M. Z.; Ali, E. A.; Mokhtar, S. M.; Eweis, M., Synthesis, characterization polymerization and antibacterial properties of novel thiophene substituted acrylamide, Reactive & Functional Polymers, 2011, 71, 1187–1194.
  • [18] Wardakhan, W. W.; Louca, N. A. and Kamel, M. M, The Reaction of 2-Aminocyclohexeno[b]thiophene Derivatives with Ethoxycarbonyl isothiocyanate: Synthesis of Fused Thiophene Derivatives with Antibacterial and Antifungal Activities, Acta Chim. Slov., 2007, 229, 54, 229–241.
  • [19] Zhao, Q.; Li, J.; Zhang, X.; Li, Z. and Tang, Y., Cationic Oligo(thiophene ethynylene) with Broad-Spectrum and High Antibacterial Efficiency under White Light and Specific Biocidal Activity against S. aureus in Dark, ACS Appl. Mater. Interfaces, 2016, 8, 1019−1024.
  • [20] Patel, S.; Gheewala, N.; Suthar, A.; Shah, A. In-vitro cytotoxicity activity of Solanum nigrum extract against Hela cell line and Vero cell line. Int. J. Pharm. Pharm. Sci., 2009, 1(1), 38-46.
  • [21] Protopopova, M.; Hanrahan, C.; Nikonenko, B.; Samala, R.; Chen, P.; Gearhart, J.; Einck L.; Nacy, C.A. Identification of a new antitubercular drug candidate, SQ109, from a combinatorial library of 1,2-ethylenediamines. J. Antimicrob. Chemother., 2005, 56(5), 968-974.
  • [22] Clinical and Laboratory Standards Institute, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically Approved Standard; Wayne, PA, USA, 2006.
  • [23] Eweis, M.; Elkholy, S.; Elsabee, M. S.; Antifungal efficacy of chitosan and its thiourea derivatives upon the growth of some sugar-beet pathogens, Int. J. Biol. Macromol., 2006, 38, 1–8.
  • [24] Gündüzalp, A. B.; Özbek, N. and Karacan, N., Synthesis, characterization, and antibacterial activity of the ligands including thiophene/furan ring systems and their Cu(II), Zn(II) complexes, Med Chem Res, 2012, 21, 3435–3444.
Year 2018, Volume: 19 Issue: 1, 43 - 49, 31.03.2018
https://doi.org/10.18038/aubtda.335519

Abstract

References

  • [1] Martinez, J. L.; Baquero, F.; Andersson, D. I. Predicting Antibiotic Resistance, Nature Reviews Microbiology, 2007, 5, 958−965.
  • [2] Zhang, Q. C.; Lambert, G.; Liao, D.; Kim, H.; Robin, K.; Tung, C. K.; Pourmand, N.; Austin, R. H. Acceleration of Emergence of Bacterial Antibiotic Resistance in Connected Microenvironments, Science, 2011, 333, 1764−1767.
  • [3] Høiby, N.; Bjarnsholt, T.; Givskov, M.; Molinc, S.; Ciofu, O., Antibiotic resistance of bacterial biofilms, International Journal of Antimicrobial Agents, 2010, 35, 322–332.
  • [4] Andersson, D. I.; Hughes, D., Microbiological effects of sublethal levels of antibiotics, Nature Reviews Microbiology, 2014, 8, 260-271.
  • [5] Jo, Y. W.; Im, W. B.; Rhee, J. K.; Shim, M. J.; Kimb, W. B. and Choi, E. C., Synthesis and antibacterial activity of oxazolidinones containing pyridine substituted with heteroaromatic ring, Bioorganic & Medicinal Chemistry, 2004, 12, 5909–5915.
  • [6] Raja, R.; Sivasubramaniyan, A.; Murugan, D.; Subbaiah, N.; George, J.; Poovan, S.; Sangaraiah, N.; Alagusundaram, P; Shanmugam, K.; Manivachagam, C. A green synthesis of 1,2,3-triazolyl-pyridine hybrids and evaluation of their antibacterial activity, Res. Chem. Intermed., 2016, 42, 8005–8021.
  • [7] Elagamey, A. G.; Sattar, S. A; Taweel, F. E. and Said, S. An Efficient Synthesis and Antibacterial Activity of Pyrido[2,3-d] Pyrimidine, Chromeno[3,4-c]Pyridine, Pyridine, Pyrimido[2,3-c] Pyridazine, Enediamines, and Pyridazine Derivatives, J. Heterocyclic Chem., 2016, 53, 1801.
  • [8] Baharfar, R.; Asghari, S.; Rassi, S; Mohseni, M., Synthesis and evaluation of novel isatin and 5-isatinylidenerhodanine-based furan derivatives as antibacterial agents, Res. Chem. Intermed., 2015, 41, 6975–6984.
  • [9] Rani, M.; Yusuf, M.; Khan, S. A., Synthesis and in-vitro-antibacterial activity of [5-(furan-2-yl)-phenyl]-4,5-carbothioamide-pyrazolines, Journal of Saudi Chemical Society, 2012, 16, 431–436.
  • [10] Jin, Y. X.; Zhong, A. G.; Ge, C. H.; Pan, F. Y.; Yang, J. G.; Wu, Y.; Xie, M.; Feng, H. W., A novel difunctional acylhydrazone with isoxazole and furan heterocycles: Syntheses, structure, spectroscopic properties, antibacterial activities and theoretical studies of (E)-N’-(furan-2-ylmethylene)-5-methylisoxazole-4-carbohydrazide, Journal of Molecular Structure, 2012, 1010, 190–196.
  • [11] Balachandra, B.; Shanmugam, S.; Muneeswaran, T.and Ramakritinan, M., Iodine catalyzed one-pot synthesis of highly substituted N-methyl pyrroles via [3 + 2] annulation and their in vitro evaluation as antibacterial agents, RSC Adv., 2015, 5, 64781.
  • [12] Joshi, S. D.; More Y.; Vagdevi, H. M.; Vaidya, V. P.; Gadaginamath, G. S.; Kulkarni, V. H., Synthesis of new 4-(2,5-dimethylpyrrol-1-yl)/4-pyrrol-1-yl benzoic acid hydrazide analogs and some derived oxadiazole, triazole and pyrrole ring systems: a novel class of potential antibacterial, antifungal and antitubercular agents, Med. Chem. Res., 2013, 22, 1073–1089.
  • [13] Kaping, S.; Boiss, I.; Singha, L. I.; Helissey, P.; Vishwakarma, J. N., A facile, regioselective synthesis of novel 3-(N- phenylcarboxamide)pyrazolo[1,5-a]pyrimidine analogs in the presence of KHSO4 in aqueous media assisted by ultrasound and their antibacterial activities, Mol. Divers., 2016, 20, 379–390.
  • [14] Verbitskiy, E. V.; Baskakova, S. A.; Rasputin, N. A.; Gerasimova, N. A.; Amineva, P. G.; Evstigneeva, N. P.; Zil’berberg, N. V.; Kungurov, N. V.; Kravchenko, M. A.; Skornyakov, S. N.; Rusinov, G. L.; Chupakhin, O. N. and Charushin, V. N., Microwave-assisted synthesis and evaluation of antibacterial activity of novel 6-fluoroaryl-[1,2,4]triazolo[1,5-a]pyrimidines, ARKIVOC, 2016, 5, 268-278.
  • [15] Mabkhot, Y. N.; Kaal, N. A.; Alterary, S.; Showiman, S; Barakat, A.; Ghabbour, H. A. and Frey, W., Molecules, 2015, 20, 8712-8729.
  • [16] Kaya, E.; Turan, N.; Gündüz, B.; Çolak, N.; Körkoca, H., Synthesis, Characterization of Poly-2- (2-hydroxybenzylideneamino)-6-phenyl-4,5,6, 7-tetrahydrobenzo[b]thiophene-3-carbonitrile: Investigation of Antibacterial Activity and Optical Properties, Polymer Engineering And Science, 2012, 52, 7, 1581-1589.
  • [17] Elsabee, M. Z.; Ali, E. A.; Mokhtar, S. M.; Eweis, M., Synthesis, characterization polymerization and antibacterial properties of novel thiophene substituted acrylamide, Reactive & Functional Polymers, 2011, 71, 1187–1194.
  • [18] Wardakhan, W. W.; Louca, N. A. and Kamel, M. M, The Reaction of 2-Aminocyclohexeno[b]thiophene Derivatives with Ethoxycarbonyl isothiocyanate: Synthesis of Fused Thiophene Derivatives with Antibacterial and Antifungal Activities, Acta Chim. Slov., 2007, 229, 54, 229–241.
  • [19] Zhao, Q.; Li, J.; Zhang, X.; Li, Z. and Tang, Y., Cationic Oligo(thiophene ethynylene) with Broad-Spectrum and High Antibacterial Efficiency under White Light and Specific Biocidal Activity against S. aureus in Dark, ACS Appl. Mater. Interfaces, 2016, 8, 1019−1024.
  • [20] Patel, S.; Gheewala, N.; Suthar, A.; Shah, A. In-vitro cytotoxicity activity of Solanum nigrum extract against Hela cell line and Vero cell line. Int. J. Pharm. Pharm. Sci., 2009, 1(1), 38-46.
  • [21] Protopopova, M.; Hanrahan, C.; Nikonenko, B.; Samala, R.; Chen, P.; Gearhart, J.; Einck L.; Nacy, C.A. Identification of a new antitubercular drug candidate, SQ109, from a combinatorial library of 1,2-ethylenediamines. J. Antimicrob. Chemother., 2005, 56(5), 968-974.
  • [22] Clinical and Laboratory Standards Institute, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically Approved Standard; Wayne, PA, USA, 2006.
  • [23] Eweis, M.; Elkholy, S.; Elsabee, M. S.; Antifungal efficacy of chitosan and its thiourea derivatives upon the growth of some sugar-beet pathogens, Int. J. Biol. Macromol., 2006, 38, 1–8.
  • [24] Gündüzalp, A. B.; Özbek, N. and Karacan, N., Synthesis, characterization, and antibacterial activity of the ligands including thiophene/furan ring systems and their Cu(II), Zn(II) complexes, Med Chem Res, 2012, 21, 3435–3444.
There are 24 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Hakan Ünver

Zerrin Canturk

Publication Date March 31, 2018
Published in Issue Year 2018 Volume: 19 Issue: 1

Cite

APA Ünver, H., & Canturk, Z. (2018). NEW THIOPHENE BEARING DIMETHYL-5-HYDROXY ISOPHTALATE ESTERS AND THEIR ANTIMICROBIAL ACTIVITIES. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, 19(1), 43-49. https://doi.org/10.18038/aubtda.335519
AMA Ünver H, Canturk Z. NEW THIOPHENE BEARING DIMETHYL-5-HYDROXY ISOPHTALATE ESTERS AND THEIR ANTIMICROBIAL ACTIVITIES. AUJST-A. March 2018;19(1):43-49. doi:10.18038/aubtda.335519
Chicago Ünver, Hakan, and Zerrin Canturk. “NEW THIOPHENE BEARING DIMETHYL-5-HYDROXY ISOPHTALATE ESTERS AND THEIR ANTIMICROBIAL ACTIVITIES”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 19, no. 1 (March 2018): 43-49. https://doi.org/10.18038/aubtda.335519.
EndNote Ünver H, Canturk Z (March 1, 2018) NEW THIOPHENE BEARING DIMETHYL-5-HYDROXY ISOPHTALATE ESTERS AND THEIR ANTIMICROBIAL ACTIVITIES. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 19 1 43–49.
IEEE H. Ünver and Z. Canturk, “NEW THIOPHENE BEARING DIMETHYL-5-HYDROXY ISOPHTALATE ESTERS AND THEIR ANTIMICROBIAL ACTIVITIES”, AUJST-A, vol. 19, no. 1, pp. 43–49, 2018, doi: 10.18038/aubtda.335519.
ISNAD Ünver, Hakan - Canturk, Zerrin. “NEW THIOPHENE BEARING DIMETHYL-5-HYDROXY ISOPHTALATE ESTERS AND THEIR ANTIMICROBIAL ACTIVITIES”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 19/1 (March 2018), 43-49. https://doi.org/10.18038/aubtda.335519.
JAMA Ünver H, Canturk Z. NEW THIOPHENE BEARING DIMETHYL-5-HYDROXY ISOPHTALATE ESTERS AND THEIR ANTIMICROBIAL ACTIVITIES. AUJST-A. 2018;19:43–49.
MLA Ünver, Hakan and Zerrin Canturk. “NEW THIOPHENE BEARING DIMETHYL-5-HYDROXY ISOPHTALATE ESTERS AND THEIR ANTIMICROBIAL ACTIVITIES”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, vol. 19, no. 1, 2018, pp. 43-49, doi:10.18038/aubtda.335519.
Vancouver Ünver H, Canturk Z. NEW THIOPHENE BEARING DIMETHYL-5-HYDROXY ISOPHTALATE ESTERS AND THEIR ANTIMICROBIAL ACTIVITIES. AUJST-A. 2018;19(1):43-9.