Araştırma Makalesi
BibTex RIS Kaynak Göster

MESHLESS METHOD BASED ON RADIAL BASIS FUNCTIONS FOR GENERAL ROSENAU KdV-RLW EQUATION

Yıl 2018, Cilt: 6 Sayı: 1, 45 - 54, 30.04.2018
https://doi.org/10.20290/aubtdb.304095

Öz

In
the present study, the meshless method based on radial basis functions is
applied for finding the numerical solution of the general Rosenau KdV-RLW
equation. Firstly, Crank-Nicolson and forward finite difference methods are
used for discretization of the unknown function
 and its time derivative,
respectively. A linearization technique is applied for the approximate solution
of the equation. Secondly, we calculate the numerical values of invariants of
the motions to examine the fundamental conservative properties of the equation.
Also, the error norms are computed to determine the accuracy of the proposed
method. Linear stability analysis is tested to determine whether the present
method is stable or unstable. The scheme gives unconditionally stable. At the
end of this paper, obtained results indicate the accuracy and applicability of
this method.

Kaynakça

  • [1] Mittal R. C, Jain R. K. Numerical solution of general Rosenau-RLW equation using quantic B-splines collocation method. Communications in Numerical Analysis, 2012.
  • [2] Zuo J. M, Zhang Y. M, Zhang T. D, Chang F. A new conservative difference scheme for the general Rosenau-RLW equation. Boundary Value Problems, 2010.
  • [3] Wongsaijai B, Poochinapan K, Disyadej T. A compact finite difference method for solving the general Rosenau-RLW equation. IAENG International Journal of Applied Mathematics, 2014.
  • [4] Pan X, Zhang L. Numerical simulation for general Rosenau-RLW equation: an averaged linearized conservative scheme. Mathematical Problems in Engineering, 2012.
  • [5] Esfahani A. Solitary wave solutions for generalized Rosenau-KdV equation. Communications in Theoretical Physics, 2011; 55: 396-398.
  • [6] Zheng M, Zhou J. An average linear difference scheme for the generalized Rosenau-KdV equation. Journal of Applied Mathematics, 2014.
  • [7] Luo Y, Xu Y, Feng M. Conservative difference scheme for Generalized Rosenau-KdV equation. Advances in Mathematical Physics, 2014.
  • [8] Kansa E. J. Multiquadrics - A scattered data approximation scheme with applications to computational fluid dynamics I. Computers and Mathematics with Applications 1990; 19: 127-145.
  • [9] Kansa E. J. Multiquadrics - A scattered data approximation scheme with applications to computational fluid dynamics II. Computers and Mathematics with Applications 1990; 19: 147-161.
  • [10] Franke C, Schaback R. Convergence order estimates of meshless collocation methods using radial basis functions. Advances in Computational Mathematics 1998; 8: 381-399.
Yıl 2018, Cilt: 6 Sayı: 1, 45 - 54, 30.04.2018
https://doi.org/10.20290/aubtdb.304095

Öz

Kaynakça

  • [1] Mittal R. C, Jain R. K. Numerical solution of general Rosenau-RLW equation using quantic B-splines collocation method. Communications in Numerical Analysis, 2012.
  • [2] Zuo J. M, Zhang Y. M, Zhang T. D, Chang F. A new conservative difference scheme for the general Rosenau-RLW equation. Boundary Value Problems, 2010.
  • [3] Wongsaijai B, Poochinapan K, Disyadej T. A compact finite difference method for solving the general Rosenau-RLW equation. IAENG International Journal of Applied Mathematics, 2014.
  • [4] Pan X, Zhang L. Numerical simulation for general Rosenau-RLW equation: an averaged linearized conservative scheme. Mathematical Problems in Engineering, 2012.
  • [5] Esfahani A. Solitary wave solutions for generalized Rosenau-KdV equation. Communications in Theoretical Physics, 2011; 55: 396-398.
  • [6] Zheng M, Zhou J. An average linear difference scheme for the generalized Rosenau-KdV equation. Journal of Applied Mathematics, 2014.
  • [7] Luo Y, Xu Y, Feng M. Conservative difference scheme for Generalized Rosenau-KdV equation. Advances in Mathematical Physics, 2014.
  • [8] Kansa E. J. Multiquadrics - A scattered data approximation scheme with applications to computational fluid dynamics I. Computers and Mathematics with Applications 1990; 19: 127-145.
  • [9] Kansa E. J. Multiquadrics - A scattered data approximation scheme with applications to computational fluid dynamics II. Computers and Mathematics with Applications 1990; 19: 147-161.
  • [10] Franke C, Schaback R. Convergence order estimates of meshless collocation methods using radial basis functions. Advances in Computational Mathematics 1998; 8: 381-399.
Toplam 10 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Bahar Karaman

Yılmaz Dereli

Yayımlanma Tarihi 30 Nisan 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 6 Sayı: 1

Kaynak Göster

APA Karaman, B., & Dereli, Y. (2018). MESHLESS METHOD BASED ON RADIAL BASIS FUNCTIONS FOR GENERAL ROSENAU KdV-RLW EQUATION. Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi - B Teorik Bilimler, 6(1), 45-54. https://doi.org/10.20290/aubtdb.304095
AMA Karaman B, Dereli Y. MESHLESS METHOD BASED ON RADIAL BASIS FUNCTIONS FOR GENERAL ROSENAU KdV-RLW EQUATION. AUBTD-B. Nisan 2018;6(1):45-54. doi:10.20290/aubtdb.304095
Chicago Karaman, Bahar, ve Yılmaz Dereli. “MESHLESS METHOD BASED ON RADIAL BASIS FUNCTIONS FOR GENERAL ROSENAU KdV-RLW EQUATION”. Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi - B Teorik Bilimler 6, sy. 1 (Nisan 2018): 45-54. https://doi.org/10.20290/aubtdb.304095.
EndNote Karaman B, Dereli Y (01 Nisan 2018) MESHLESS METHOD BASED ON RADIAL BASIS FUNCTIONS FOR GENERAL ROSENAU KdV-RLW EQUATION. Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi - B Teorik Bilimler 6 1 45–54.
IEEE B. Karaman ve Y. Dereli, “MESHLESS METHOD BASED ON RADIAL BASIS FUNCTIONS FOR GENERAL ROSENAU KdV-RLW EQUATION”, AUBTD-B, c. 6, sy. 1, ss. 45–54, 2018, doi: 10.20290/aubtdb.304095.
ISNAD Karaman, Bahar - Dereli, Yılmaz. “MESHLESS METHOD BASED ON RADIAL BASIS FUNCTIONS FOR GENERAL ROSENAU KdV-RLW EQUATION”. Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi - B Teorik Bilimler 6/1 (Nisan 2018), 45-54. https://doi.org/10.20290/aubtdb.304095.
JAMA Karaman B, Dereli Y. MESHLESS METHOD BASED ON RADIAL BASIS FUNCTIONS FOR GENERAL ROSENAU KdV-RLW EQUATION. AUBTD-B. 2018;6:45–54.
MLA Karaman, Bahar ve Yılmaz Dereli. “MESHLESS METHOD BASED ON RADIAL BASIS FUNCTIONS FOR GENERAL ROSENAU KdV-RLW EQUATION”. Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi - B Teorik Bilimler, c. 6, sy. 1, 2018, ss. 45-54, doi:10.20290/aubtdb.304095.
Vancouver Karaman B, Dereli Y. MESHLESS METHOD BASED ON RADIAL BASIS FUNCTIONS FOR GENERAL ROSENAU KdV-RLW EQUATION. AUBTD-B. 2018;6(1):45-54.